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Abstract: The libration control problem of space tether system (STS) for post-capture of payload is studied. The
process of payload capture will cause tether swing and deviation from the nominal position, resulting in the failure of
capture mission. Due to unknown inertial parameters after capturing the payload, an adaptive optimal control based on
policy iteration is developed to stabilize the uncertain dynamic system in the post-capture phase. By introducing
integral reinforcement learning (IRL) scheme, the algebraic Riccati equation (ARE) can be online solved without
known dynamics. To avoid computational burden from iteration equations, the online implementation of policy
iteration algorithm is provided by the least-squares solution method. Finally, the effectiveness of the algorithm is
validated by numerical simulations.
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0 Introduction

With the development of aerospace industry,
more and more spacecraft have been launched, re-
sulting in a large amount of space debris in low earth
orbit (LEO). Due to the complex space distur-
bance, the orbital altitude of the spacecraft chang-
es, which can cause the collision between different
spacecraft, resulting in a large number of space de-
bris. Therefore, the safe and efficient capture of
space debris is of great significance for the safe com-
pletion of space missions. Space tether system
(STS) has been widely studied in debris remov-

al''"® | orbit transfer™™

and artificial gravity genera-
tion'*” due to its flexible structure and higher reli-
ability of approaching space target than the space
manipulator on the floating platform.

An on-orbit capture mission operated by space

tether can be mainly divided into three stages: The

*Corresponding author, E-mail address: wangcq@nwpu.edu.cn.

Article ID: 1005-1120(2021)04-0560-11

deployment of tether before capture, rendezvous for
capture, post-capture stabilization and retrieval .
Due to complex space environment, there are possi-
bly some errors of tether length and pendulum angle
in the payload capture process. The capture mecha-
nism installed at the end of the tether is integrated
with the target payload in the post-capture period.
Uncertain inertial dynamic and undesirable rendez-
vous position can cause the tether swing and oscilla-
tion in the orbital plane, which can lead to the tether
winding up with payload if unstable. Therefore,
analysis of the the equilibrium position and corre-
sponding stabilization control of STS are essential.
Recently, numerous studies regarding to dynamic
and control of STS for payload capture have been
conducted by scholars from all over the world. Hov-
ell et al.'"”’ compared the ability of different tether
structures for space debris removal by air-floating

test platform. Through two-dimensional plane ex-
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periment, it was verified that the sub-tethered struc-
ture has better performance of towing space debris.
In Refs.[10-11], the swing characteristics and sta-
bility of STS in the process of in-plane orbit transfer
were studied, and some effective orbit maneuver
schemes and swing suppression strategy of the teth-
ered system based on tension and continuous con-
stant thrust were proposed. Although the proposed
method can suppress the in-plane motion quickly
and accurately, the mothod using external input
such as electrodynamic force and thrust is not suit-
able for stability control in station-keeping stage.
Tension control 1s more suitable to stabilize the teth-
er system in the post-capture stage because the con-
trol time is not limited in the long orbit period.

In order to ensure STS fulfill the space mis-
sions quickly and stably, scholars have designed a
variety of control methods for the release and re-
trieval process of the tether system. Ref.[12] pro-
posed adaptive sliding mode control for deployment
of space tether to overcome the disturbance in low-
eccentricity orbits. Energy-based control framework
was employed into deployment of tethered space-

craft with input saturation'"

. Apart from the above
methods, several linear or nonlinear methods were
also studied for STS, such as incremental nonlinear
dynamic surface control, robust performance con-
trol, model predictive control, and so on"*'*' Tt
should be noted that most existing studies discussed
above depend on the accurate model of STS. How-
ever, the system parameters will change abruptly in
the period of payload capture, so the accurate dy-
namic of STS cannot be obtained. Due to highly
complex dynamic characteristic and unmeasurable
dynamic parameters, designing model-free control-
ler for STS is significant. In recent years, with the
development of artificial intelligence, a variety of in-
telligent optimization algorithms have emerged in
solving control issues of aerospace system' "/, As a
representative technology in the field of artificial in-
telligence, model-free control scheme based on rein-
forcement learning (RL) has gained wide attention

in solving optimization problems with unknown in-

ternal dynamics and external disturbances. The opti-

mal controller design of dynamic system can be con-
verted into solving the Hamilton-Jacobi-Bellman
(HJB) equations. However, the analytical solutions
to the HJB equations are hard to obtain'"”’. The key
superiority of RL is to approximately solve the HIB
equations through an iterative method, including
policy iteration (PI) and value iteration*”. PI is the
most widely technique used in RL to approximate
the HJB equations. Generally, PI method has two-
step iterations: Policy evaluation and policy im-
provement. For optimal control problem with para-
metric uncertainties or even unknown dynamics, the
online learning algorithms are of great significance,
which can be integrated with adaptive control to de-
velop adaptive optimal control algorithms'*"'. An on-
line PI algorithm was first presented for optimal con-
trol of continuous time system in Ref.[22]. Vrabie
et al.'” proposed an integral reinforcement learning
(IRL) algorithm for linear continuous-time systems
using only partial knowledge about the system dy-
namics. Furthermore, Ref.[24] presented online
model-free RL algorithm for completely unknown
continuous-time linear systems.

Based on the above discussion, an online IRL
control scheme based on the policy iteration tech-
nique is designed to stabilize STS for payload cap-
ture with dynamical uncertainty. A state feedback
controller for payload capture is developed by using
the online information of the system states and in-
puts without requiring prior knowledge of the sys-

tem internal dynamics.

1 Problem Formulation

1.1 Dynamic model

STS is considered as an elastic rod model with
mass. Some reasonable assumptions are given to
simplify the system dynamics modeling as follows.

(1) The space tug (main satellite) and capture
mechanism are connected by an elastic tether, and
the centroid of the system is on Kepler’s orbit.

(2) The main satellite and sub-satellite in teth-
ered system can be considered as mass points, with-

out regard to the attitude of the satellites.
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(3) The tether is regarded as an elastic rod
with uniform mass distribution. Only the longitudi-
nal vibration along the tether is considered.

(4) Some space environment effects are ig-
nored, such as solar light pressure, atmospheric re-
sistance, and the oblateness of the earth.

Fig.1 shows the coordinate frames of the space
tether. The inertial frame OXYZ is attached to the
center of earth. The OXY plane is the same as orbit
plane. The axis of OX points to orbital perigee, and
the OZ axis is along the equatorial plane normal to-
ward the celestial north pole. The OY axis repre-
sents the third axis of righthanded orthogonal frame.
The orbit coordinate frame CX,Y,Z, is located at
the mass center of STS, with CX, axis outward
from the Earth center along the local vertical. CZ,
axis is directed toward the orbit normal direction,
and CY, axis along the local horizon represents the
third axis of right-handed orthogonal frame. The
body-fixed frame CX,Y,Z, has the same origin as or-
bit coordinate frame, with CX, axis along the oppo-
site direction of the tether tension. The direction of
CY, and CZ, are determined by the in-plane angle
and out-plane angle ¢ relative to frame CX,Y,Z,.
The payload target is in the same orbital plane as
the space tether. 7 is the true anomaly of target in

the inertial frame.

STS orbit

Payload orbit

Fig.1 Schematic of capture process by STS

The states of STS can be described by five gen-
eralized coordinates: The orbital radius r, true

anomaly ¢, in-plane angle ¢, outplane angle ¢,

and elastic deformation of tether e. According to the
Euler-Lagrange equation, the differential equations

of the system model can be derived as follows
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where m, denotes the mass of the tug and my the
mass of the combination of the capture mechanism
and target; m, = o/, represents the mass of tether,
with o the density of tether and /, the original
length; the actual length of tether is /=1/,(1+¢).
In addition, T is the tether tension and u the geocen-
tric gravitation constant. The mass coefficients are
defined as
&, =m./m
Dy, =myu(my+m/2)/(mm.)

D, =(2my— m)m,/ [ 2my(my+ m,)]

D, =(my+m/2)/(my+ m)
m=my, + my+ m,
m,=(my+m/2)(my+mJ/2)/m—m/6

Remark 1 The tether swings around the equi-

(2)

librium position disturbed by target and the non-
nominal libration motion occur in the post-capture
stage. The elastic elongation of tether is ignored and
the length of tether remains unchanged without con-
trol input. The effects from the variation of the teth-
er mass and deformation are ignored. It is assumed

that the system moves on the circular orbit, with or-

bital angular velocity I=0= w/r’. Based on the
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above assumptions, the system model can be linear-
ized near the equilibrium position.

Due to little impact on the in-plane stability,
the out-plane motion of the system is ignored. For
STS in the circular orbit, the equilibrium positions
are along the radial direction of the orbit, with in-
plane angle 0,,=0,x. Eq.(1) can be linearized
around the equilibrium point by ignoring higher-or-
der terms of nonlinear system. By introducing a di-
mensionless time 7=, the dimensionless linear
model of the system can be derived as follows

mT
[meZ(mH +m,) ] .

5(,),: 3@4(50 + 1)+ 2@46/7

&0

0= —20,— " —
: 5()+ 1

30

(3)

mean the first and the

«wly !l

where the superscripts
second derivative versus 7. The dimensionless length
is denoted as e¢,=1///,— 1, and /, is the nominal
tether length in the post-capture stage.

Then the state space equation of the system
near the equilibrium point can be compactly ex-
pressed as

X'=—=AX + BU 4)
where A denotes the state matrix, B the input ma-
trix, X=[e, &' 0 0] the state vector, and U
the dimensionless control input.

Remark 2 According to Eq.(3), while ad-
justing the tether length and velocity, the in-plane
angle can be stabilized by the term of €//(e, + 1) in
the differential equation. Adjustment of the tether
length and velocity can be realized by releasing/re-
winding mechanism and tension control. In this pa-

per, tension control scheme is adopted to stabilize

the swing motion of tether in the post-capture stage.
1.2 Preliminaries

The aim of this paper is to design an online
adaptive control scheme based on policy iteration to
drive the real-time asymptotic stability defined dy-
namic system. In this section, some concepts and
propositions for control design are given.

Definition 1 Bellman's optimality principle'™’ )
Bellman optimality principle is a basic foundation of

reinforcement learning. According to the Bellman

optimal equation, there exists an optimal control
strategy to obtain the optimal cost function of any
Markov decision process (MDP). For the linear sys-
tem, its cost function is the quadratic of the state
vector and the control input, so the corresponding
optimal feedback control can be derived by solving
the basic algebraic Riccati equation (ARE).

Consider the linear time-invariant (LTI) dy-
namical system described by

x(t)=Ax(t)+ Bu(t) (5)

where x(7)ER",u(r)ER", and the pair (A, B) is
controllable, subject to the following optimal con-
trol problem

u*(z):argu( )min V(ty,x(t,),u(t)) (6)

1),t€[ 1y,00)
where the infinite horizon quadratic cost function to

be minimized is expressed as

Viala).o)= | (2" (0)Qu(r)+ u’ (z) Ru(r))dr

(7)
with Q =0, R>0, and (Q"?, A) detectable.

Based on Bellman optimality principle, the so-
lution of this optimal control problem is obtained by
u(t)=—Kx(t)with

K=R'B'P (8)
where the matrix P is the symmetric positive defi-
nite solution of the ARE as Eq.(9). And the unique
solution determines the stable close-loop controller.

A"P+PA—PBR 'B"P+Q=0 9)

Lemma 1'*  Consider the linear system ex-
pressed as Eq.(5) , initialize K, €R""" to be any
stabilizing feedback gain matrix, and let P; be the
symmetric positive definite solution of the Lyapu-
nov equation
(A—BK,)'P,+P,(A—BK,)+ Q-+ K/'RK,=0

(10)
where K,=R 'B"P,_, with i=1,2,+--,n. Then
the following properties are satisfied: (i)( A — BK,)
is Hurwitz; (i) P*<<P,., << P,; (iii),}iﬁ}o K,=K",
fim P =P

Remark 3 It should be noted that model in-
formation of the system is needed to solve the above
ARE, which means that the system matrix A and
control input matrix B are needed to be known.

Therefore, designing a model-free controller with-
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out using knowledge regarding the system dynamics
is particularly important research topic in the opti-

mal control field.

2 Control Design

In this section, an adaptive optimal controller
for STS is investigated in the case of unknown inter-
nal dynamics. The aim of this paper is to design an
online learning control scheme to drive STS asymp-
totically stable in real time. The proposed IRL poli-
cy iteration control diagram is shown as Fig.2, in-
cluding policy evaluation and policy improvement.
Policy evaluation is to calculate the infinite horizon
cost associated with the given stability controller,
and the purpose of policy improvement is to im-
prove the feedback gain of the system to reduce the

cost.

STS plant
A
Adjusf gain

/
/

Policy Policy
improvement evaluation

Fig.2 Closed-loop control structure of the system

2.1 1IRL policy iteration scheme

Let K be a stabilizing feedback control gain for
Eq.(5). Under the assumption that (A, B) is con-
trollable, the close-loop system is stable with the
control input w(z)= —Kx(z). It directly comes
from the state feedback control explanation.

Substituting the expression of control input into
Eq.(7), the corresponding infinite horizon quadratic

cost becomes
Vie()=[ 2" (c)(Q+K'RK)a(r)de=
x'(¢1)Px(1) (11)

where P is the real symmetric positive definite solu-
tion of the Lyapunov matrix equation
(A—BK)'P+P(A—BK)=—(K"RK +Q)
(12)
As a Lyapunov function candidate for con-
trolled plant, the cost function V (x (7)) can be writ-

ten as

”‘.Z‘T(Z')(Q‘FKTRK).Z‘(T)dT‘F

t
t

Vix()= |

2N Q+K"RK)x(t)dr=

t+T

2 ()N Q+K'RK)x(c)de+V(xa(t+T))

I
J

‘
(13)
Using the conventionalized expression x(z)=—
x,, the cost function can be rewritten as V (x,)=—
x Px,, and the initial stable control gain is defined
as K,. So we can get the following online policy iter-
ation scheme
x P, =

t+T
[ (el Q@+ KRK)x)de+ 2] P,

(14)

K, =R 'B'P, (15)

Note that Eqs.(14) and (15) form a new poli-

cy iteration algorithm without involving the plant
matrix A. The whole design procedure of the online
control scheme can be summarized as Algorithm 1.
The algorithm design of state feedback control
based on online IRL can be summarized as the fol-

lowing theorem.

Algorithm 1 Continuous-time IRL policy iteration
algorithm

Input: Initial condition of the system x,, initial stabi-
lizing control gain K, initial P, = 0, initial iteration
number /=1, a positive error constant €, positive
definite symmetric matrices Q and R.
while ||V, ;s — V.|| = e do

(Policy evaluation)

Calculate P, from

x'Px,—x 57 Pz, o7 =

1+ 6T » -
J () Qx,+ u"Ru)dr=

[ @ KIRK ) de

(Policy improvement)
Update the feedback gain using K, , =
R 'B'P,
Update the control policy u, = — K, x,
i<i+1

end while

return u,, K, ,,P;
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Theorem 1 For the system model described
in Eq.(4), if K, is initialized to guarantee A, = A —
BK, stable, and P, and K, are updated as the policy
iteration scheme with proper positive definite sym-
metric matrices Q and R, the closed-loop system is
always stable during the iteration period.

Proof Since the positive definite cost function
Vi(x,)=x P,x, is defined as the Lyapunov func-
tion candidate and

d(x'P.x,)

dr
—x'(K/RK,+ Q)x, (16)
then for any 0T > 0, the unique solution of the Ly~

:I/I(A?P,+P,A,)I/ -

apunov equation satisfies

[ 7@+ KR 2 de =
— J:MTW de=x'P,x,— x2} ;P.x,. ¢
(17)
Taking the derivative of V;(x,) along the state
trajectories generated by the control policy u,, one
obtains
Vi(x)=z/[P,(A—BK, )J+(A—BK, ) P]x=
x/ [ P,(A—BK,J+(A—BK,))"'P]x,+
z/[PB(K,—K. . )+ K—K.) B'P]xz,
(18)
According to Eq.(12) , the first term in Eq.
(18) can be written as —a,'[ K/ RK,+ Q ] x,, and
the second term can be rewritten using Eq.(15).
Then the transformed form of Eq.(18) can be ob-
tained as
Viz)=—x/[(K~ K- )'R(K — K.\)]x,—
2/ [Q+ KLY RK, ]z, (19)
With the consideration of Q >0 and R>0,
V,(z,)<<0 is guaranteed when the state vector is
nonzero, which proves the updated control policy in
Algorithm 1 is stable. The proof of Theorem 1 is
completed.
Remark 4
IRL algorithm, that is, the on-policy method, the

In terms of online implement of

target policy and behavior policy are unified into one
policy. Thus, the gain matrix calculated in each iter-
ation is immediately applied to the system, which
enhances the running speed of the algorithm. Com-

pared with off-policy method, there is no need to in-

troduce exploration noise into the controller in the

proposed algorithm.
2.2 Online implementation of IRL algorithm

In this section, an online adaptive learning al-
gorithm is presented to implement the IRL policy it
eration scheme in real time. The algorithm performs
the online IRL iterations by measuring the present
state x, and the next state x,.  with fixed sampling
time T. The information of the system matrix A is
involved in the measured states, which leads to the
policy update without knowing the internal dynamic
of the system.

The symmetric matrix P; in the value function
V.(x(z)) can be calculated at each iteration i by
measuring the states along the system trajectory.For
the convenience of computing, the value function 1s
written as

" ()Px(t)=plx(1) (20)
where I, denotes the Kronecker product quadratic
vector with the elements

polynomial  basis

{Ii(l)Ij([)}

tains the elements of the matrix P, ordered by col-

- The parameter vector p, con-
i=1nj=1,n

umns with the redundant elements removed. Then

Eq.(14) can be rewritten as

pla—zu+Tn=[ (" (c)e+
K'RK,)x(t))dr (21)

where p, is the vector of unknown parameters and

t

(x(t)—x(t+ T)) acts as a regression vector. The
right hand side is the integral reinforcement on the

time interval [ 2,7 + T ], which can be denoted as
t+T
d(T(),K)= [ (2" (e)Q+ K RK)z(z))de
(22)

where d(x (1), K;) represents a desired value or tar-
get function and the estimate of the parameter p, is
to be found such that the parameter satisfies the
equation as closely as possible. To compute it effi-
ciently, define a new controller state V (7) as the
augmented state of the system, and add the state
equation V(1)=z" (£)Qx(¢)+ u" (1) Ru(t) to the
controller dynamics. The value of d(Z(¢), K;) can
be computed by using d(x(¢),K,)=V(t+T)—
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Vi)

The unknown parameter vector p, of the value
function is involved in the scalar equation Eq.(21),
which can be solved by a batch solution method in
the least-squares sense. Firstly, some relevant vec-

tors of parameters are defined as

X=[xs xi - ] (23)
=) —zx'(t+T) (24)
Y=[d(z,K,) d(zLK,) - d(T",K,) 25

Assume the square loss function as J(p,)=

N

> (.

n=1

To minimize the square loss, let

—plEy.
the derivative of J( p,) with respect to p; equals to

Zero, one can obtain

V V,, (E(yn
*22(3&,

n=1

Zp, TiTL= Zy” (27)

n=1 n=1

pzz)—

— pETL=0 (26)

Noting that p T4 is a scalar, the left hand side
of Eq.(27) has the following form after rearrange-

ment

N
D (plEs) ngzx (pixi)= Ehxﬁll (28)

n=1 n=1 n=1
Using the above transformation equation,

Eq.(23) can be rewritten as

N
waﬂl =Dy, Ti (29)

a=1 a=1
Then the batch least-squares solution of p, is
obtained in the matrix form
p=(XX") 'XY (30)
Until now, the least-squares problem can be
solved online with a sufficient number of data col-
lected along the state trajectory. According to Lem-
ma 2, the convergence of the online adaptive IRL al-
gorithm can be guaranteed in finite iteration steps.
Remark 5 The developed adaptive optimal
control is a type of data-driven method, where the
system matrix is not needed. In fact, the algorithm
can be also employed into time-varying system. If

matrix A of the system changes suddenly, as long

as the current controller of the new matrix is stable,

the algorithm converges to the corresponding solu-

tion of the new ARE.

3 Numerical Simulation

In this section, numerical simulations are con-
ducted to validate the performance of the proposed
online adaptive IRL control scheme for stabilizing
the swing motion of STS after capturing payload.
Some parameters of the system are provided in Ta-
ble 1. The desired dimensionless state of STS is
(e &, 0 6)=(0 0 0 0). Due to the impact of
payload, the tether swings up to certain libration an-
gle with varying length, the initial state of STS is
assumed as (e, &, 0 0)=( —0.0033 0 0.1746 0 ).

Table 1 Specific parameters of the tethered system

Parameter Value

Orbital radius /km 7371

Mass of space tug m ,/kg 1 600
Mass of capture mechanism m,/kg 50
Mass of payload m,/kg 500

Nominal length of tether /./m 1000

Density of the tether o/(kgskm ) 0.198

In view of the unknown mass parameter of pay-
load in general cases, the the initial parameters of
the controller is deduced based on the linearized
model of STS before capturing payload, which can
guarantee the initial stability of controller. Then the
feedback gain will be updated to satisfy the optimal
control of STS in the post-capture period until con-
vergence. It should be noted that the designed con-
troller is applied into the original nonlinear plant.
Since the onboard computational source limited, the
sampling interval is set as = 0.05.

In addition to parameters of mission scenario,
the controller parameters are well selected to make
sure the convergence of algorithm and control per-
formance. It is reasonable that the better control per-
formance of the in-plane libration angle can be ob-
tained by selecting larger corresponding weights in
cost function. Therefore, the symmetric weight ma-
trices are chosen as Q=—diag (10 2 1 1) and R—1.

The parameter Ny represents that an iterative up-
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date is performed after Ny sampling time steps.
Here Ny is set to 20, which means that the system
iterates once every Ny-7=20X 0.05=1(rad) to
update the control gain K and critic parameter ma-
trix P. The parameter e=10"" denotes the error
threshold, representing that the iteration process
will stop when the cost function V, satisfies the re-
quirement.

The simulation results are shown in Figs.3—S8.
Fig.3 shows the evolution of the parameters of ma-
trix P in the Riccati equation. The matrix P converg-
es to a constant optimal value after four iterations,
which means that the online learning process is com-
pleted and the final control gain is determined after
around 4 rad. The error norms of critic matrix and
gain matrix in the policy iteration are presented in
Fig.4. It can be seen that the matrix K will be close

to the ideal optimal control gain after several policy

120
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Fig.4 Error norms of matrices P and K
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updates. From Fig.5, the dimensionless states of

STS converge from the initial position in the post-
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capture phase to zeros within 15 rad. The maximum
libration angle is no more than the initial value, and
the amplitude of tether oscillation is less than its
nominal length, avoiding the risk of collision be-
tween the tether and the satellite.

The variation curve of tether tension in Fig.6
indicates that the tether always keeps tense in the
control stage, and magnitude of the tension meets
the physical characteristics of the tether. Fig.7
shows the evolution of the total cost function (aug-
mented state) and the integral reinforcement signal
(one time-step cost) in the optimal control. It can
be seen that the cost function V (7) increases gradu-
ally over time and ultimately converges to a positive
constant. On the contrary, the integral reinforce-
ment has the trend of decreasing gradually, even
though transient rise occurs in the online learning
stage due to large deviation between initial control
gain matrix and desired one.

In order to illustrate the robustness perfor-
mance of the proposed algorithm, we compared it
with the classic LQR controller by simulations un-
der the presence of stochastic disturbance. For our
simulations, the Gaussian noise with mean value of
0 and variance of 1 is adopted as stochastic distur-
bance, and the control parameters Q and R are cho-
sen to be the same for both controllers. The gain ma-
trix of LQR controller is deduced by the known dy-

namic model of STS before payload capture. Simu-

lation results are shown in Fig.8. Both methods can
ensure that the tether length and libration angle con-
verge to desired values, while the method based on
policy iteration has better convergence speed and

control performance.

4 Conclusions

An adaptive optimal controller based on IRL
policy iteration is conducted to address stabilization
control of the tether libration after capturing the pay-
load by STS. Due to lack of accurate dynamic mod-
el of the system in the post-capture stage, the clas-
sic model-based control methods will result in poor
control effect. The proposed algorithm can achieve
continuous time optimal control without accurately
understanding the internal dynamics of the system,
thus effectively solving the libration control problem
of STS. Firstly, the basic dynamic model of STS is
derived considering tether elasticity. Then the policy
iteration based IRL algorithm is designed and the
batch solution method 1s proposed for online imple-
menting the algorithm. Finally, the effectiveness of
the proposed control scheme is validated by the nu-
merical simulation. The drawback is that the pro-
posed method relies on linear dynamic system, caus-
ing poor control performance or even instability for
the case of large libration amplitude. Our future
work will focus on developing model-free adaptive
optimal control scheme that can be directly applied

into nonlinear dynamic system.
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