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Abstract: Performance parameter prediction technology is the core research content of aeroengine health
management, and more and more machine learning algorithms have been applied in the field. Regularized extreme
learning machine (RELM) is one of them. However, the regularization parameter determination of RELM consumes
computational resources, which makes it unsuitable in the field of aeroengine performance parameter prediction with a
large amount of data. This paper uses the forward and backward segmentation (FBS) algorithms to improve the
RELM performance, and introduces an adaptive step size determination method and an improved solution mechanism
to obtain a new machine learning algorithm. While maintaining good generalization, the new algorithm is not sensitive
to regularization parameters, which greatly saves computing resources. The experimental results on the public data
sets prove the above conclusions. Finally, the new algorithm is applied to the prediction of aero-engine performance
parameters, and the excellent prediction performance is achieved.
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0 Introduction

Due to the harsh working environment, large
number of parts and complicated internal structure
of aeroengines, performance degradation inevitably
occurs during operation. Therefore, it is important
to take some measures to get these signs of degrada-
tion in advance to get the rest of the engine’s life,
hence the engine performance parameter prediction
has been the research highlights. The physical mod-
el of engines and the correlation between several
parts are complicated, so it is very difficult to estab-
lish the model to predict the parameters. In recent
years, with the development of machine learning
methods, data-driven prediction methods have at-
tracted more and more researchers’ attention. Data-
based methods do not require complex research

models, and the accuracy of their predictions de-
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pends heavily on historical data. In the field of en-
gine health detection, more and more data-based
methods have been applied ', and these studies al-
so prove that the correct use of data-based methods
can effectively improve the accuracy of diagnosis.

Artificial neural network (ANN)'*' has excel-
lent nonlinear mapping function and is intensely suit-
able for complex fault diagnosis, so it has been
widely studied. Yuan et al.”’ used the long short-
term memory (LSTM) network for remaining use-
ful life (RUL) prediction. Janssenset al."’ adopt
convolutional neural networks for fault diagnosis of
rotating machinery. Qu et al.””’ used a stacked de-
noising auto-encoder (SDA) to solve aero-engine
sensor fault diagnosis.

The extreme learning machine (ELM) is a

new neural network training approach represented

by Huang et al."® Due to its rapid learning speed
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and better performance, it has been widely utilized
in classification, regression and other fields. Ye et
al.'”" proposed to combine QR decomposition into
an incremental ELM (IELM) to obtain QR-IELM
in 2015. In 2017, the Gram-Schmidt process was
introduced into IELM to obtain GSI-ELM'". Cao
et al.''"
tain ATELM. Zhao et al."**' also provided to sug-

gest householder transformation and gave spins into

applied the entropy theory into ELLM to ob-

ELM to accelerate its solution process. In addition
to the improvement for the solution process, some
other scholars combined ELM with other models to
make improved methods suitable for certain prob-
lems. Nobrega et al.'"*’ combined the Kalman filter
with ELM for regression problems and achieved

1[14,

positive results. Pacheco et a made certain

breakthroughs by  combining the restricted
Boltzmann machine with ELM for classification
problems. Anwesha et al.'"”’ combined the autoen-
coder (AE) with ELM to get a network with excel-
lent performance.

Another group of scholars utilized the im-
proved ELM in the field of engine fault diagnosis

and achieved favorable effect. Jiang et al.''*’

adopt
multi-class Bayesian ELM (BELM) for engine gas-
path fault diagnosis. Feng et al."'"' used multi-layer
kernel ELM (KELM) for the aero-engine fault diag-
nosis. Lu et al."™®" employed the distributed ELM for
engine fault diagnosis and achieved positive out-
come. Similarly, Zhao et al.'” employed a soft
ELM for engine fault diagnosis. And more applica-
tions for ELM are utilized to estimate the RUL of
complex machines like aeroengines'* ',

Among these improved methods, the regular-
ized ELM (RELM) , provided by Deng et al."® in
2009, performs superior to ELM in many problems.
But RELM has poor prediction performance on the
time series prediction problem of SINC function in
experiment, which makes RELM not applicable in
some practical scenarios. To address this issue,
many scholars have studied in the construction of
regularization terms and training algorithms. In con-
struction of regularization terms, Luo et al."”* pro-
posed a L,-1., mixed regularization in 2016. Later,
Li et al.'”™ provided the Laplacian twin ELM, Yi

et al.* represented a linear combination of several

regularization terms and obtained an adaptive regu-

27]

larization term, and Inaba et al.”*"' constructed a dis-
tributed regularized ELM in 2018. These RELM
improvements have achieved excellent performance.
In terms of training approaches, Ma et al.'™ utilized
the Lagrangian algorithm to train ELM in 2019.
Mahmooda et al.”® used forward-backward splitting
algorithm for training 1.,-RELM for the first time. In
2019, Song et al."* utilized the alternating direction
method of multipliers (ADMMs) for L,-RELM
training, and obtained the online ELM.

This paper contributes the forward-backward
segmentation (FBS) algorithm'*' for the training of
ELM with L, regularization (L,-RELM) , adopts a
new calculation method to determine the step size,
and obtains an algorithm with fewer number of train-
ing iterations. On this basis, this paper further im-
proves the solution mechanism so that the number
of training iterations is reduced again and the accura-
cy is reduced in an acceptable range. This study suc-
cessfully overcomes the shortcomings of RELM in
SINC data set and other time series prediction prob-
lems. The two represented algorithms are used for
engine performance parameter prediction. Both algo-
rithms have achieved better prediction performance
compared with RELM.

1 Related Work

1.1 ELM

Assume the existing data set to be trained is
(x,t) with the dimension of nX (m+N) , where x
represents the sample input data, ¢ the sample out-
put data, n the sample number, m the number of in-
put features, N the dimension of the output data,
and M the number of neurons in the hidden layer.
Besides, the connection weight of the input layer to
the hidden layer of the ELM represents W with the
dimension of M Xm. The threshold represents B
with the dimension of M X 1. The hidden layer acti-
vation function is expressed as g(x), and the hid-
den layer output can be expressed as

H=g(Wx"+B) (1)

Next, the connection weight B of the hidden
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layer to the output layer is calculated. In the net-
work training phase, the network output is known,
that means, T is known, f is to be calculated, and
solving 8 is equivalent to solving the optimal loss

function as follows
min|| 7 — #|[, = min||Hp — ¢, 2)
The final solution of £ is not difficult to obtain
by least squares method, shown as
B=H'T (3)
where H "represents the Moore-Penrose generalized

inverse of H.
1.2 L,-RELM

From Eq.(2), the solution of ELM is a pro-
cess of minimizing empirical risk, but this solution
may report over-fitting problems in some cases.

1.l combined structural risk terms to

Deng et a
avoid over-fitting problems, and updated the loss

function of ELM as follows
mins B =+ Slell @
where C is a regularization parameter, and the final
solution of Eq.(4) is obtained according to the least

squares method, shown as
B=(H"H+IC)'H"t (5)
where I is an identity matrix whose dimension is the
number of neurons in the hidden layer. Generally,
the solution obtained by Eq.(5) is sparse and has
better performance than the solution obtained by
Eq.(4). L,RELM does not increase too much in
computational complexity, so it is a perfect choice

in practical applications.
2 Improvement of ELM

2.1 ELM combined with FBS

The FBS algorithm was developed by in 2016,
which is applicable for the extremum problem of
separable convex functions. FBS is generally adopt-
ed to calculate the following problems

minh(x)=f(x)+ g(x) (6)
where f(x), g(x) are all convex functions. It is not
difficult to get Algorithm 1 to calculate Eq.(6).

Algorithm 1 Forward-backward splitting

While not converged do

Ty =a, — T,er(-T/e)
Xy = prox, (I, ,7,)= argmine, g (x )+

End

In Algorithm 1, & is the solution to be calculat-
ed and r the step factor. In general, in order to en-
sure the final convergence, the value of the step fac-

tor needs to meet the following condition*"
2
L(VS)
where L(V/ ) is the spectral radius of ATA, such as

when f = 1/2||Az — ..

<< (7)

This study adopts the FBS algorithm to solve
L,-RELM. At this time, the problem that FBS
needs to solve is transformed to Eq.(4) , which is
split into the form suitable for FBS solution, shown

as

: 1 2
f(B)= S| HB—1], (8)
C 2
g(B)=~|8l, (9)

Thus, the forward step in Algorithm 1 is calcu-

lated as follows
/);Hl :ﬂk_TkHT(H.Bk_t) (10)

The backward step is calculated as follows
. C 2 1 - 2
I[)’k+l:argmlnﬁ7||ﬂ”2+§”,3—ﬂk+l )

Eq.(11) can be calculated using the least

(1)

squares method, shown as
Bii1=[diag(z,C)+ 1] "'[p— o H (HB.— )]
(12)
This study solves L,-RELM using FBS (called
FELM), which is summarized in Algorithm 2.
Algorithm 2 FELM
Initialize C, B, 7, £ =1, and set the maximum
number of iterations K
While £ <T K or not converged do
Beov=p— tH"(HB, —1)
Bii =[diag(z,C)+ 118,
k=k+1
End
FELM performs better on some problems than
L, RELM. But on some time series problems, such

as the shared bicycle time series data set in the UCI
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121 the number of iterations

machine learning library
of FELM is close to 5 10°, and the time spent is
close to 60 s. This is obviously not conducive to

practical use.

2.2 FELM combined with adaptive step size de-

termination method

In order to reduce the number of iterations of
the FELM algorithm, this section introduces an
adaptive step size determination method ™' in
FELM (called AFELM). The step size can be de-
termined according to Eq.(7) in the first iteration,
from the second iteration, the kth step size is calcu-

lated as follows

Aﬂk:ﬂk*ﬂhl (13)
AF,=Nf(B)—Vf(B:i1) (14)
< ABLAR >
T ABLAF, > (15)
. <A,3,\,,AFk> (16)

T S AFLAF, >
Through the above calculation process, two
steps of Eqs.(15, 16) are obtained, and the adap-
tive step size can be determined by
f— 4 z',f,”/z';>‘ 1/2 (17)
7, — 0.5z Otherwise
AFELM is summarized in Algorithm 3.
Algorithm 3 AFELM
Initialize C, B, , k=1, and set the maximum

number of iterations K
While £ < K or not converged do
B =B — vH " (HB, —t)
Bii :[ diag(mC )+ 1 ]71{7;&—1
ABiciv =Bie1— B
AF, 4 :Vf(ﬂ/s+1)_ Vf(ﬁﬁ)
Thor =< AR 1, OB =/ << APy, AF 1, >
iy =< AR , AF oy >/ << AF -, AF o >
itz /ty, >1/2

Tpe1 = Tiey
else
T — 1o — 0.57
k=rk+1
End
Compared with the FBS algorithm, the adap-
tive FBS algorithm reduces the number of iterations
significantly, and the solution accuracy can remain

unchanged or superior. The performance compari-

son between the adaptive FBS algorithm and the
FBS algorithm is extremely detailed in Ref.[ 31].

2.3 Improved AFELM

It is found that the core guaranteeing the con-
vergence of the FBS algorithm is the forward and
backward steps, which mainly play animportant role
in solving the current optimal solution. However, in
FBS or the adaptive FBS, the forward step is just
to provide a reference point for the backward step,
and the backward step finds a closest advantage so-
lution to the reference point.

This study considers more about the effect of
the forward step on the final solution in each itera-
tion, assuming that the solution obtained in the for-
ward step is /§H1 and the solution obtained in the

backward step is EHI.Combine a parameter a with

the solution of the forward step and the backward
step, shown as
Bi=eaB, +(1—a)B, (18)

AFELM is improved by adding Eq.(18) to Al-
gorithm 3. The improved one is called IAFELM,
and is summarized in Algorithm 4.

Algorithm 4 TAFELM

Initialize C, B, r, £ =1, and set the maximum
number of iterations K

While £ < K or not converged do

BAkvl :,Bﬁ*TkHT(Hﬁﬁ*t)
E&H :(T}zCJFI)ﬂBA/wl
ﬁkw:aﬁ Jr(l*a)‘ék‘l

k1

A,8/c+1 :ﬁf\"f’l - ﬁk

End

The above omitted steps are the same as steps
in Algorithm 3.

When «a is taken as 1, Algorithm 3 is obtained.
And the smaller the value of « is, the faster the con-
vergence speed is. But the accuracy of the experi-
ment is found to decrease, so the value of a is im-
portant.

In fact, the improvement made the ELM algo-
rithm similar to using the gradient descent method

to replace the least square method. This paper uses
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an improved FBS algorithm to solve the ELM prob-
lem. The FBS algorithm is essentially a type of gra-
dient descent algorithm. The loss function of ELM
is a typical convex function, so when the step size is
selected appropriately, the gradient descent algo-
rithm can guarantee the convergency. The selection
of the step size has been given in Eq.(7) , and the
selection basis is from Ref.[31], which has a de-
tailed derivation process on convergence, so this pa-
per does not repeat it.

Similarly, the adaptive step size used by
AFELM 1s essentially two mature step sizes: The
steepest descent and the minimum residual, which
are used more in various gradient algorithms. But
this paper introduces them to the ELM solution for
the first time in the process, so the convergence of
AFELM can also be guaranteed. The question
about the convergence of the adaptive step size is al-
so very detailed in Ref.[ 33].

As for the IAFELM algorithm proposed in this
paper, it is not difficult to see that there are not
many changes in the selection of gradients, and the
focus is on improving the solution of the weights of
the actual output layer. AFELM and FELM can be
regarded as the two limits of TAFELM, so their con-
vergence problems can be guaranteed as IAFELM is

a form between the two learning machines.
2.4 Determination of relevant parameters

The determination of the convergence condi-
tion also has a great influence on the performance of
the algorithm. The convergence conditions of Algo-
rithms 2—4 determine whether the difference be-
tween the solutions obtained by the two iterations is
less than a preset threshold. The conditions are
judged as follows

(ﬂk+1*,8k)T(,3k+1*ﬂk)/M<€ (19)
where M represents the dimension of the solution
and e a preset threshold.

Regarding the value of the parameter a, it is
found from many experiments that a takes the step
factor of each step to obtain superior performance
and can also reduce the iteration time to some ex-
tent, shown as

a, =71 (20)

2.5 Time series prediction problem

The engine performance parameter prediction
problem is actually a time series prediction problem.
The time series prediction problem can be summa-
rized as a given time series S=/{ s, 4, ***, 5,}. If we
only consider single-step prediction, it is equivalent
to constructe an m-dimensional vector x; ={s;. 1,
Sitay +**y Sy and adopts this vector as the input to
predict the next data, where m represents the size of
the time window. Multi-step prediction means that
the outputting more than one datum is the extrapola-
tion of single-step prediction. It can be seen that the
time series prediction problem is a special kind of re-
gression problem, or it can be considered as a func-

tion fitting problem.

3 Numerical Experiments on Pub-
lic Data Sets

In order to verify the performance of the pro-
posed algorithm, this section conducts comparative
experiments on several time series data sets. The ex-
perimental ELM, L, RELM,
AFELM and TAFELM. Since the training time of
the algorithm FELM is too long, it is not consid-

objects include

ered for performance on the dataset. The perfor-
mance comparison between the adaptive FBS algo-
rithm and the FBS algorithm is described in great
detail in Ref.[31]. The relevant information of sev-

eral selected data sets is illustrated in Table 1.

Table 1 Data set settings

Data set Size Training
SINC(A) 1000 600
GSK(B) 1060 636
INJ(C) 1067 640
Dow Jones Industrial Average (D) 1225 735
US Standard & Poor’s 500 Index (E) 1112 667
Mackey-glass(F) 1005 603

The data set A is a set of data generated by the
SINC function, data sets B—FE are classic stock
time series data sets selected from Yahoo Fi-
nance' ™', and F is a commonly used data set in the
field of time series prediction. All experiments were
performed on computer configuration information as

follows: Intel (R) Core (TM) i5-4210U CPU®@
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1.70 GHz/2.40 GHz; RAM 4.00 GB; Windows
10 64-bit, and the platform adopt for the experiment
is MATLAB R2014a.

The number of neurons in the input layer of the
neural network is set to the number of time win-
dows m(m=5), and the number of neurons in the
output layer is set to the number of prediction steps.
If single-step prediction is performed, it is set to 1,
and set to the number of steps when performing
multi-step prediction. The evaluation indicators are
root mean squares error (RMSE) and mean abso-
lute error (MAE), shown as

_ l T VRN
RMSE = /nz(z, t.) (21)

13y
MAE—’—ZZU, ¢ (22)

i=1
where 7 is the number of test samples, 7 the actual
output value, and 7 the model prediction value.

The stop threshold e is taken as 1X107".
Equal considering structural risks and empirical
risks, the regularization parameter C is taken as 1,
the activation function takes the Sigmoid function,
the input weight and the threshold are randomly de-
termined, and all the data are normalized to [ —1,
1] in experiments. The number of hidden layer neu-
rons is taken as 50 and the results are shown in Ta-
bles 2, 3.

Table 2 RMSE and MAE for all experiments

] RMSE MAE
Dataset ELM L,-RELM AFELM IAFELM ELM L,-RELM AFELM IAFELM
A 0.097 7 0.139 1 0.0457 0.049 6 0.070 7 0.120 1 0.037 3 0.040 0
B 0.142 3 0.150 1 0.134 4 0.142 2 0.102 1 0.114 1 0.102 4 0.108 7
C 0.154 3 0.159 4 0.142 3 0.147 7 0.0951 0.114 8 0.099 4 0.104 4
D 0.110 8 0.127 1 0.102 5 0.104 3 0.073 3 0.094 1 0.076 0 0.077 3
E 0.107 9 0.116 2 0.094 3 0.0911 0.066 9 0.086 2 0.070 2 0.067 9
F 0.2136 0.1717 0.1312 0.167 3 0.079 2 0.127 9 0.094 5 0.112 0

Note: Bold indicates the best performance on the current data set.

Table 3 Training time and number of iterations for all

experiments
Data Training time/s Numbgr of
iterations
set ELM L,RELM AFELM IAFELM AFELM IAFELM
A 0.284 0.276 0.494 0.305 174 33
B 0.243 0.287 0.392 0.290 60 26
C 0.249 0.227 0.299 0.291 69 30
D 0.260 0.257 0.333 0.281 65 36
E 0.230 0.226 0.330 0.315 72 38
F 0.253 0.233 0.301 0.278 49 30

From Table 2, it can be concluded that the RM -
SEs obtained by AFELM and TAFELM are always
better than those by ELLM and L.,-RELM on all data-
sets. And from Table 3, it can be gotten that al-
though AFELM has obtained more predictive ef-
fects, the number of iterations and training time in-
crease. While IAFELM is not as positive at predict-
ing performance as AFELM, but it performs better
in the number of iterations and training time, and the
accuracy is reduced in an acceptable range.

First, the influence of the regularization param-

eter C on the prediction effect is studied, here the
range of Cis [2 ™, 2% ], and the varying diagrams of
RMSE with the range of C (2*) are illustrated in
Fig.1. From Fig.1 we can see that, with the increase
of the regularization parameter C, the performance
of L,RELM is firstly improved and then deteriorat-
ed, while AFELM and TAFELM can always main-
tain excellent performance and not sensitive to pa-
rameter C.

Next, the influence of the number of neurons in
the hidden layer on the prediction effect is studied.
The number of nodes in the hidden layer is increased
from 10 to 150, and experiments on data sets A—F
are performed. The varying diagrams of RMSE with
the number of layer nodes are illustrated in Fig.2. It
can be seen from Fig.2 that as the number of hidden
layer nodes increases, the RMSEs of ELM and L,-
RELM increase and generally decrease respectively,
while the RMSEs of AFELM and IAFELM have a
certain increasing trend. On some data sets, when
the number of hidden layer nodes is low, ELM re-
ports the optimal prediction effect, but the stability is
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Fig.2 Influence of the number of layer nodes on RMSE

extremely poor. When the number of neurons is in-
creasing, the prediction effect of L,-RELM closes to
that of AFELM and IAFELM. On some datasets,
when the number of hidden layer nodes is large, the
prediction effect of L,-RELM is optimal, but its per-
formance is still not as positive as that of AFELM
with fewer nodes. The prediction effect of AFELM
and IAFELM is always better than that of L,-RELM

when the number of neurons is small.

The above experiments consider single-step
prediction. Next experiment studies the multi-step
prediction, and prediction results with different
numbers of steps are illustrated in Table 4.

From Table 4, we can see that with the in-
crease of the number of prediction steps, the predic-
tion effect is getting worse, but the prediction ef-
fects of AFELM and IAFELM are always not

weaker than those of ELM and L,-RELM.
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Table 4 RMSE under multi-step prediction
o RMSE
Data set Prediction step
ELM L, RELM AFELM IAFELM
2 0.1514 0.1338 0.0527 0.054 6
A 3 0.119 6 0.099 7 0.055 2 0.059 6
4 0.138 2 0.150 4 0.060 3 0.062 3
5 0.313 6 0.124 0 0.073 4 0.065 5
2 0.169 5 0.163 7 0.158 9 0.156 0
B 3 0.1950 0.183 2 0.1717 0.1754
4 0.220 0 0.1959 0.187 4 0.188 7
5 0.240 9 0.205 5 0.199 8 0.198 8
2 0.1755 0.177 3 0.150 0 0.157 5
c 3 0.190 1 0.196 0 0.173 2 0.168 7
4 0.238 8 0.2121 0.1937 0.1914
5 0.233 2 0.230 5 0.207 9 0.210 7
2 0.124 5 0.141 2 0.116 4 0.120 4
D 3 0.176 8 0.1457 0.1290 0.130 4
4 0.149 6 0.164 4 0.144 2 0.144 3
5 0.157 6 0.172 7 0.1520 0.1553
2 0.122 2 0.122 6 0.109 6 0.106 2
E 3 0.137 6 0.136 8 0.126 1 0.1207
4 0.150 2 0.134 6 0.1251 0.128 0
5 0.164 6 0.158 9 0.149 1 0.150 9
2 0.259 1 0.160 8 0.130 4 0.162 0
F 3 0.229 0.203 6 0.1815 0.195 6
4 0.347 4 0.198 6 0.159 8 0.1901
5 0.409 3 0.212 0 0.192 6 0.204 5

Finally, the influence of the number of training
samples on the prediction effect is studied. The train-
ing samples are increased from 50% to 80% of the to-
tal, and the varying diagrams of RMSE with the per-

centage of training samples are illustrated in Fig.3.

From Fig.3, it can be concluded that AFELM
and IAFELM indicate superior predictive perfor-
mance and outstanding stability when other condi-
tions are the same, and ELM and L,-RELM some-

times illustrate better or comparable performance,

82(5) TEIM 0.13
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Fig.3 Influence of percentage of training samples on RMSE
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but not stable enough for practical applications.

4 Aeroengine Performance Param -
eter Prediction

4.1 Prediction on simulation data

Aeroengines have a harsh operating environ-
ment and complex components, so performance
degradation is inevitable after an increase in their
service life. This degradation is irreversible and will
become a fault to a certain extent, seriously jeopar-
dizing the operational safety of the engine. And
there will often be some signs on the relevant per-
formance parameters of the engine in the early stage
of performance degradation. If engineers can get
this information in advance, it is intensely effective
to avoid engine failure. Aeroengines typically con-
sist of an air inlet, a fan, a low pressure compres-
sor (LPC), a high pressure compressor (HPC), a
combustor, a high pressure turbine (HPT), a low
pressure turbine (LPT) , bypasses, and a nozzle.
The simplified diagram of the engine is shown in
Fig.4, and the performance parameters are collect
ed by sensors attached to these components.
NASS’ Commercial Modular Aeronautical Propul-
sion System Simulation (C-MAPSS)"* generates
a set of turbofan engine performance degradation da-
ta sets, each of which is a set of multivariate time
series, including engine unit ID, operation cycle in-
dex, three values indicating the operational settings
and 21 sensor measurements contaminated by un-
known noises.

The data-driven aeroengine performance param-
eter prediction method is mainly divided into the fol-
lowing steps: (1) Preprocess the historical data of the

obtained performance parameters, including normal-

Fan Combustor | pT

\

Nozzle

HPT
LPC HPC

Fig.4 Simplified diagram of aircraft engine

ization and smoothing, (2) use the pre-processed data
to train the model and obtain a mature model, (3) in-
put the pre-predicted parameter data into the model
obtained by the last step, and the model outputs the
predicted value of the performance parameter.

This section uses the algorithm contributed
above to predict five important performance parame-
ters of aeroengines. This study compares the predic-
tion results with L,-RELM to illustrate the effect of
the improved algorithm. The important parameters
in the C-MAPSS data set selected for prediction are
listed in Table 5.

Table 5 Specification of the selected measurement sen-

sor signals based on C-MAPSS

Parameter Description
T./°R Total temperature at lqwcr*prcssure
compressor inlet
N/ (rmin"") Physical fan speed
P.,/PSIA Static pressure at high-pressure com-
pressor outlet
N/ (remin ") Corrected fan speed
BPR Bypass rate

FDOO1 1s the data under a class of working
conditions in the C-MAPSS data set, including the
“train_FDO0O01” data set. This data set is the time
series data of performance parameters of the engine
from normal to degraded under a single operating
condition, and is often used for the verification of
aeroengine performance prediction algorithms. Per-
formance parameter prediction is performed using
“train_FDO01.txt”, in which engines #1— #10 are
selected as test sets, and engines #11—+#100 are se-
lected as training sets. Before the training, the data
are denoised. The twenty-point moving average
method ™ is used to smooth the time series raw data.

Based on the previous analysis, we can draw a
conclusion that AFELM and IAFELM can have few-
er hidden layers with better prediction effect, which
is meaningful for saving space in practical applica-
tions. Therefore, when predicting engine perfor-
mance parameters, the number of hidden layer neu-
rons is reduced to 20, the time window m is set to 5,
and the stop threshold e is set to 1 X 107", Because of
the experimental results on the insensitivity of the

new algorithm to regularization parameter C, we set
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C to be 1, take Sigmoid as the activation function, old, and normalize all the data to [ —1, 1] in experi-

randomly determine the input weight and the thresh- ments. Results are illustrated in Table 6.

Table 6 RMSE and MAE of parameter prediction of engines #1—#10

. RMSE MAE
Engine number Parameter
L, RELM AFELM IAFELM L, RELM AFELM AFELM
T, 0.1275 0.120 6 0.077 6 0.095 5 0.090 1 0.054 1
N; 0.0610 0.045 7 0.052 7 0.042 1 0.033 5 0.036 1
#1 P, 0.092 8 0.073 4 0.063 7 0.0611 0.050 4 0.042 6
N 0.101 2 0.076 2 0.076 2 0.0717 0.054 2 0.054 8
BPR 0.113 6 0.097 0 0.090 1 0.079 6 0.067 3 0.063 4
T, 0.091 5 0.077 9 0.084 7 0.065 8 0.054 2 0.061 1
N; 0.074 5 0.052 5 0.045 7 0.048 6 0.0350 0.031 4
#2 P, 0.084 7 0.069 5 0.072 8 0.060 7 0.050 8 0.052 4
N 0.086 4 0.120 3 0.077 9 0.064 1 0.079 8 0.058 5
BPR 0.116 9 0.091 5 0.074 5 0.083 2 0.063 9 0.050 2
T, 0.089 6 0.078 9 0.074 9 0.060 2 0.054 2 0.052 7
N; 0.1110 0.085 6 0.087 0 0.084 9 0.065 7 0.065 8
#3 P, 0.1124 0.089 6 0.065 6 0.076 1 0.060 0 0.046 6
N 0.0950 0.076 3 0.080 3 0.063 5 0.052 5 0.060 1
BPR 0.069 6 0.069 6 0.046 8 0.050 6 0.049 6 0.032 8
T, 0.204 8 0.158 1 0.1828 0.152 1 0.1151 0.1312
N; 0.097 6 0.097 6 0.099 0 0.0713 0.0718 0.0720
#4 Py, 0.079 7 0.079 7 0.078 4 0.060 6 0.062 1 0.060 8
Ny 0.1155 0.158 1 0.103 1 0.076 3 0.1135 0.068 3
BPR 0.0715 0.072 9 0.055 0 0.050 5 0.050 4 0.039 7
T, 0.075 4 0.065 6 0.054 1 0.054 9 0.044 6 0.036 3
N; 0.055 8 0.049 2 0.0459 0.040 7 0.036 8 0.035 3
#5 P, 0.080 4 0.073 8 0.042 6 0.058 1 0.052 8 0.0319
N 0.1214 0.093 5 0.067 2 0.090 2 0.0715 0.048 6
BPR 0.049 2 0.049 2 0.039 4 0.035 8 0.035 4 0.029 0
T, 0.100 1 0.098 7 0.090 5 0.0723 0.062 3 0.065 2
N; 0.093 2 0.074 0 0.054 8 0.079 2 0.062 8 0.048 2
#6 P, 0.090 5 0.078 2 0.064 4 0.079 8 0.0714 0.056 3
Ny 0.124 8 0.097 4 0.067 2 0.082 5 0.065 5 0.049 0
BPR 0.109 7 0.105 6 0.086 4 0.076 8 0.076 1 0.064 6
T, 0.1416 0.1304 0.114 3 0.096 8 0.089 4 0.078 8
N; 0.046 7 0.043 5 0.0451 0.032 8 0.031 4 0.032 2
#7 P, 0.067 6 0.061 2 0.064 4 0.048 8 0.044 5 0.046 2
Ny 0.075 6 0.069 2 0.064 4 0.049 2 0.045 4 0.040 8
BPR 0.077 2 0.074 0 0.075 6 0.059 9 0.057 2 0.058 8
T, 0.1715 0.165 3 0.1739 0.128 2 0.1200 0.129 7
N; 0.0759 0.057 6 0.066 1 0.050 1 0.0417 0.046 0
£8 P, 0.073 5 0.064 9 0.063 7 0.050 7 0.047 0 0.045 6
Ny 0.083 3 0.087 0 0.073 5 0.054 3 0.061 1 0.049 4
BPR 0.088 2 0.067 4 0.083 3 0.060 4 0.048 2 0.057 4
T,, 0.079 4 0.0737 0.072 3 0.057 5 0.055 5 0.054 3
N; 0.092 2 0.087 9 0.0950 0.063 2 0.063 3 0.068 4
9 P, 0.0751 0.048 2 0.035 4 0.052 8 0.035 2 0.027 0
Ny 0.120 5 0.1120 0.096 4 0.096 0 0.086 0 0.073 3
BPR 0.065 2 0.066 6 0.0510 0.046 1 0.046 0 0.036 2
T, 0.079 0.0700 0.086 4 0.060 2 0.0517 0.065 7
N; 0.1058 0.087 9 0.092 4 0.080 4 0.068 0 0.0710
£#10 P, 0.0715 0.059 6 0.058 1 0.049 8 0.042 4 0.0417
N 0.055 1 0.056 6 0.049 2 0.036 1 0.036 9 0.033 0
BPR 0.095 4 0.087 9 0.055 1 0.073 9 0.067 4 0.042 9

Note: Bold values indicate the best performance on the current parameter.
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It can be concluded from Table 6 that the two
new algorithms perform better than L,-RELM on
engines #1—#10.

This paper also provides a prediction of five pa-
rameters of engine #1, shown in Fig.5. It is not dif-
ficult to find that in the first 50 cycles of perfor-
mance parameters, the fluctuations are relatively

large, and the irregular fluctuation is a difficult prob-

lem in the time series forecasting problem, so the al-
gorithm will perform poorly in the first 50 cycles.

Next, a simple experiment on the training and
test time is carried out. The engine #8 with the
smallest amount of data is selected in the test sam-
ple and the engine #2 with the largest data volume
is selected to conduct the experiment. The training
sample selection is unchanged, still using engines
£11— #100, then test experiments are carried out
on engines #8 and #2, respectively. The results on
training time and test time are obtained, shown in
Tables 7—9.
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Fig.5 Varying diagrams of different parameters and errors

of engine #1 with cycle

Table 7 Training time S
Parameter L,-RELM AFELM IAFELM
T, 2.087 3.104(78) 2.209(25)
N; 2.035 2.877 (69) 2.589(29)
P, 2.065 3.897 (150)  2.778 (35)
Ny 2.005 3.822 (132)  2.768 (33)
BPR 2.314 3.661 (123)  2.434 (35)

Note: Values in parentheses mean the number of iterations.

Table 8 Test time of engine #8 S
Parameter L,-RELM AFELM IAFELM
T, 0.370 0.337 0.306
N; 0.361 0.302 0.325
P, 0.342 0.323 0.314
Ny 0.338 0.303 0.324
BPR 0.356 0.306 0.298
Table 9 Test time of engine #2 S
Parameter L, RELM AFELM IAFELM
T, 0.375 0.348 0.273
N; 0.369 0.339 0.338
P, 0.358 0.320 0.325
N 0.364 0.355 0.306
BPR 0.350 0.342 0.328

Through Table 7 we can see that: Although
AFELM can obtain the higher prediction accuracy,
it often consumes more computing resources during
training; TAFELM has a certain reduction in train-
ing time compared with AFELM, and the accuracy
is reduced within an acceptable range. From Tables
8, 9, we find out that the test time of the three algo-
rithms is not much different, which means the three

algorithms all have a faster calculation speed. It is in-
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tensely instructive to predict engine performance pa-
rameters with certain requirements on prediction ac-

curacy and training time.
4.2 Prediction on real data

The above experiments are all performed on
the simulation data. Although the algorithm per-
forms well, the degradation of the predicted perfor-
mance parameters is a exceedingly ideal state.
Therefore, the performance parameters are predict-
ed on the real data. The operating conditions in the
real situation are overwhelmingly complicated, and
the varieties in engine performance parameters are
more complicated. Two typical performance param-
eters from the same model of Honeywell collected
from an airline are selected, which are turbo turbine
total temperature (EGT) and low pressure rotor
speed N,, and their variation with cycle is shown in

Fig.6.
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Fig.6 Performance parameter variation with cycle

A total of 15 648 flight cycle parameters are re-
corded, but it is not difficult to find that the parame-
ters of the first 5 000 flight cycles are relatively sta-
ble. The parameters of the 10 648 flight cycles fluc-

tuate greatly. This paper selects the performance pa-
rameters after 5 000 flight cycles to predict. The da-
ta of the first 7 986 flight cycles are selected as the
training samples, and the parameters of the 2 662
flight cycles are predicted. After normalizing and
smoothing, the experimental results are shown in

Tables 10,11 and Figs.7,8.

Table 10 RMSE of two parameters by three algorithms

Parameter L,-RELM AFELM IAFELM
EGT/°R 0.056 3 0.0316 0.028 4
N,/(remin ') 0.054 5 0.0318 0.0353

Table 11 MAE of two parameters by three algorithms

Parameter L,-RELM AFELM IAFELM
EGT/°R 0.042 9 0.023 3 0.0215
N,/(r'min™") 0.0380 0.020 6 0.020 8
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Fig.7 EGT prediction results

It can be seen from Fig.7 that within the predic-
tion range of the test set of the entire EGT parame-
ter, the prediction performance of the two new algo-
rithms is better than that of L,RELM at all peaks.
At some troughs, the prediction performance of L,
RELM is better, but the two new algorithms can al-
ways perform similar to L,-RELM, which means
AFELM and TAFELM even perform better in

troughs.
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It can be seen from Fig.8 that within the predic-
tion range of the N, parameter test set, the two new
algorithms are better than L,-RELM in all peaks
and troughs. It is proved that AFELM and
IAFELM always obtain the higher prediction accu-

racy.
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Fig.8 N, prediction results

5 Conclusions

In order to solve the poor performance of L,-
RELM in time series prediction under the condition
that the regular parameters are not easy to be deter-
mined, this paper uses the FBS algorithm to solve
L,-RELM. But it is found that the new algorithm
costs more training time and needs multiple itera-
tions through experiments. Therefore, this paper in-
troduces an adaptive algorithmic iterative step size
determination method to obtain the AFELM algo-
rithm. On the basis of AFELM, an improved meth-
od for the solution mechanism of the forward and
backward steps is proposed to further reduce the
number of iterations. During the training time, ex-
periments are carried out on several commonly used
time series prediction data sets. Results show that
the newly proposed algorithm is not sensitive to reg-
ularization parameters, and can obtain better predic-

tion performance than L,-RELM at a faster training

speed. The proposed algorithm is applied to the en-
gine public data set for performance parameter pre-
diction, and achieves better prediction performance
than L,-RELM. In order to further compare the per-
formance of the algorithm, the actual engine perfor-
mance parameters of an airline are predicted, and re-
sults prove that the proposed algorithm still obtains

good prediction performance.

References

[1] LIU Xiaofeng, YUAN Ye, SHI Jing, et al. Adaptive
modeling of aircraft engine performance degradation
model based on the equilibrium manifold and expan-
sion form[J]. Journal of Aerospace Engineering,
2014, 228(8): 1246-1272.

[2] ZHAO Ningbo, LI Shuying, YANG Jialong. A re-
view on nanofluids: Data driven modeling of thermal
physical properties and the application in automotive
radiator[J]. Renewable and Sustainable Energy Re-
views, 2016, 66: 596-616.

[3] ZHOU Dengji, YU Zigiang, ZHANG Huisheng, et
al. A novel grey prognostic model based on Markov
process and grey incidence analysis for energy conver-
sion equipment degradation[J]. Energy, 2016, 109:
420-429.

[4] ZHONG Shisheng, XIE Xiaolong, LIN Lin, et al.
Genetic algorithm optimized double-reservoir echo
state network for multitegime time series predic-
tion[ J]. Neurocomputing, 2017, 238: 191-204.

[5] YUAN M, WU Y, LIN L. Fault diagnosis and re-
maining useful life estimation of aero engine using
LSTM neural network[ C]//Proceedings of IEEE In-
ternational Conference on Aircraft Utility Systems.
USA: IEEE, 2016: 135-140.

[6] JANSSENS O, SLAVKOVIKJ V, VERVISCH B,
et al. Convolutional neural network based fault detec-
tion for rotating machinery[J]. Journal of Sound and
Vibration, 2016, 377: 331-345.

[7] BING Y, QU W. Aero-engine sensor fault diagnosis
based on stacked denoising autoencoders[ C]//Pro-
ceedings of Control Conference. USA: IEEE, 2016:
6542-6546.

[8] HUANG G B, ZHU Q, SIEW C. Extreme learning
machine: Theory and applications[J]. Neurocomput-
ing, 2006, 70(1): 489-501.

[9] YE Yibin, YANG Qin. QR factorization based incre-
mental extreme learning machine with growth of hid-

den nodes[J]. Pattern Recognition Letters, 2015, 65:



558 Transactions of Nanjing University of Aeronautics and Astronautics Vol. 38
177-183. useful life estimation of lithiumion battery based on im-
[10] ZHAO Y P, L1 Z Q, XIA P P. Gram-Schmidt pro- proved extreme learning machine algorithm[J]. Inter-

[11]

[12]

[13]

[16]

[17]

[18]

[19]

[20]

cess based incremental extreme learning machine[J].
Neurocomputing, 2017, 241: 1-17.

CAO J W, ZHANG K, YONG H W. Extreme learn-
ing machine with affine transformation inputs in an acti-
vation function[J]. IEEE Transactions on Neural Net-
works and Learning Systems, 2019(30): 2093-2107.
ZHAO Y P, XI P P, LI B. Sparse kernel minimum
squared error using Householder transformation and
givens rotation[J]. Applied Intelligence, 2018 (48) :
390-415.

NOBREGA J P, OLIVEIRA A L. A sequential learn-
ing method with Kalman filter and extreme learning
machine for regression and time series forecasting[J].
Neurocomputing, 2019, 337: 235-250.

ANDRE G C, PACHECO A, RENATO A, et al.
Restricted Boltzmann machine to determine the input
weights for extreme learning machines[ J]. Expert Sys-
tems with Applications, 2018(9): 77-85.

ANWESHA L, ASHISH G. Multi-label classification
using a cascade of stacked autoencoder and extreme
learning machines[J]. Neurocomputing, 2019, 358:
222-234.

LU F, JIANG J P, HUANG J Q. Gas turbine engine
gas-path fault diagnosis based on improved SBELLM ar-
chitecture[J]. International Journal of Turbo & Jet-
Engines, 2018, 35(4): 351-363.

FENG L, JIANG J P, HUANG J Q. Dual reduced
kernel extreme learning machine for aero-engine fault
diagnosis[J].
2017, 71: 742-750.

LU JJ, HUANG J Q, LU F. Distributed kernel ex-

Aerospace Science and Technology,

treme learning machines for aircraft engine failure diag-
nostics[J]. Applied Sciences-Basel, 2019, 9 (8) :
1707.

ZHAO Y P, HUANG G, HUA Q K. Soft extreme
learning machine for fault detection of aircraft en-
gine[ J]. Aerospace Science and Technology, 2019,
91: 70-81.

LUF, WU J D, HUANG J Q. Aircraft engine degra-
dation prognostics based on logistic regression and nov-
el OS-ELM algorithm[J].
Technology, 2019, 84: 661-671.

MA Y Y, SHEN D X, WU L F. The remaining use-
ful life estimation of lithiumion Batteries based on the
HKA-ML-ELM algorithm[J]. International Journal of
Electrochemical Science, 2019,14(8): 7737-7757.
YANG J, ZHEN P, WANG H G. The remaining

Aerospace Science and

[23]

[24]

[26]

[27]

[28]

[29]

[31]

[33]

[34]

[35]

national Journal of Electrochemical Science, 2018, 13
(5): 4991-5004.

DENG W, ZHENG Q, CHEN L. Regularized ex-
treme learning machine[ C1//Proceedings of IEEE
Symposium on Computational Intelligence and Data
Mining. Nashville: IEEE, 2009: 389-395.

LUO X, CHANG X H, BAN X J. Regression and
classification using extreme learning machine based on
Llnorm and L2-norm[J].
174: 179-186.

LI S, SONG S J, WAN Y H. Laplacian twin ex-
treme learning machine for semi-supervised classifica-
tion[ J]. Neurocomputing, 2018, 321: 17-27.

YI'Y G, QIAO S J, ZHOU W. Adaptive multiple

Neurocomputing, 2016,

graph regularized semi-supervised extreme learning
machine[ J]. Soft Computing, 2018(22) : 3545-3562.
INABA F K, TEATINI-SALLES E O, PERRON
S. DGR-ELM-distributed generalized
ELM for classification[J].
275: 1522-1530.

MA J, WEN Y K, YANG L M. Lagrangian super-

regularized

Neurocomputing, 2018,

vised and semi-supervised extreme learning ma-
chine[ J]. Applied Intelligence, 2019, 49: 303-318.
MAHMOODA S F, MARHABANB M H,
ROKHANIA F Z. FASTA-ELM: A fast adaptive
shrinkage/thresholding algorithm for extreme learning
machine and its application to gender recognition[J].
Neurocomputing, 2017, 219: 312-322.

SONG T H, LI D Z, LIU Z Y. Online ADMM-
based extreme learning machine for sparse supervised
learning[ J]. IEEE Access, 2019(7) : 64533-64544.
GOLDSTEIN T O M, STUDER C, BARANIUK
R. A field guide to forward-backward splitting with a
FASTA implementation[ EB/OL]. (2014-11-17)
[2020-05-10]. http://arxiv.org/abs/1411.3406.
FRANK A, ASUNCION A. UCI machine learning
repository[ EB/OL]. (2013-11-06)  [2020-05-10].
http://archive.ics.uci.edu/ml.

ZHOU B, GAO L, DAI Y H. Gradient methods with
adaptive step-sizes[J]. Computational Optimization
and Applications, 2006, 35(1): 69-86.

Yahoo finance[EB/OL]. (2014-05) [2020-05-10].
http: //finance.yahoo.com/.

OZA N. Turbofan engine degradation simulation data
setlEB/OL]. (2010-09-30)[2020-05-10]. https://c3.
nasa.gov/dashlink/resources/139/.

JAVED K, GOURIVEAU R, ZERHOUNI N. A



No. 4

CAO Yuyuan, et al. Aeroengine Performance Parameter Prediction Based on Improved---

559

new multivariate approach for prognostics based on ex-
treme learning machine and fuzzy clustering[J]. IEEE
Trans Cybern, 2015, 45(12): 2626.

LUF, JUHF, HUANG J Q. An improved extended
Kalman filter with inequality constraints for gas turbine
engine health monitoring[ J]. Aerospace Science Tech-
nology, 2016, 58: 36-47.

Author Mr. CAO Yuyuan received the B.S. degree from
the College of Civil Aviation, Nanjing University of Aero-
nautics and Astronautics (NUAA) , Nanjing, China. In
2009, he obtained the M.S. degree in aviation safety manage-

ment jointly issued by the French National University of Civ-

il Aviation and the French University of Aviation. He is cur-
rently a researcher in the College of Civil Aviation, NUAA.
His current research interests include aeroengine fault diagno-

sis and machine learning.

Author contributions Mr. CAO Yuyuan proposed the
idea and designed the experiment. Mr. ZHANG Bowen
wrote the manuscript. Dr. WANG Huawei reviewed previ-
ous research. All authors commented on the manuscript draft

and approved the submission.

Competing interests The authors declare no competing

interests.

(Production Editor: ZHANG Huangqun)

B T Bt IE W 4K 4R FR =2 ST WL B fin = & sh AL 14 68 2 # T il

&AL, KL, EAEE
(R B2 L R R 2 B4 B , re At 211106, FR )

FE MR AMTAMBER R LA R E LG CH T NS, M S eI T kA T4, E
) ¢ 4 R %2 5] AL (Regularized extreme learning machine, RELM) % 3t ¥ 2 — . {2 RELM #9 iE 0] 44 £ 2 54 % 3F %
HAAT A TR A LEHBEETREROMNT LA AT AR A I B RE R, KE AW & F )G &5 %
(Forward and backward segmentation, FBS) f- %2 7+ RELM 4k , 5t 51N B & mF K # 2 r k e —Fr B sk o K
fERH KA HM B R Tk, A FAERFRIFZAH RN, ST ENAL SRR BRITHTHETR,
BT B YRR Ly 2 RAEI T AL R0 R St at o B AT IR R TALE A S AU R A R TR BT
T AR T 69 TR AR

KRR AR T AU AR K AL R A BTN AT @ Fe - Ak



