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Abstract: Optimization of machining parameters is of great importance for multi-pass end milling because machining
parameters adversely or positively affect the time and quality of production. This paper develops a second-order full-
discretization method（2ndFDM）-based 3-D stability prediction model for simultaneous optimization of spindle speed，
axial cutting depth and radial cutting depth. The optimal machining parameters in each pass are obtained to achieve the
minimum production time comprehensive considering constraints of 3-D stability，machine tool performance，tool life
and machining requirements. A cloud drop-enabled particle swarm optimization（CDPSO）algorithm is proposed to
solve the developed machining parameter optimization，and 13 benchmark problems are used to evaluate CDPSO
algorithm. Numerical results show that CDPSO algorithm has a certain advantage in computational cost as well as
comparable search quality and robustness. A demonstrative example is provided.
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0 Introduction

Optimization of machining parameters that ad⁃
versely or positively affect the machining process be⁃
havior is of great importance to shorten the produc⁃
tion time，explore the production potential and im⁃
prove the efficiency of multi-pass end milling opera⁃
tion. Over the past few decades，a number of re⁃
searchers have contributed significant research in the
formulation of machining parameter optimization
models and in the design of their solution algo⁃
rithms，claiming to have made headway in their re⁃
spective machining operations［1-3］. However，most
current researches are focused on how to solve the
parameter optimization model efficiently，while little
attention is paid to improve the practicality of optimi⁃
zation model. Taking milling operations for exam⁃

ple，most of the related literatures simplified the mill⁃
ing operation to symmetrical milling，and most opti⁃
mization models did not consider the constraint of
machining stability. For large，complex，thin-walled
structures，such as helicopter rotor blades and air⁃
craft envelope，however，chatter easily occurs and
results in poor surface quality and machining inaccu⁃
racy because of low rigidity of this kind of structure.

How to avoid chatter occurrence in the machin⁃
ing process is a challenging issue and has caught the
attention of researchers and technicians in the field
of machining. The most common method is to pre⁃
dict the machining stability lobe diagrams（SLD），

and many methods have been proposed［4-5］. Unfortu⁃
nately，all of these researches are devoted to ma⁃
chining parameter selection in the stability domain
without considering production time and quality. Bu⁃
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dak et al.［6］ and Chen et al.［7］ built mathematical
model of optimization on machining parameters with
the constraint of machining stability to seek the opti⁃
mal combination of axial cutting depth and radial cut⁃
ting depth without chatter for the maximum material
removal rate，but only two variables were consid⁃
ered in these studies. The three variables related to
machining stability，i. e.，axial cutting depth，radial
cutting depth，and spindle speed are equally impor⁃
tant，as they all directly affect the rationality of the
parameters obtained. Thus， an accurate three-di⁃
mensional（3-D） stability model is established in
this paper for the optimization of multi-pass end ma⁃
chining parameters.

In recent years，particle swarm optimization
（PSO）and its variants have been successfully devel⁃
oped to tackle different optimization problems［8-9］.
Although PSO appears to be fast in finding solu⁃
tions near optimal，it is weak in subsequent exploita⁃
tion. This study proposed a cloud drop-enabled
PSO（CDPSO）algorithm inspired by the excellent
properties of the normal cloud model［10］，which can
effectively improve the randomness and fuzziness of
the particle evolution. Numerical results obtained us⁃
ing the proposed CDPSO algorithm to solve bench⁃
mark problems indicate that it performs better than
other four existing algorithms. And a demonstrative
example shows that optimal parameters obtained by
the proposed optimization model performs better
than empirical parameters by 34% with respect to
production time.

1 3‑D Milling Stability Model

Considering that the degree of freedom most
concerned in machining is only the one perpendicu⁃
lar to the machined surface. Therefore，the milling
dynamic model used in this study is based on the dy⁃
namic equation described as follows

ẍ ( t )+ 2ζw n ẋ ( t )+ w 2
n x ( t )=-

dh ( t )
m t

( x ( t )-

x ( t- T ) ) （1）
where ζ is the relative damping；w n the angular natu⁃
ral frequency；d the axial cutting depth；m t the modal
mass of the tool；T the regenerative delay and h ( t )

a specific cutting force coefficient expressed as

h ( t )= ∑
j= 1

Z

g (φj ( t ) )sin (φj ( t ) )⋅[ K t cos (φj ( t ) )+

K n cos (φj ( t ) ) ] （2）
here Z is the number of the cutter teeth；K t and K n

are the tangential and normal cutting force coeffi⁃
cients，respectively；g (φj ( )t ) is a window function
involving the angular position of the jth tooth

g (φj ( t ) )= {10 φ st < φj ( t )< φ ex
Otherwise

（3）

where φ st and φ ex are the start and exit angles，re⁃
spectively； for up-milling， φ st = 0 and φ ex =
arccos ( 1- 2 a D)； for down-milling， φ st =
arccos ( 2 a D - 1 ) and φ ex = π，where a D is the
radial immersion ratio.

Without loss of generality，Eq.（1）can be ex⁃
pressed as state-space form
ẋ ( t )= A n x ( t )+ A( t ) x ( t )- A( t ) x ( t- T ) （4）
where
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（5）

The response of Eq.（4） on t ∈[ kτ，( k+ 1) τ ]
can be expressed as

x ( t )= eAn ( t- kτ )x ( kτ )+

∫kτ
t

{ eAn ( t- ζ )A( ζ )⋅[ x ( ζ )- x ( ζ- T ) ] } dζ （6）

In a similar way
x ( kτ+ τ )= eAnτ x ( kτ )+

∫0
τ

{ eAnζA( kτ+ τ- ζ )⋅[ x ( kτ+ τ- ζ )-

x ⋅( kτ+ τ- ζ- T ) ] } dζ （7）
where t ∈[ 0，τ ]. The following equations can be ob⁃
tained by handling the Duhamel term of Eq.（7）
with the method described by using second-order
full-discretization method（2ndFDM）［4］.
A( kτ+ τ- ζ )=A ( k )

0 +A ( k )
1 ζx ( kτ+ τ- ζ-T )=

x k+1-m+ ζ ( x k-m- x k+1-m ) τ x ( kτ+ τ- ζ )=
ζ ( ζ- τ ) x k-1 2τ 2 + ζ ( 2τ- ζ ) x k τ 2 +
( τ- ζ ) ( 2τ- ζ ) x k+1 2τ 2 （8）

where A ( k )
0 = A k+ 1，A ( k )

1 = ( A k- A k+ 1 ) τ；A k de⁃
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notes the value of A( t ) sampled at tk= kτ；x k- m

and x k+ 1- m mean the values at ( k- m ) τ and ( k+
1-m ) τ，respectively；x k-1，x k and x k+1 denote the
state item at ( k-1 ) τ，kτ and ( k+1 ) τ，respectively.

Substituting Eq.（8）into Eq.（7）leads to
x k+ 1 = F k+ 1 x k+ 1 +(F 0 + F 0，k ) x k+

F k- 1 x k- 1- F k+ 1- m x k+ 1- m- F k- m x k- m （9）
where

F k+ 1 = ( )Φ 0 -
3Φ 1

2τ +
Φ 2

2τ 2 A
( k )
0 +

( )Φ 1 -
3Φ 2

2τ +
A-1
n ( )τ 3Φ 3 - 3Φ 2

2τ 2 A ( k )
1

F 0 =Φ 4

F 0，k= ( )2Φ 1

τ
- Φ 2

τ 2
A ( k )
0 +

( )2Φ 2

τ
-
A-1
n ( )τ 3Φ 3 - 3Φ 2

τ 2
A ( k )
1

F k- 1 = ( )Φ 2

2τ 2 -
Φ 1

2τ A ( k )
0 +

( )A-1
n ( )τ 3Φ 3 - 3Φ 2

2τ 2 - Φ 2

2τ A ( k )
1

F k+ 1- m= ( )Φ 0 -
Φ 1

τ
A ( k )
0 + ( )Φ 1 -

Φ 2

τ
A ( k )
1

F k- m=
Φ 1

τ
A ( k )
0 +

Φ 2

τ
A ( k )
1

where
Φ 0 = A-1

n ( eAnτ- 1 ) Φ 1 = A-1
n ( τeAnτ-Φ 0 )

Φ 2 = A-1
n ( τ 2 eAnτ- 2Φ 1 ) Φ 3 = eAnτ

Thereafter，the discrete map can be described
as

X k+ 1 = D kX k （10）
where

X k= col ( x k，x k- 1，…，x k+ 1- m，x k- m ) （11）
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δ ( F 0 + F 0，k ) δF k- 1 0 ⋯ 0 -δF k+ 1- m -δF k- m

I 0 0 ⋯ 0 0 0
0 I 0 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 ⋯ 0 0 0
0 0 0 ⋯ I 0 0
0 0 0 ⋯ 0 I 0

（12）

where δ=[ I- F k+ 1]-1 and the transition matrix
within a periodic time interval can be established by
using the sequence of discrete maps D k ( k=
0，1，2，…，m- 1)，which can be utilized to predict
the chatter stability region about spindle speed and
axial cutting depth via Floquet theory.

The third variable of the 3-D stability model is
the radial immersion ratio a D，where a∈ ( 0，D ].
In order to obtain the ideal stability model，an infini⁃
tesimal quantity sm is defined for facilitating model⁃
ing. The value range is equally divided into ε small
pieces，thus

a= row ( sm，sm+ ( D- sm ) ε，…，D-

( D- sm ) ε，D ) （13）

At this point， the formulation of 2ndFDM-

based 3-D stability model of spindle speed，axial
cutting depth and radial cutting depth has been com⁃
pleted.

2 Optimization Model

2. 1 Objective functions

In the case of milling，the production time has
always been considered as the objective functions in
most attempts to optimize the machining parame⁃
ters. And first of all，it is necessary to construct the
model about the length of tool travel.

The length of tool travel in rough pass can be
expressed as

L r = GInt (Wa r ) L+ SInt (Wa r ) a r + ap + e（14）

where a r is the radial cutting depth in rough machin⁃
ing；ap the approach distance；and e an arbitrary set
distance to avoid possible accidents and damage，
which is taken as 2 mm in this study；GInt ( ⋅ ) and
SInt ( ⋅ ) denote the greatest and the smallest integer
operators，respectively.

The approach distance can be expressed as
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ap= ( )D2
2

- ( )D
2 - a r

2

（15）

where D is the diameter of the tool.
The travel length of the finish pass is measured

from the contact of tool and workpiece to separation

L s = GInt (Wa s ) L+ SInt (Wa s ) a s + D+ e（16）

where a s is the radial cutting depth in finish pass.
The production time can be expressed as

T total = T p + TL + T a + Tm + T r （17）
where T p（minute） is the preparation time，TL the
clamping time，T a the adjustment time，Tm the ma⁃
chining time，and T r the tool changing time. Since
T p and TL are always fixed and have no effect on the
total production time，they can be ignored.

Considering that machining operation of multi-
pass end milling consists n rough passes and one fin⁃
ish pass，it can be obtained that
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T a = ∑
i= 1

n

tari+ tas

Tm = ∑
i= 1

n

tmri+ tms

T r = ∑
i= 1

n

t rri+ t rs

（18）

Substituting Eq.（18）into Eq.（17），the objec⁃
tive function can be expressed as

T total = ∑
i= 1

n

( tari+ tmri+ t rri )+( tas + tms + t rs )（19）

where
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tari= h1L ri+ h2，tas = h1L s + h2

tmri=
L ri

Ω ri f tri Z
，tms =

L s
Ω s f tsZ

t rri= ZT tc
tmri
t ri

，t rs = ZT tc
tms
ts

（20）

where h1（minutes per millimeter）and h2（minutes）
are constants related to tool travel and approach/de⁃
part time，which are taken as 7E—4 and 0.3 in this
study；Ω s is the spindle speed（revolution per min⁃
ute），f ts the feed rate per tooth（millimeters per
tooth），Z the number of cutter teeth；and T tc the
tool changing time（minutes per tooth） required for
each edge and taken as 1.5 in this study；t ri and ts
are the tool life［11］ in rough and finish pass，respec⁃
tively，which can be calculated by
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（21）

where Cv，Kv，xv，yv，sv，qv，pv and l are constants and
exponents associated with the tool and workpiece
material.

2. 2 Constraint functions

To ensure the safety of machining process and
the quality of product，including spindle speed，feed
rate，axial cutting depth，radial cutting depth，ma⁃
chining force，machining torque，machining power，
surface roughness and tool life must be selected
within a predetermined interval. The description of
the above constraints can be found［11］，and it will
not be repeated in this paper. In addition to the
above constraints，the optimization model construct⁃
ed in this study also contains three-dimensional ma⁃
chining stability region constraint on spindle speed，
axial cutting depth and radial cutting depth，which is
described in the previous section.

2. 3 Optimization model

Objective function
T total = Minimum （22）

Constraint functions
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F ri- Fmax ≤ 0
F s - Fmax ≤ 0
Tmri- Tmmax ≤ 0
Tms - Tmmax ≤ 0
p ri- pmax ≤ 0
p s - pmax ≤ 0
R ri- R rmax ≤ 0
R s - R smax ≤ 0
T r - t ri≤ 0
T r - ts ≤ 0

d t = ∑
i= 1

n

d ri+ d s

（23）

where F ri，F s and Fmax are the machining forces of the
ith rough pass，finish pass and available maximum
value，respectively；Tmri，Tms and Tmmax are the ma⁃
chining torques of the ith rough pass，finish pass，
and available maximum value，respectively；p ri，p s
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and pmax the machining powers of the ith rough pass，
finish pass，and available maximum value，respec⁃
tively；R ri，R s，R rmax and R smax the surface roughnesses
of the ith rough pass，finish pass，required value in
rough pass and finish pass，respectively；t ri，ts and
T r the tool lifes of the ith rough pass，finish pass and
required value，respectively；and d t d ri and d s the to⁃
tal axial cutting depth，axial cutting depths of the ith
rough pass and finish pass，respectively.

Decision variables：n，d ri，a ri，Ω ri，f ri，d s，a s，Ω s，
fs，where n is the number of rough passes；a ri and a s
are the radial cutting depths of the ith rough pass
and finish pass，respectively，Ω ri and Ω s the spindle
speeds of the ith rough pass and finish pass，respec⁃
tively，and f ri and fs the feed rates of the ith rough
pass and finish pass，respectively.

Before searching for optimal values of decision
parameters and minimization production time，the
first issue is to obtain the optimal number of passes
and the optimal distribution of total stock. Thus，a
methodology is implemented to accomplish this task.

If the difference between total axial cutting
depth and axial cutting depth of finish pass is divisi⁃
ble by axial cutting depth of rough pass，n equals the
corresponding integer quotient；Otherwise，rounds
the quotient to the nearest integer in the direction of
positive infinity as n，and the axial cutting depth of
the last rough machining is equal to the total cutting
depth minus the depth of the finishing and the depth
of the first (n- 1) rough passes.

3 Solution Method and Its Perfor‑

mance Evaluation

3. 1 Solution method

Fig.1 is an overall flowchart of the proposed
CDPSO algorithm for parameter optimization.
First， initialize personal best solution（pbest） of
each particle and global best solution（gbest）of the
whole swarm. Second，perform cloud mutation op⁃
erator and two-point crossover operator on particles
to generate new particles，and update swarm based
on PSO and niching-gene-algorithm-based tourna⁃
ment selection （NGATS）［12］ strategy. Finally，

perform simplex crossover（SPX）［13］ operator on
particles to generate new particles， and update
swarm based on dominant particle replacement
mechanism.

The proposed CDPSO algorithm is based on
an improved version of PSO，which can be de⁃
scribed as
ì
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v k+1i =wv ki+ c1 ⋅ rand ( )⋅( p ki- x ki )+ c2 ⋅ rand ( )⋅
( p kg- x ki )

x k+1i = x ki+ v k+1i

w=wmax-
wmax-wmin

IterNumMax2 ⋅ IterNum
2

（24）

where p kg is the gbest of the whole swarm in the kth
iteration，p ki the pbest of the ith particle in the kth it⁃
eration，and rand ( ) the random numbers uniformly
distributed between 0 and 1. w denotes inertia
weight factor，and decreases gradually with the in⁃
crease of the square of iteration numbers. IterNum

Fig.1 Framework of the proposed CDPSO algorithm
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is the current number of iteration and IterNumMax
the maximum number of iterations. In this study，
wmax = 0.9，wmin = 0.4.
3. 1. 1 Constraints handing

Since the optimization of machining parameters
involves lots of constraints while PSO is not a con⁃
strained optimization algorithm，a simple and effi⁃
cient constraint processing scheme is implemented
in this study， that is，converting multi-constraint
and single-objective optimization problem into bi-ob⁃
jective optimization problem to minimize the initial
objective f ( p i ) and the degree of constraint viola⁃
tion G ( p i ) simultaneously. For the sake of clarity，
let f ( p i ) =( f ( p i )，G ( p i ) ). If there only exist in⁃
equality constraints，G ( p i ) can be expressed as

ì
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ïï

G ( p i )= ∑
j= 1

c

G j ( p i )

Gj ( p i )= max { 0，gj ( p i ) }
（25）

where c is the total number of constraints in a speci⁃
fied problem and gj ( p i ) the jth constraint. Hence，
p*i is considered as the global optimal（minimum）
solution if and only if G ( p*i ) = 0 and ¬G ( p i )= 0
such that f ( p i ) ≤ f ( p*i ). Additionally，if there exist
equality constraints， convert them into inequality
constraints as | h (x) |- δ≤ 0，where δ= 1.0E- 4.
3. 1. 2 Genetic manipulation

The two-point crossover operator and SPX op⁃
erator are utilized to process particles in global search
and local search，respectively，to increase the diver⁃
sity of swarm. Besides，a cloud mutation operation is
proposed to process the pbest p ki and the gbest p kg in
this study，because it can unify the fuzziness and ran⁃
domness，and can transform between qualitative con⁃
cepts and quantitative data，thus，the cloud mutation
operation can efficiently improve the uncertainty of
evolution. The detail is expressed as

En= Enmax-
Enmax-Enmin
IterNumMax × IterNum（26）

He= Hemax-
Hemax-Hemin
IterNumMax × IterNum（27）

En'= N (En，He2) （28）
p kg = N ( p kg，En'2 ) （29）
p kci，l= N ( p ki，l，En'2 ) （30）

p ki，l= {p kci，l rand ( )< 1 n
p ki，l rand ( )≥ 1 n

（31）

p kg and p ki，l（the lth gene locus of p ki）are reined
by cloud drop generated by normal cloud model de⁃
scribed in Eqs.（28—30）. En and He indicate entro⁃
py and hyper entropy，respectively. They decrease
with the increase of iteration number as described in
Eqs.（26—27）， leading to the decrease of En'.
Thus，the explorative ability is maintained at a high
level in the early stage and kept a global conver⁃
gence in the later. The operation object of mutation
on p kg is the whole chromosome and that on p ki is the
part of gene locus，as shown in Eqs.（29—31）. Tak⁃
ing the lth gene locus as an example，the probability
of mutation is 1 n，where n is the total number of
design variables. In this study，Enmax = 5.0E- 3，
Enmin = 5.0E- 7， Hemax = 3.0E- 3， Hemin =
3.0E- 7，and the number of generated cloud drop
in each iteration is 200.
3. 1. 3 Evolutionary strategy

In addition to the particle swarm evolution
strategy，we use NGATS as a global updating
strategy to maintain the balance between selection
pressure and diversity of the swarm. However，
when solving the problem of low proportion of feasi⁃
ble solutions，such as machining parameter optimi⁃
zation，NGATS always leads to the problem of
slow convergence. To handle this situation，a local
search model based on clustering partition mecha⁃
nism is introduced into the current algorithm. The
schematic diagram of this mechanism is shown in
Fig.2.

Under this mechanism，the swarm of size is di⁃
vided into n disjoint sub-swarms based on their loca⁃

Fig.2 Schematic diagram of the local search model
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tions. Then，particles in each sub-swarm of size M
are used to generate the same number of offspring of
size M ' through genetic manipulation. Appropriate
evolutionary mechanisms are also introduced to
guide the direction of evolution. Besides，only domi⁃
nant particles are taken account in this strategy for
they represent the most important characteristics of
the swarm. Hence，after dominant particles are se⁃
lected from the swarm，they are used to replace par⁃
ticles dominated. The illustration of the updating
strategy is as follows.

（1）Initialize the size of sub-swarm M.
（2）Randomly generate N M reference points

for the construction of sub-swarm.
（3）While the maximum number of sub-

swarms has not been reached：
Do
① Find M particles closest to the reference

point to form a sub-swarm.
② Generate offspring through SPX.
③ Select dominant particles -x i ( i= 1，…，m )

from offspring swarm.
（a）Let selected offspring replace the particles

in parent particles dominated by them.
（b） Put the evolved sub-swarm in the new

swarm.
（c） If the maximum number of sub-swarms

reaches，go to the next step；else number of sub-

swarms plus one，operate Step 2 again.
（4）End while
（5）Output the local searched swarm.

3. 2 Performance evaluation

3. 2. 1 Benchmark problems

To examine the performance of the proposed
CDPSO algorithm，it is tested on 13 most common⁃
ly used benchmark problems algorithm［14］. The test
results of the proposed CDPSO algorithm are com⁃
pared with four existing well-known algorithms to
evaluate its performance. Before evaluation，the fol⁃
lowing parameters are selected after a few numbers
of trial：Acceleration coefficients c1=1.0 and c2=
0.5，the maximum and the minimum inertia weight
wmax=0.9 and wmin=0.4， the probability of the
crossover operation in the global search model is
0.8，the probability of mutation operation for the
gbest and pbest is 1.0 and 0.2，respectively. In addi⁃
tion，the probability of crossover operation in the lo⁃
cal search model is 1.0. The maximum number of it⁃
erations，IterNumMax，sizes of swarm N and sub-

swarm q are listed in Table 1，which depends on the
different characteristics of 13 benchmark problems，
respectively. And then fitness function evaluations
（FFEs） of these benchmark problems can be ob⁃
tained. Besides，FFEs of the algorithms in the liter⁃
atures are also listed in Table 1 to evaluate the com⁃
putational cost of CDPSO algorithm.

Table 1 IterNumMax, N, q and FFEs of CDPSO and other algorithms

Function

g01
g02
g03
g04
g05
g06
g07
g08
g09
g10
g11
g12
g13

CDPSO
N
65
240
90
50
96
160
100
25
50
200
40
60
108

q
13
15
9
5
12
10
10
5
10
10
12
6
12

IterNumMax
1 500
1 500
1 000
900
1 850
600
1 800
140
1 200
2 000
600
80
1 350

FFE
97 500
360 000
90 000
45 000
177 600
96 000
180 000
3 500
60 000
240 000
24 000
4 800
145 800

FFE
SACABC[15]

240 000

M⁃ABC[16]

240 000

COMDE[17]
130 000
200 000
150 000
50 000
200 000
12 000
200 000
4 000
70 000
200 000
50 000
6 000
150 000

LCA[18]

225 000

3. 2. 2 Evaluation results

The parameters set above are used for all 13
benchmark problems. The comparision experiments
of CDPSO algorithm on each benchmark problem
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are independently performed 30 runs，and the best，
mean，the worst and standard deviations produced

by CDPSO，SACABC，M-ABC，COMDE，and
LCA algorithms are listed in Table 2.

Table 2 Optimization results of CDPSO algorithm compared to others

Function

g01

g02

g03

g04

g05

g06

g07

g08

g09

g10

g11

g12

g13

Status

Best
Mean
Worst
St.d
Best
Mean
Worst
St.d
Best
Mean
Worst
St.d
Best
Mean
Worst
St.d
Best
Mean
Worst
St.d
Best
Mean
Worst
St.d
Best
Mean
Worst
St.d
Best
Mean
Worst
St.d
Best
Mean
Worst
St.d
Best
Mean
Worst
St.d
Best
Mean
Worst
St.d
Best
Mean
Worst
St.d
Best
Mean
Worst
St.d

Method
SACABC[15]
-15.000
-15.000
-15.000

0
-0.803 618
-0.788 6
-0.768 8
0.014 1
-1.000 5
-1.000 4
-0.999 7

2.550 86E-004
-30 665.539
-30 665.539
-30 665.539

0
5 126.497
5 126.497
5 126.497

9.586 9E-013
-6 961.814
-6 961.814
-6 961.814
1.917 4E-012
24.306 2
24.306 2
24.306 4

2.543 4E-007
-0.095 825
-0.095 825
-0.095 825
1.462 8E-017
680.630
680.630
680.630

1.198 4E-013
7 049.248
7 049.248
7 049.248

3.031 6E-013
0.749 9
0.749 9
0.749 9

1.170 2E-016
-1.000
-1.000
-1.000
0

0.053 94
0.092 42
0.438 802
0.121 7

M⁃ABC[16]
-15
-15
-15
0

-0.803 615
-0.799 336
-0.777 438
6.84E-003
-1.000
-1.000
-1.000

4.68E-005
-30 665.539
-30 665.539
-30 665.539
2.22E-011
5 126.736
5 178.139
5 317.197
5.61E+001
-6 961.814
-6 961.814
-6 961.814

0
24.315
24.415
24.854

1.24E-01
-0.095 825
-0.095 825
-0.095 825
4.23E-017
680.632
680.647
680.691

1.55E-002
7 051.706
7 233.882
7 473.109
1.10E+002
0.75
0.75
0.75

2.30E-005
-1.000
-1.000
-1.000
0

0.053 985
0.158 552
0.442 905
1.73E-001

COMDE[17]
-15.000
-15.000
-15.000
1.97E-013
-0.803 619
-0.801 238
-0.785 265
5.00E-003

-1.000 000 049
-1.000 000 027
-0.999 999 94
3.026E-008
-30 665.539
-30 665.539
-30 665.539

0
5 126.498 109 4
5 126.498 109 4
5 126.498 109 4

0
-6 961.813 875
-6 961.813 875
-6 961.813 875

0
24.306 209
24.306 209
24.306 211
4.70E-007
-0.095 825
-0.095 825
-0.095 825
9.00E-018
680.630 057
680.630 057
680.630 057
4.071E-013
7 049.248 020
7 049.248 077
7 049.248 615
1.50E-004
0.749 999
0.749 999
0.749 999

0
-1.000 000
-1.000 000
-1.000 000

0
0.053 941 5
0.053 941 5
0.053 941 5
1.40E-017

LCA[18]

-15
-15
-15

4.83E-011
-0.803 577
-0.801 563
-0.792 589
3.50E-003
-1.000 5
-1.000 5
-1.000 5
5.51E-006
-30 665.538 7
-30 665.538 7
-30 665.538 7
1.07E-011
5 126.496 7
5 126.496 7
5 126.496 7
9.70E-013
-6 961.813 9
-6 961.813 9
-6 961.813 9
1.85E-012
24.306 209 08
24.306 222 27
24.306 482 68
4.95E-012
-0.095 825 04
-0.095 825 04
-0.095 825 04
2.82E-017
680.630 057
680.630 057
680.630 057
9.81E-012
7 049.248 020 6
7 049.248 054 2
7 049.248 281 6
5.80E-005
0.749 9
0.749 9
0.749 9

1.13E-016
-1
-1
-1
0

0.053 941 514
0.053 941 514
0.053 941 514
3.97E-017

CDPSO
-15.000
-15.000
-15.000
9.11E-016
-0.803 619
-0.802 723
-0.794 662
2.80E-003
-1.000 5
-1.000 5
-1.000 5
1.10E-015
-30 665.538 7
-30 665.538 7
-30 665.538 7
1.05E-011
5 126.496 7
5 126.496 7
5 126.496 7
9.56E-013

-6 961.813 876
-6 961.813 876
-6 961.813 876
1.73E-012
24.306 209 07
24.306 209 07
24.306 209 07
3.29E-012
-0.095 825 04
-0.095 825 04
-0.095 825 04
2.85E-017
680.630 057
680.630 057
680.630 057
1.28E-013
7 049.248 020 0
7 049.248 030 9
7 049.248 173 1
3.37E-005
0.749 9
0.749 9
0.749 9

1.12E-016
-1
-1
-1
0

0.053 941 514
0.053 941 514
0.053 941 514
1.86E-017
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The numerical results obtained by using CDP⁃
SO algorithm and other four algorithms are analyzed
according to their robustness， search quality and
computational cost. As shown in Table 2，CDPSO
algorithm is better or no worse than the other four al⁃
gorithms in terms of the“best”“mean”and“worst”
objective functions for all 13 benchmark problems，
which means that CDPSO algorithm is better than
the other four algorithms in search quality. In terms
of standard deviation，since CDPSO algorithm is de⁃
signed to reduce the calculation cost and improve
the calculation efficiency，FFEs are set very small，
so it is not common in most problems，but the order
of magnitude is already small enough. Moreover，its
standard deviation will be much smaller if FFEs are
properly improved，thus the robustness is not poor.
In terms of computational cost，it is measured by
FFEs. CDPSO algorithm has the lowest cost for 10
benchmark problems，which is 2.8%—52% lower
than the lowest cost algorithm in literatures. In par⁃
ticular，in g03，the optimal solution and the mini⁃
mum variance are obtained using only 48% of the
computational cost of COMDE. Although in g02，
g06 and g10，this method does not have a good ad⁃
vantage over FEEs，which may be caused by strong
suboptimal solution in the problem. However，the
proposed algorithm achieves the best optimization
effect in these three problems after slightly enlarging
the FEE，which further illustrates the advantage of
CDPSO algorithm in search capability.

4 Experiment and Results

4. 1 Experiment parameters

Before the experiment，machine parameters，
tool parameters，workpiece parameters and other
parameters related to optimization are shown in Ta⁃
bles 3—8. Besides，the machining process is down
milling，the total milling depth d totoal = 20 mm and
the required surface roughness Rmax = 6.4 μm.

The 3-D SLD based on the above parameters
is obtained as Fig.3. The accuracy of the machining
stability prediction model based on 2ndFDM has
been described［4］，and the 3-D machining stability
model in this study is a 3-D extension based on the
original model. Therefore，there is no need to con⁃

Table 3 Machine parameters

Maximum spindle
speed / (r•min-1)

24 000

Spindle power /
kW
8.2

Rated torque /
(N·m)
4

Table 4 Tool parameters

Material

Cemented
carbide

Diameter /
mm

10.0

Number of
teeth

3

Nose radi⁃
us / mm

0.2

Tool life /
min

240

Table 5 Workpiece parameters

Material

AL2A12

Size /
(mm×mm×

mm)

100×50×40

Cutting force parameter
Tangential cut⁃
ting force coeffi⁃
cient / (N•mm-2)

863.4

Normal cutting
force coefficient /

(N•mm-2)
225.3

Table 6 Modal parameters of machine tool‑tool system

Natural frequency /
Hz

1 235.85

Damping ratio

0.029 9

Modal mass /
kg

0.111 3

Table 7 Value range of machining parameters

Process
stage

Rough
Semi⁃
finish
Finish

Spindle speed /
(r•min-1)

5 000—20 000

5 000—20 000

5 000—20 000

Feed per
tooth /

(mm•(tooth)-1)

0.03—0.10

0.03—0.10

0.01—0.03

Axial
cutting
depth /
mm

1.0—3.0

1.0—3.0

0.1—0.2

Radial
cutting
depth /
mm

0.50—10.0

0.50—10.0

0.50—10.0

Table 8 Other parameters related to the optimization

model

C u
534.6
qv
0.2

K u
1
xv
0.15

pu
1
yv
0.35

qu
1
sv
0.2

su
1
pv
0

xu
0.9
l
1.00

yu
0.74

Cv

445
Kv

1

Fig.3 2ndFDM-based 3-D SLD
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duct redundant demonstration for its accuracy.

4. 2 Experimental results

The milling experiments are conducted based
on the empirical parameters and the parameters ob⁃
tained through the optimization model of machining
parameters proposed in this study. The correspond⁃
ing production time is shown in Table 9.

According to the optimization results，the opti⁃
mal parameters are obtained at 100% radial cutting
depth （slotting）， and the corresponding stable
boundary is shown in Fig.4. In the figure，the three
points are machining parameters corresponding to
rough machining，semi-finishing and finishing，re⁃
spectively，which can verify that the three sets of pa⁃
rameters meet the stability constraint of milling.

As shown in Table 9，the empirical process pa⁃
rameters are too conservative，which cannot effec⁃
tively give play to the performance of the machine
tool，and result in longer milling time. However，on
the premise of guaranteeing the machining stability
and workpiece surface quality，the optimal parame⁃
ters effectively generate the performance of the ma⁃
chine tool， which greatly reduce the production
time，effectively improve the processing efficiency，
and further verify the practicability and effectiveness
of the proposed optimization model and algorithm.

5 Conclusions

Optimization of machining parameters is of
great importance for multi-pass end milling opera⁃
tions to shorthen production time and improve effi⁃

ciency. However，there are few studies to introduce
chatter stability constraint into optimization model.
Moreover，nearly all of chatter stability models con⁃
struct the stable domain about spindle speed and axi⁃
al cutting depth only，without consideration of radial
cutting depth. To solve the aforementioned prob⁃
lems，the main contributions of this study are as fol⁃
lows.

（1）A 2ndFDM-based 3-D stability prediction
model is developed for simultaneously optimization
of spindle speed，axial cutting depth and radial cut⁃
ting depth.

（2）A parameter optimization model of multi-
pass end milling is developed by taking number of
passes，spindle speed，axial cutting depth，radial
cutting depth and feed rate as design parameters to
achieve the minimum production time while consid⁃
ering a large number of constraints including 3-D
stability.

（3）An algorithm named CDPSO is proposed
to solve the developed parameter optimization mod⁃
el and the evaluation results indicate that it has a cer⁃
tain advantage in the computational cost as well as
comparable search quality and robustness.

（4）A demonstrative example indicates that the
developed parameter optimization model and algo⁃

Table 9 Comparison of parameter optimization results of multi‑pass milling

Types of machining pa⁃
rameter

Empirical parameter

Optimal
parameter

Process stage

Rough
Semi⁃finish
Finish
Rough

Semi⁃finish
Finish

Number of
passes

7
1
1
6
1
1

Axial cut⁃
ting depth/

mm

2.5
2.4
0.1
3.0
1.9
0.1

Radial cut⁃
ting depth/

mm

5
5
5
10
10
10

Spindle
speed / (r •
min-1)

6 000
6 000
8 000

13 630.81
15 074.03
20 000.00

Feed per
tooth / (mm•
(tooth)-1)

0.05
0.03
0.03
0.10
0.10
0.03

Processing
time / min

8.333 2

5.499 5

Fig.4 2ndFDM-based 2-D SLD
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rithm are indeed practical.
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基于云滴粒子群优化算法的多道次端铣削高效稳定切削参数

优化方法

蔡旭林，杨文安，黄 超
（南京航空航天大学直升机传动技术国家重点实验室, 南京 210016, 中国）

摘要：多道次端铣削切削参数对加工时间和加工质量有着正面或负面的影响，因此对多道次端铣削加工参数的

优化是非常重要的。本文建立了基于二阶全离散法（Second⁃order full⁃discrete method，2ndFDM）的三维稳定性

预测模型，以同时优化主轴转速、轴向切深和径向切深。在综合考虑三维稳定性、机床性能、刀具寿命和加工要

求的条件下，得到各道次的最佳加工参数，以达到最短的生产时间。同时提出了一种基于云滴的粒子群优化

（Cloud drop⁃enabled particle swarm optimization，CDPSO）算法，并利用 13个标准测试问题对 CDPSO算法的性

能进行了评估。数值结果表明，该算法在计算成本、搜索能力和鲁棒性方面具有一定优势。最后通过一个切削

参数优化实例验证了所提方法在提升加工效率与稳定性方面的有效性。

关键词：切削参数；多道次端铣削；颤振稳定性；粒子群优化；云模型
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