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Abstract: [t is particular important to identify the pattern of communication signal quickly and accurately at the airport
terminal area with the increasing number of radio equipments. A signal modulation pattern recognition method based
on compressive sensing and improved residual network is proposed in this work. Firstly, the compressive sensing
method 1s introduced in the signal preprocessing process to discard the redundant components for sampled signals.
And the compressed measurement signals are taken as the input of the network. Furthermore, based on a scaled
exponential linear units activation function, the residual unit and the residual network are constructed in this work to
solve the problem of long training time and indistinguishable sample similar characteristics. Finally, the global residual
is introduced into the training network to guarantee the convergence of the network. Simulation results show that the

proposed method has higher recognition efficiency and accuracy compared with the state-of-the-art deep learning
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methods.
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0 Introduction

The continuous increase of various civil avia-
tion radio stations at the airport terminal area makes
the electromagnetic environment more and more
complex, and also leads to more serious [requency
conflict interference'”’. The United States (Next-
Gen) , Europe (SESAR) and International Civil
Aviation Organization (ICAO) Doc9854 have pro-
posed a vision for a new generation of navigation
systems, including utilizing the digital communica-
tions to reduce the impact of interference in air-
space'”’. And the modulation recognition method is
widely used in the field of digital communications.
How to capture and interpret the communication sig-

nal effectively plays a major role in ground-to-air
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communication.

Traditionally, the decision theory is based on
hypothesis likelithood ratio and the methods are
based on higher-order statistics and feature extrac-
tion'**'. However, the feature extraction is time-con-
suming and these methods have not been able to
meet the demands of high precision and efficiency in
the era of data explosion. So that state-of-the-art
methods based on deep learning have emerged. The
application in the field of communication brings
brand-new opportunities and changes. A modulation
recognition method based on deep belief network
(DBN) was proposed in Ref.[ 5] to classify the two-
dimensional images of universal correlation func-
tions of common digital modulation signals. Con-

verting signal into constellation method and recog-
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nizing by convolution neural network (CNN) were
proposed in Ref.[ 6] which obtained more accurate
results than the support vector machine (SVM) and
also avoided the manual selection of features. In-
stead of converting signals into an images, the in-
phase component and orthogonal component sam-
pling point data proposed in Ref.[7] were directly
used as the input of CNN and the stability of the
deep learning method was proved at low signal-to-
noise ratio(SNR). The reference data set of modula-
tion recognition learning was given in Ref. [8]. A
simulation data set simulated in a more realistic ra-
dio environment was proposed in Ref.[ 9], which in-
cludes 24 kinds of modulation signals. Deep residual
network is widely used in the field of computer vi-
sion. Through the method of cross-layer connec-
tion, the residual network (RN) can avoid the prob-

U0l RNs for time series

lem of feature graph loss
radio classification were proposed in Ref.[12] to re-
duce the training time, but they did not significantly
improve the recognition accuracy.

In signal modulation recognition, compressive
sensing (CS) is introduced to preprocess the signal
to retain the most useful information before input-
ting the signal into the neural network. The possibil-
ity of using measurement signals without reconstruc-
tion for detection was provided in Ref.[13]. Spec-
trum detection based on eigenvalues for compressed
unreconstructed signals was proposed in Ref.[14],
which greatly reduced the computational complexi-
ty, but did not affect the probability of signal detec-
tion.

Residual neural network can solve the prob-
lems that the model training time is too long and the
similar features of the sample are hardly to distin-
guish, which finally lead to a certain enhancement
for the recognition accuracy of samples. The image
is two-dimensional convolution while the signal is
one-dimensional one. The use of neural networks to
classify signal modulation is based on the idea of im-
age classification. In this work, the received signal
is regarded as a single channel “picture” , and a

method based on the improved RN to identify the

signal modulation is proposed. Firstly, the received
signal is compressed in the preprocessing to extract
most of the useful information. Furthermore, the
scaled exponential linear units (SELU) activation
function is introduced to construct the RN structure.
Global residual is introduced to solve the problem of
network convergence. Simulation results show that
the proposed method has higher recognition efficien-

cy and accuracy.

1 Signal Model

Combined with the very high frequency
(VHF) communications in the airport terminal ar-
ea, it is assumed that the received signal is r(z7),
which can be written as
r(t)=s(t)X c+n(1) (1)
where s(7) is a modulated signal, ¢ represents the
path loss, and n(z) the white Gaussian noise. The
measurement value is obtained by CS as follows
y=or (2)
where ris N X 1 vector of Nyquist sampling denot-
ing signal (), y the M X 1 measurement signal,
and @ € CM V(M < N ) the measurement matrix.
During one cycle, the atom with the largest inner
product for the measurement matrix and residual is
found and incorporated into the estimation support
set. The single atomic selection process can be rep-

resented as

3)

i= arg max‘<¢z,yr>

125N
where ¢, is the ith line vector of measurement ma-
trix @.

Discrete cosine transformation (DCT) matrix
is selected as the sensing matrix in the absence of
prior information about the signal. Most of the ener-
gy information of the time-domain signal can be
compressed nto a small number of DCT do-

mains

, as represented by
¢(k,i)=c(k)cos(n(2i+ 1)k/2N) 4)

where k€ (0,M — 1), i€ (0,N—1), and c(k) is

the matrix coefficient. Hence, we arrive at the mea-

surement signal notation of
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Y=Lyl =
[ 51+ ny,8,+ mg,00e 50+ iy " (5)
To prevent over-fitting, three parts data are di-
vided into train set, test set and cross-validation set,
y=[y1y2y:] ", where y, is a training model of

training set, vy, the validation set, and y; a test set.

2 Improved Residual Network

The proposed residual network and global skip

connection are introduced in this section.
2.1 The proposed residual network

Instead of the original rectified linear unit (RE-
LLU) , the residual unit based on SELU activation
function (R-SELU) is constructed to solve the prob-
lem of “neuronal death” at the negative gradient, as
shown in Fig.1.

In the residual unit, the input of the first residu-
al unit is set to x,, then the structure of the residual
unit is

T =a;+ F(x,w;) (6)
F(x,w)=wio(w,_12,-1) (7)
where ¢ 1s the activation function and F (2, w,) the

function of residual unit.

Input

Weight layer

SELU

Residual unit 1

R
SELU Residual unit 2

Rk EE C} Max pooling
Output

(a) Residual unit (b) Residual stack

Fig.1 Residual block structure

For any input of unit, the relationship between

multiple residual units can be obtained by

2 =z,+ SF(z,w) (8)

i=1
Assuming that J is loss function, then the cal-

culation expression for the error back-propagation is

followed by
aJ d] Ox,  dJ J
dr, Odx. dx, Ox, L ox, ;F<I“u') ©)
5, cnsures that the information can be directly
L

back to x;, so 1+ ai/tz;lF(f[, w,) solves problem
of vanishing gradient.

A 6-layer residual neural network is construct-
ed based on the above residual blocks. The structure

diagram is shown in Fig.2.

Input | Residual Residual Residual Residual
——{ stack (= stack = stack = stack
(512, 1,32)| |(256,1,32)| |(128,1,32) (64,1, 32)
Output|  pense Dense Residual Residual
- (24) = (128) |  stack |={ stack
(16, 1, 32) (32,1, 32)

Fig.2 Structure of ResNet network

The expression of each layer of the above net-
work structure is followed by
F](X):U(Wl*y+ by)

FZ(X):ff[WZ*FI(X)+bZ] (10)

F, (X)=0c[W, *F, ,(X)+ b, ]
where y is the low dimensional measurements of
compressed signals, & the basis, W convolution ker-
nel, the number n and the size £ X £ X ¢. ¢ 1s the
number of channels. When n=1, W, =3 X 1 X 1.
“*” is convolution operation.

y=F,(X)=W>*F, (X)+ 0, (11)
where y’ is the reconstructed measurements of the

last convolutional layer.
2.2 Activation function

The activation function used for the full-connec-
tion layer is SELLU

Ax x>0

A>1 (12
Aae" —a) <0 (12)

selu(x )=

As can be seen from Eq.(11), when the gradi-
ent is greater than O, the positive half-axis gradient
is greater than 1, which is well solved in the RELU
activation function. It is not simple to set O at the
negative half-axis, which solves the case of neuro-
nal death. The introduction of the SELU activation
function solves the problem of indistinguishable sim-
ilar features in the sample. The activation function

used by the output layer is
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exp(6)x(7)
Sexp(6)) (i)

softmax (&), = (13)

Using training set T to train classifiers is to find
appropriate parameters to minimize some loss func-
tions of classifiers. The cross entropy loss function

is generally used as

1

1(0)= =5 Dy led + (1= wlg(1—3)1=

(exp(6,')x (i)
>lexp(8]) (i)

(14)

= j } means that when y=/j, the value

1| N
N D> Hyi=jllg

i=0j=1

where 1{y,
1s 1, otherwise the value is 0. The smaller the value
of the loss function, the more accurate the result of
the classification training set.

However, Eq.(14) is not a strict convex func-
tion, which does not guarantee that it has a unique

solution. Increasing the weighted attenuation term

/1 k n ) . . .
5 E Z t9,.j penahzes excessive attenuation value,
i=1j=0

then, the new loss function is

Using the iterative optimization method to

solve Eq. (15) , the gradient equation can be ob-

tained as
1 )
Vo J(0)=—5 2" (1 y=j}—
ply.=jla(i)0))]+ A0, (16)

2.3 Global skip connection

In the residual block, the relationship between
the input and the output can also be written in a sim-
ple way as

Ty =o0(g(xy; W)+ ) (17)
where x, and x,., are the input and the output of
the residual block, respectively. g(+) is the joint op-
eration between the convolution layers and W rep-

resents all contained parameters. Since o () is non-

linear, g(x,;; W,)+ x,1s not always greater than ze-
ro.
U(g(I//;Wz/)+I//)¢ 0(;‘{(11/; W//))+ U(Iz/) (18)
Residual block does not accurately learn the re-
sidual between the input and the output x,., — x4,
so the overall residual x; — x, 1s also naccurate.
Since the input and output of this work are simi-
lar, zero padding is used to keep the data dimension
consistent. The overall model of the training net-
work is shown in Fig.3. Received signal is com-
pressed using the signal model method to reduce the
redundancy and divided into dataset and label. The
dataset is based on the constructed residual network
and the global residual connection is introduced.
Through the full connection layer with SELU as the
activation function, the regression output is carried
out, the loss function is calculated, and the training
network is evaluated. By introducing global skip
connection, the residual neural network detects the
residuals from the overall network existing between

input and output, which leads to a faster conver-

gence rate.

]ggisg = Softmax j

/ Loss

function|

}

Fig.3 Structure diagram of overall training network

3 Experiments and Analysis

3.1 Experiment settings

To verily the validity of the proposed method,
the open dataset named RML2018.01a in Ref.[9]
was used. 74 million signals were extracted, in
which 60% data were the training set, 20% data
were the cross-verification set and the final 20% da-
ta were the test set. These extracted data set were
divided into 24 parts and preprocessed, including
compressing and denoising. The dataset parameters
used are listed in Table 1.

Experiments were conducted on Google’s
open cloud platform to overcome the inconvenience

caused by the hardware limitation. For the sake of
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Table 1 ResNet network layout

Parameter Value
Dataset dimension 2555904 X 1024 X 2
Modulation pattern 24
SNR range/dB —20—30
SNR interval/dB 2
Total dataset amount 740 000
Signal number for each
4 096
modulation pattern
Modulation modes for each pattern 2
Sampling signal length 1024
Measurement signal length 128

simplicity, the simulation environment configura-

tion is shown in Table 2.

Table 2 Simulation environment configuration

Issue Version number
Tensorflow version 1.14.0
Keras version 2.2.4
Python version Python3.6

Cloud platform Google Colaboratory

GPU NVIDIA Tesla K80

After many experiments, the first training time
of the whole model is longer by using the setting of
hardware conditions. The ResNet network layout is

shown in Table 3.

Table 3 Resnet network layout

Output . )
Layer ) . Kennel _size Pool_size
dimension
Input
Residual _stack (512,1,32) (3,2) (2,2)
Residual _stack (256,1,32) (3,1) (2,1)
Residual _stack (128,1,32) (3,1) (2,1)
Residual _stack (64,1,32) (3,1) (2,1)
Residual _stack (32,1,32) (3,1) (2,1)
Residual _stack (16,1,32) (3,1) (2,1)
Dense/ SelLU 128
Dense/ SoftMax 24

Dropuout was selected to enhance the general-
ization ability and robustness of the network. Adam
optimizer, an extended algorithm of stochastic gradi-
ent descent, was selected in the process of parame-
ter updating, which has excellent performance in
practice. Hyper-parameter settings of the training

network are shown in Table 4.

Table 4 Hyper-parameter settings of the training net-

work

Hyper-parameter Value
Optimizer Adam

AlphaDropout 0.3
Min-Batah 1024

Each training time/s 175

Epoch 100

Overall training time/h 2.95

3.2 Results and disussions

In this work, the conventional CNN, the
ResNet+SELU method used in Ref.[9], the S-
ResNet+RELU method and S-ResNet+SELU
method constructed based on the RN proposed in
this work are selected for comparative simulations.

Network loss trend of training dataset of four
methods is shown in Fig.4(a). Considering the way
of batch training, the curve will show ups and
downs. At the same iteration number, it can be
shown that the RN performs well. It can be shown
that the loss function reduction rate of S-ResNet—+
SELU method is the fastest. At the time of epoch
about 13, the loss function begins to converge and
finally converges to 1.14. The loss function of S-
ResNet+RELU method finally converges to 1.20,
and the loss function of ResNet+SELU method
tends to be flat in epoch 30 and finally converges to
1.28. The loss function trend of these three methods
confirms the loss function change of the activation
function in Fig.4(b). The loss function of CNN
shows a “hook back” when epoch is 55, indicating
that the network reaches a certain depth and the
CNN appeares a gradient disappearance. The con-
vergence trend of using RELU and SELU loss func-
tion in the improved network is basically the same,
but it is easier to converge than using RELU activa-
tion function in the residual function.

The recognition accuracy is the ratio between
the correct number of samples predicted and the to-
tal number of samples, as

ACC = prediction /samples (19)

The four models are tested many times, the
best results are recorded, and the accuracy is shown
in Table 5.
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Fig.4 Network loss trend of training dataset

Table 5 Accuracy comparison between the proposed

methods and traditional methods on the dataset

S- S-
ResNet+
Model CNN ResNet+ ResNet+
SELU
RELU SELU
Average
67.86  86.72 90.32 92.12

accuracy /%

Under the condition that the improved residual
block uses the SELLU, the accuracy of the model us-
ing the RELU in the full connection layer is only
1.8% higher. However, SELU converges much
faster than RELU, as can be seen from Fig.4(b).

The accuracy in the range of SNR of the four

methods is shown in Fig.5.

1.0
0ol == CNN e
| =--ResNet+SELU ./ .7 ,»========" -
08 7 / /
:l l/
0.7+ v = ]
0.6 i ,l' 'I /'
O 17 7
S osp iF
04} Ly
VA
0.3} Y i ,/'
02} /A
T S S-ResNet+RELU
O.1F.—-=2:27-.==" .. S.ResNet+SELU
0.0 : 7

92 -0 0 10 20 30
SNR / dB

Fig.5 Accuracy trend of test dataset

When SNR is 10 dB, the three methods based
on the RN achieve the best effect. At low SNR, the
accuracy of the proposed method has been on top of
the other methods. The higher-order modulation of
the signal is less easily distinguished at low SNR,
however, the recognition rate of the traditional re-
sidual module is low when it has similar samples,
which explains the poor recognition effect of the
ResNet+SELU in the low SNR. The S-ResNet+
RESU and the S-ResNet+SELU can still achieve a
recognition rate of 50% when SNR is 0, and the S-
ResNet+SELU has reached 90.2% of the recogni-
tion accuracy at 8 dB.

The parameters of CNN, ResNet+SELU and
the S-ResNet+SELU proposed in this work are

compared, as shown in Table 6.

Table 6 Number of parameters

ResNet+  S-ResNet—+
SELU SELU
239 616 139 192

Method CNN

Number of parameters 257 099

CNN uses 257 099 parameters, while ResNet+
SELU uses 238 840 parameters. Furthermore, the
number of parameters used in the proposed S-
ResNet+SELU is 139 192. It is found that the
number of used parameters is reduced by 99
648. In the process of model training, the method in
this paper trains epoch that requires a mean detec-
tion time of 175 s, and the average time used by
ResNet+SELU is 477 s. In hardware limitations,
the detection time used in this paper is longer, and
the training of the whole model takes about 2.95 h.

The confusion matrix is compared under differ-
ent SNRs illustrated in Fig.6. When the three kinds
of SNR are —2, 6 and 10 dB, the modulation mode
can still be identified accurately. It is shown that the
modulation modes of 32PSK, AM-DSB-WC, FM
and OOK can be accurately identified when SNR is
—2 dB. AM-DSB-WC is the modulation mode
used in VHF communication system, and 256QAM
and QPSK cannot be easily distinguished under low
SNR because of their similar characteristics. When

SNR is 6 dB, there are 16 modulation modes with
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Fig.6 Confusion matrix of test set

the recognition rate of above 80%. When SNR is
10 dB, the confusion matrix can basically get pure
diagonal lines, and most modulation modes can be
recognized. However, 128QAM and AM-DSB-SC
have 20% recognition error rate, 128APSK and
128QAM have 20%
256QAM and QPSK modulation mode have about
10% recognition error rate. When SNR are 20 dB
and 30 dB, there will still be shadows when the

recognition error rate,

high-order PSK modulation is used. However, it
has a good recognition effect for the analog modula-
tion used in the traditional VHF communication,
and this work will also provide a reference for the
choice of digital modulation in the civil aviation

VHF communication system in the future.

4 Conclusions

Aiming at the signal modulation pattern recog-
nition, this work proposes an improved residual net-

work based on SELU activation function combined

with CS. It is shown to solve the problem of high
computational complexity, complicated steps of the
artificial feature extraction and slow convergence
speed featured by the conventional residual network.
The proposed algorithm firstly discards the redun-
dant components when extracting information from
the input signal using the measurement matrix.
Then, when training the classification network, a
residual unit and residual block structure based on
SELU as the activation function is constructed. Fur-
thermore, to solve the inaccuracy of residual learn-
ing and difficulty at network convergence, the con-
cept of global skip connection is introduced. Accord-
ing to a series competing simulations, the proposed
method is demonstrated to have the short training
time, the faster convergence speed and the better
recognition accuracy of the modulation mode when
comparing with other four popular methods.

In view of the complex electromagnetic envi-

ronment in the airport terminal area, the prospect of
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further research in this work is to design a recogni-
tion method for the performance detection of real
signal sources based on deep learning spectrum sens-

ing technology.

References

[1] FENG W W. Application of cognitive radio technolo-
gy in future civil aviation VHF ground air communica-
tion system[J]. Modern Informationn Technology,
2017, 1(1):132-134.

[2] PALACIOS R, HANSMAN J. Shortterm conse-
quences of radio communications blackout on the U.S.
National Airspace System[J]. Aerospace Science and
Technology, 2013, 29(1) :426-433.

[3] SPOONER C M, MODY A N, CHUANG I, et al.
Modulation recognition using second and higher-order
cyclostationarity[ C ]//Proceedings of 2017 IEEE In-
ternational Symposium on Dynamic Spectrum Access
Networks (DySPAN).[S.I.]:IEEE. 2017:1-3.

[4] ABDELMUTALAB A, ASSALEH K, TARHUNI
M, et al. Automatic modulation classification based on
high order cumulants and hierarchical polynomial clas-
sifiers[ J]. Physical Communication, 2016, 21:10-18.

[5] KRIZHEVSKY A, SUTSKEVER I, HINTON G,
et al. Imagenet classification with deep convolutional
neural networks[J]. Advances in Neural Information
Processing Systems, 2012, 25(2):1097-1105.

[6] PENG S L, JIANGHY, WANG H X, et al. Modu-
lation classification using convolutional neural network
based deep learning model[ C1//Proceedings of 2017
the 26th Wireless and Optical Communication Confer-
ence (WOCC). Newark, NJ, USA: IEEE, 2017:
16901440.

[7] O’SHEA T J, CORGAN J, CLANCY T C, et al.
Convolutional radio modulation recognition net-
works[ C]//Proceedings of International Conference
on Engineering Applications of Neural Networks. [S.
I.]:Springer, 2016:213-226.

[8] O’SHEA T J, WEST N. Radio machine learning da-
taset generation with GNU radio[ C]//Proceedings of
the 6th GNU Radio Conference. [S.1.]:[s.n.], 2016.

[9] O’SHEA TJ, ROY T, CLANCY T C, et al. Over
the air deep learning based radio signal classifica-
tion[J]. IEEE Journal of Selected Topics in Signal
Processing, 2018,12(1):168-179.

[10] HE KM, ZHANG X Y, REN S Q, et al. Deep resid-

ual learning for image recognition[ C]//Proceedings of

the ITEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR). Las Vegas, NV, USA:
IEEE, 2016:770-778.

[11] HE K M, ZHANG X Y, REN S Q, et al. Identity
mappings in deep residual networks[ C]//Proceedings
of European Conference on Computer Vision. [S.1.]:
Springer, 2016:630-645.

[12] WEST N E, O’ SHEA T J. Deep architectures for
modulation recognition[ C]//Proceedings of 2017
IEEE International Symposium on Dynamic Spectrum
Access Networks (DySPAN). Piscataway, NI,
USA:IEEE, 2017:1-6.

[13] SUN D, GAO Q W, LU Y X, et al. A novel image
denoising algorithm using linear Bayesian MAP esti-
mation based on sparse representation[J]. Signal Pro-
cessing, 2014,100(7) :132-145.

[14] GAOY L,CHEN Y P, MA Y K, et al. Eigenvalue-
based spectrum sensing for multiple received signals
under the non-reconstruction framework of compressed
sensing[ J]. IEEE Access, 2016,4:4891-4901.

[15] CHIN W L, KUO H C, CHEN H H, et al. Features
detection assisted spectrum sensing in wireless region-
al area network cognitive radio systems[J]. IET Com-

munications, 2012, 6(8):810-818.

Acknowledgements

tional Natural Science Foundation of China (No.71874081) ,

This work was supported by the Na-

Special Financial Grant from China Postdoctoral Science
Foundation (No0.2017T100366) and Open Fund of Hebei
Province Key laboratory of Research on data analysis method

under dynamic electro-magnetic spectrum situation.

Author Prof. SHEN Zhiyuan received his B.S., M. S,
and Ph.D. degrees all from Harbin Institute of Technology in
2008, 2010 and 2014, respectively. During 2010 to 2012,
he was a visiting scholar at Georgia Institute of Technology.
His research interests include air traffic management, airport
operation and optimization, digital signal processing and

deep learning.

Author contributions Prof. SHEN Zhiyuan designed the
study, complied the models, conducted the analysis,
interpreted the results and wrote the background of the
study. Dr. LI Jia contributed to complying the models and
data selection for analysis and simulation design. Ms.
WANG Qiangian contributed to complying the models,
conducting the simulation and discussion, and writing the

manuscript. Ms. HU Yingying contributed to adding

supplement for revised version and adjusting the paper



No. 4 SHEN Zhiyuan, et al. A Signal Recognition Algorithm Based on Compressive Sensing and--- 615

format. All authors commented on the manuscript draft and Competing interests The authors declare no competing

approved the submission. interests.
(Production Editor: WANG Jing)

—ME T E4EF R 57 5% = W& H
E5IAHEICRA T %

hEZ, F R ZEE, REE
(L RESEALA ALK R ALE B L 0 211106, 7R 5
2. 51 5oy P P4 T U BFSEF  73 % 2 050081, 9
3. W VL0 A AE B D e 230 4 JE 52 1L B 310023, 1))

WE. AN R LB REH T Rk Hin B ETOBXAAEL, ALRET—#HAT
JE G Bedn Ao Bt 5% 2 M 12 5 MBI B XRAN Tk, B4, AR SALBIRPIANT EEAMNF &, AEF
ABIEFUTAS>E, EHEHMNFETEAMSGBNRE, I THAWIE BN B 80E R B E LR
T Fa 55 £ ) Y, VAR S D 25 BT 1R) K o B AR A P R 0L IR 989 AL R L A B AR £ BTN 4R R 4 AR GE ) %
BB, AR AM, B IRE ST F R, E kB B SRR R R R A

KR EHAERGIRE T S 5K E M % A H R



