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Abstract: The problem of two-dimensional direction of arrival（2D-DOA） estimation for uniform planar arrays
（UPAs） is investigated by employing the reduced-dimensional（RD） polynomial root finding technique and 2D
multiple signal classification（2D-MUSIC） algorithm. Specifically，based on the relationship between the noise
subspace and steering vectors，we first construct 2D root polynomial for 2D-DOA estimates and then prove that the
2D polynomial function has infinitely many solutions. In particular，we propose a computationally efficient algorithm，

termed RD-ROOT-MUSIC algorithm，to obtain the true solutions corresponding to targets by RD technique，where
the 2D root-finding problem is substituted by two one-dimensional（1D）root-finding operations. Finally，accurate 2D-

DOA estimates can be obtained by a sample pairing approach. In addition，numerical simulation results are given to
corroborate the advantages of the proposed algorithm.
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0 Introduction

In the past few decades，two-dimensional direc⁃
tion of arrival（2D-DOA）estimation has drawn con⁃
siderable attention and has been utilized in many
fields such as astronomy，wireless communications，
and radar systems［1-3］. Most of the existing research
mainly focus on structures of 2D arrays such as uni⁃
form planar array（UPA）［4-6］，L-shaped array［7-8］，

uniform circular array（UCA）［9］ and two parallel
uniform linear arrays［10］. For these 2D arrays，the
spacing of adjacent sensors should be no larger than
half wavelength to eliminate phase ambiguity prob⁃
lem.

Conventional 2D-DOA methods mainly in⁃
clude two categories that one is based on spectrum
peak search［11-18］，and the other exploits the rotation

invariance algorithm［9，19-21］. In Ref.［11］，the tradi⁃
tional 2D multiple signal classification （2D-MU⁃
SIC） algorithm is employed to UPA，where the
well-performed DOA estimates can be obtained
with expensive computational complexity caused by
the total spectral search（TSS）. Ref.［17］combined
the reduced-dimensional MUSIC （RD-MUSIC）
method with multiple-input-multiple-out（MIMO）
radar to complete 2D-DOA estimation，to further
reduce the computational complexity. The rotation
invariance algorithm can directly calculate the DOA
estimates and avoid spectral peak searching，but
cannot achieve as good DOA estimates as the algo⁃
rithms based on spectral peak searching. Ref.［18］
proposed one-dimensional （1D） partial spectral
search approach for coprime planar arrays，which
achieved enhanced DOA performance with much
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lower computational cost as compared with 2D-MU⁃
SIC algorithm，but it still performed peaks search⁃
ing on spectrum function. To achieve a better trad⁃
eoff between computational complexity and DOA
estimation performance， scholars have proposed
some methods based on MUSIC algorithm to re⁃
duce computational complexity by utilizing polyno⁃
mial root finding technique［22-24］. Ref.［23］proposed
a polynomial rooting algorithm based on L-shaped
array，which failed to make full use of 2D array in⁃
formation. In Refs.［24-25］， the initial 1D roots
were calculated first and then were used to obtain all
the DOA estimates based on the spectrum function.
However，the 2D-DOA estimation performance of
the methods degrades at low signal-to-noise ratio
（SNR）because bad initial DOA estimates exist in
this case.

Considering the disadvantages mentioned
above in conventional methods，we propose a com⁃
putationally efficient algorithm based on RD polyno⁃
mial root finding technique for UPA termed RD-

ROOT-MUSIC algorithm. Based on the 2D-MU⁃
SIC spectrum function，we consider 2D-ROOT-

MUSIC polynomial firstly and explore to find two
paired solutions corresponding to targets directly.
Subsequently，we prove that 2D polynomial con⁃
tains infinitely many solutions，and it is impossible
for us to obtain the solution to a bivariate higher-or⁃
der equation by once polynomial root finding with⁃
out other qualifications. According to 2D-ROOT-

MUSIC polynomial，we construct two 1D root
polynomials to obtain 2D-DOA estimates corre⁃
sponding to targets from infinitely many solutions
by RD root finding technique. Furthermore，we also
exploit the feasibility and effectiveness of the RD
process. Although the proposed algorithm requires
an additional parameter pairing procedure，it only
needs extremely low complexity. Compared with
RD-MUSIC algorithm and 2D-MUSIC algorithm，

the proposed algorithm can get roughly the same
2D-DOA estimation accuracy，but the computation⁃
al complexity is much lower. Numerical simulations
corroborate the effectiveness and priority of the pro⁃

posed algorithm.
Specially，the main contributions of this paper

are summarized as follows：
（1）We devise the 2D-DOA estimation prob⁃

lem for UPA as a polynomial rooting problem，to
achieve high accuracy DOA estimates with a much
lower computational cost.

（2）We prove that 2D-ROOT-MUSIC polyno⁃
mial contains infinitely many solutions.

（3）We propose a computationally efficient al⁃
gorithm termed RD-ROOT-MUSIC algorithm，

which exploits the feasibility and effectiveness of the
RD polynomial root finding process.

Notations： Bold lower-case and upper-case
characters are used to represent the vectors and ma⁃
trices，respectively. ( ⋅ ) T，( ⋅ ) H，( ⋅ ) -1 and ( ⋅ ) * rep⁃
resent transpose，conjugate transpose，inverse and
conjugate operations，respectively. ⊙ and ⊗ stand
for the Khatri-Rao product and Kronecker product，
respectively. IM is the M ×M identity matrix.
angle ( ⋅ ) stands for the phase operator and det ( ⋅ )
denotes the determinant of the matrix.

1 Data Model

The UPA structure is shown in Fig.1，which
contains M × N sensors. The inter-element spacing
is d= λ 2，where λ denotes the wavelength.

Assume there are K(K<MN) narrowband far-
field uncorrelated sources impinging on the UPA
from 2D-DOA elevation angles ( θk，ϕk )，k=
1，2，…，K，where θk and ϕk are the elevation and az⁃
imuth angles of the kth sources ( θk ∈ [ ]0，π 2 ，

Fig.1 UPA structure

686



No. 4 YE Changbo, et al. Computationally Efficient 2D-DOA Estimation for Uniform Planar Arrays…

ϕk ∈ [0，π] )，respectively.
The received signals can be expressed as［11］

X = AS+ N (1)
where X = [ x ( 1)，x ( 2)，⋯，x (L) ] and L repre⁃
sents the number of snapshots，S=[ s1，s2，⋯，sK ] T

is the source signal matrix and sk=
[ sk ( 1)，sk ( 2)，⋯，sk (L) ]， and sk ( l) = βkej2πfk t with
the Doppler frequency fk and the amplitude βk.
N ∈ CMN × L is the additive white Gaussian noise ma⁃
trix with zero mean and variance σ 2. A∈ CMN × K is
the steering matrix of the UPA and
A=A y⊙A x=

[ ay ( θ1,ϕ 1 )⊗ ax ( θ1,ϕ 1 ),⋯,ay ( θK,ϕK )⊗
ax ( θK,ϕK ) ] (2)

where ax ( θk，ϕk ) and ay ( θk，ϕk ) are steering vectors
of A. They can be represented by
ax ( θk,ϕk )=[ 1,ej2πd cosϕk sinθk λ,⋯,ej2π ( )M - 1 d cosϕk sinθk λ ]T (3)

ay ( θk,ϕk )=[ 1,ej2πd sinϕk sinθk λ,⋯,ej2π ( )M - 1 d sinϕk sinθk λ ]T (4)
The covariance matrix can be calculated with L

snapshots by

R̂= 1
L ∑l= 1

L

x ( l) xH ( )l (5)

Based on the eigenvalue decomposition
（EVD），R̂ can be decomposed as

R̂= E sD sE H
s + E nD nE H

n (6)
where E s is formed by the eigenvectors correspond⁃
ing to the maximum K eigenvalues，and E n is com⁃
posed of the rest eigenvectors. D s and D n are diago⁃
nal matrices. The diagonal elements of D s are made
up of the largest K eigenvalues，and the diagonal el⁃
ements of D n are composed of other eigenvalues.

Remark 1 In this paper，it is assumed that K
is the prior information which can be estimated by
the methods in Refs.［26-27］.

2 The Proposed Algorithm

In this section，we first construct 2D-ROOT-

MUSIC polynomial and prove that it contains infi⁃
nitely many solutions，then we apply the RD poly⁃
nomial root finding process to get two 1D polynomi⁃
als. Besides，we exploit the feasibility and effective⁃
ness of the RD process. Accurate 2D-DOA esti⁃

mates corresponding to targets can be obtained by
the proposed algorithm.

2. 1 2D⁃MUSIC algorithm

The spectrum function of UPA can be ex⁃
pressed as［11］

P 2D⁃MUSIC ( θ,ϕ )=
1

[ ay ( θ,ϕ )⊗ ax ( θ,ϕ ) ]H E nE H
n [ ay ( θ,ϕ )⊗ ax ( θ,ϕ ) ]

(7)
where ay ( θ，ϕ )=[ 1，ej2πd sinϕ sinθ λ，⋯，ej2π ( )M-1 d sinϕ sinθ λ ]T，
and ax ( θ,ϕ )=[ 1,ej2πd cosϕ sinθ λ,⋯,ej2π ( )N - 1 d cosϕ sinθ λ ]T.

In Ref.［12］，the authors performed 2D partial
spectral search （PSS） on Eq.（7） to obtain 2D-

DOA estimates，which requires a time-consuming
2D spectral search. In Ref.［14］，Zhang et al. uti⁃
lized RD technique，but it still needed 1D spectral
search. We utilize polynomial root finding process
instead of spectral peak search，which greatly reduc⁃
es the computational cost.

2. 2 2D⁃ROOT⁃MUSIC polynomial

Define

{u= sinθ sinϕv= cosθ sinϕ
(8)

then，the steering vectors can be rewritten as
ay ( θ,ϕ )= ay (u) =[ 1,ej2πdu λ,⋯,ej2πd ( N - 1) u λ ]T (9)
ax ( θ,ϕ )= ax ( v) =[ 1,ej2πdv λ,⋯,ej2πd (M - 1) v λ ]T (10)

2D-ROOT-MUSIC polynomial can be ex⁃
pressed as
V (u,v) =

[ ay (u) ⊗ ax ( v) ]H E nE H
n [ ay (u) ⊗ ax ( v) ]= 0

(11)
Lemma 1 The UPA structure is shown in

Fig.1. By performing EVD on covariance matrix，
2D-ROOT-MUSIC polynomial corresponding to
the UPA can be expressed as Eq.（11），which con⁃
tains infinitely many solutions.

Proof See Appendix A.
According to Lemma 1，it is not feasible to ob⁃

tain the paired u and v directly from 2D-ROOT-

MUSIC polynomial because of infinitely many solu⁃
tions. We use RD polynomial root finding technique
to solve this problem.
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2. 3 RD polynomial root finding process

According to Eq.（11），V (u，v) can be recon⁃
structed as［14，17］

V (u,v) = aHx ( v) [ ay (u) ⊗ IM ]H E nE H
n [ ay (u) ⊗

IM ] ax ( v) = aHx ( v)Q (u) ax ( v) (12)
or

V (u,v) = aHy (u) [ IN⊗ ax ( v) ]H E nE H
n [ IN⊗

ax ( v) ] ay (u) = aHy (u)Q ( v) ay (u) (13)
where
Q (u) =[ ay (u) ⊗ IM ]H E nE H

n [ ax ( v) ⊗ IM ] (14)
Q ( v) =[ IN ⊗ ax ( v) ]H E nE H

n [ IN ⊗ ax ( v) ] (15)
Basically，the above states derivations covert

DOA estimation into polynomial root finding with
Eq.（11），if ej2πdu λ does not correspond to one target
and if［24-25］

Rank ( E nE H
n )=MN - K≥ N ⇒ N ≤M (N - 1)

(16)
Considering about the noise with non-zero val⁃

ue，the matrix E nE H
n is invertible，and the determi⁃

nant is not equal to zero.
Eq.（16） means that det { Q (u) } is non-zero

polynomial. Obviously，Q (u) is a factor of V (u，v).
Since Q (u) contains only the variable u，if u takes
the value that satisfies

det { Q (u) }= 0 (17)
the roots of Eq.（17）must contain u corresponding
to targets. Eq.（17）also means

V (u,v) = aHx ( v)Q (u) ax ( v) = 0 (18)
The analysis of the variable v is similar. Then

the problem of obtaining u and v corresponding to
targets from infinitely many solutions in Eq.（11）
can be converted into two 1D polynomials root find⁃
ing problems. Eqs.（12）and（13）can be converted
into
det { Q (u) }=

det { [ ay (u) ⊗ IM ]H E nE H
n [ ay (u) ⊗ IM ] }= 0

(19)
det { Q ( v) }=

det { [ IN ⊗ ax ( v) ]H E nE H
n [ IN ⊗ ax ( v) ] }= 0

(20)
Define

{z1 = ej2πdu λ

z2 = ej2πdv λ
(21)

The steering vectors can be rewritten as

ay ( u )=[ 1,ej2πdu λ,⋯,ej2π( N - 1)du λ ]T =
[ 1,z1,⋯,zN - 11 ]T = ay ( z1 ) (22)

ax ( v) =[ 1,ej2πdv λ,⋯,ej2π(M - 1)dv λ ]T =
[ 1,z2,⋯,zM - 12 ]T = ax ( z2 ) (23)

To eliminate u∗ and v∗， we can replace
[ ay (u) ⊗ IM ] H with zN - 11 [ aTy ( z-11 ) ⊗ IM ] H and re⁃
place [ IN ⊗ ax ( v) ] H with zM - 12 [ IN ⊗ aTx ( z-12 ) ] H，
i.e.
det { Q ( z1 ) }=

det { zN-11 [ aTy ( z-11 ) ⊗ IM ]H E nE H
n [ ay ( z1 )⊗

IM ] }= 0 (24)
det { Q ( z2 ) }=

det { zM-12 [ IN⊗aTx ( z-12 ) ]H E nE H
n [ IN⊗

ax ( z2 ) ] }=0 (25)
Since the degree of det { Q ( z1 ) } and

det { Q ( z2 ) } are even， we can take roots
ẑ11，⋯，ẑ1k，⋯，ẑ1K of Eq.（24）with the largest K am⁃
plitudes in the unit circle to obtain estimates of û k，
and take roots ẑ21，⋯，ẑ2i，⋯，ẑ2K of Eq.（25）with
the largest K amplitudes in the unit circle to obtain
estimates of v̂ i.

û k=( angle ( ẑ1k ) λ 2πd ) k= 1,⋯,K (26)
v̂ i=( angle ( ẑ2i ) λ 2πd ) i= 1,⋯,K (27)

2. 4 Pairing and 2D⁃DOA estimation

The estimates of û k and v̂ i are separated，so it
is necessary to pair û k and v̂ i to complete 2D-DOA
estimation. Construct cost function ( k= 1，⋯，K)

Vk,i= arg
i= 1,⋯,K

min [ ay ( û k )⊗ ax ( v̂ i ) ]H ⋅

E nE H
n [ ay ( û k )⊗ ax ( v̂ i ) ] (28)

where ay ( û k ) and ax ( v̂ i ) represent steering vectors
reconstructed by û k and v̂ i，respectively.

It is obvious that the total number of Vk，i is K 2.
Then for each k，we can calculate Vk，i ( 1≤ i≤ K)
to select the minimum value and return correspond⁃
ing i into i′. 2D-DOA estimates can be calculated by

θ̂ k= arcsin ( û2k+ v̂2i′ ) 1≤ k≤ K (29)
ϕ̂ k= arctan ( û k v̂ i′ ) 1≤ k≤ K (30)

where v̂ i′ is reconstructed by i′( 1≤ i′≤ K).

2. 5 Detailed steps of the proposed algorithm

The major steps of the proposed algorithm to
obtain 2D-DOA estimates for the UPA are given as
follows.
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Step 1 Compute the covariance matrix R̂ and
perform EVD to obtain noise subspace E n.

Step 2 Reconstruct V (u，v) according to
Eq.（11）.

Step 3 Perform RD process on V (u，v) to get
Eqs.（24）and（25）.

Step 4 Calculate û k and v̂ i according to Eqs.
（26）and（27）.

Step 5 Complete pairing procedure and ob⁃
tain the 2D DOA estimation of targets according to
Eqs.（29）and（30）.

3 Performance Analysis

3. 1 Complexity analysis

We analyze the computational complexity of
the proposed algorithm and compare it with the 2D-

ESPRIT algorithm［9］ ，2D-MUSIC algorithm［11］ ，

and RD-MUSIC algorithm［17］. For the proposed al⁃
gorithm， calculating the covariance matrix needs
O { (MN ) 2L }， eigenvalue decomposition requires
O { (MN ) 3 }， polynomial root finding costs
O { ( 2N (M - 1) ) 3 + ( 2M (N - 1) ) 3 } and the pair⁃
ing process requires O { K 2 (MN + 1) (MN - K) }，
so the total computational complexity of the pro⁃
posed algorithm is
O { (MN )2L+(MN )3 +( 2N ( )M - 1 )3 +

( 2M ( )N - 1 )3 + K 2 ( )MN + 1 ( )MN - K }
The computational complexities of 2D-ES⁃

PRIT with UCA，2D-MUSIC with passive array
and RD-MUSIC with MIMO radar are given in
Refs.［9］，［11］and［17］，respectively. We extend
them to the complexities of UPA for comparison.
Both algorithms require O { (MN ) 2L+(MN ) 3 } to
obtain the covariance matrix and perform eigenvalue
decomposition. The peak search of 2D-MUSIC and
RD-MUSIC costs O { n21 (MN + 1) (MN - K) }
and O { n2K (M 2N +M 2) (MN - K) }，respective⁃
ly，where n1 = 90°/Δ and n2 = 2°/Δ represent the
search times，and the peak search interval is Δ=
0.01° . For 2D-ESPRIT algorithm，further accurate
estimation needs O { 2K 2 (M - 1) N + 6K 3 +
2K 2 (N - 1) M }. The computational complexity of
different algorithms mentioned above is summarized
in Table 1. Besides，Fig.2 shows the computational

complexity comparison of different algorithms ver⁃
sus different N， where M = 6，K= 2，L= 500.
The complexity comparison versus snapshot is de⁃
picted in Fig.3，where M = 6，N = 6，K= 2. It is
observed from Figs.2 and 3 that the proposed algo⁃
rithm outperforms the 2D-MUSIC and RD-MUSIC
algorithms in computational complexity， and its
computational complexity is approximately as low
as the 2D-ESPRIT algorithm，proving the computa⁃
tional efficiency of the proposed algorithm.

Table 1 Complexity comparison of different methods

Algorithm

Proposed

2D⁃
ESPRIT[9]

2D⁃
MUSIC[11]

RD⁃
MUSIC[17]

Computational complexity

O { (MN )2L+(MN )3 +( 2N ( )M - 1 )3 +
( 2M ( )N - 1 )3 + K 2 ( )MN + 1 ( )MN - K }

O { L (MN )2 +(MN )3 + 2K 2 ( )M - 1 N +
6K 3 + 2K 2 ( )N - 1 M }

O { L (MN )2 +(MN )3 +
n21 [ ( )MN + 1 ( )MN - K ] }

O { (MN )2L+(MN )3 +
n2K (M 2N +M 2 ) ( )MN - K }

Fig.2 Computational complexities of different methods ver⁃
sus different N

Fig.3 Computational complexities of different methods ver⁃
sus different snapshots
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3. 2 Cramer⁃Rao bound

The Cramer-Rao bound（CRB） represents a
lower bound to the error variance of parameter esti⁃
mator. We give the derivation of CRB for UPA to
evaluate the 2D-DOA estimation performance as fol⁃
lows

Define A=[ ay ( θ1，ϕ 1 )⊗ax ( θ1，ϕ 1 )，⋯，ay ( θK，
ϕK )⊗ ax ( θK，ϕK ) ].

According to Ref.［28］，the CRB of UPA can
be given by

CRB= σ 2

2L { Re [ DHΠ ⊥
A D⊕P̂ T ] }-1 (31)

where D=
é

ë
ê
∂a1
∂θ1

，⋯，
∂a k
∂θk

，⋯，
∂aK
∂θK

，
∂a1
∂ϕ 1

，⋯，
∂a k
∂ϕk

，⋯，
∂aK
∂ϕK

ù

û
ú，P̂=

é

ë
êê

ù

û
úú

P̂ s P̂ s
P̂ s P̂ s

，P̂ s = SSH L，Π ⊥
A = IM × N- A[AHA] -1 ⋅

AH. Here L represents the number of snapshots，a k
the kth column of A，and σ 2 the variance of the re⁃
ceived noise.

3. 3 Advantages

Based on the above discussions，the proposed
algorithm has the following advantages.

（1）The proposed algorithm converts 2D poly⁃
nomial into 1D polynomials，and does not require
spectrum search，thus reducing the computational
complexity significantly.

（2）The complexity of the proposed algorithm
is approximately as low as the 2D-ESPRIT algo⁃
rithm，which is much lower than the 2D-MUSIC
and RD-MUSIC algorithms.

（3）The 2D-DOA estimation accuracy of pro⁃
posed algorithm is significantly better than 2D-PM
and 2D-ESPRIT algorithms， and is almost the
same as 2D-MUSIC and RD-MUSIC algorithms.

（4）The proposed algorithm can be effectively
used for 2D-DOA estimation with high accuracy 2D-

DOA estimation and is also attractive in massive
MIMO radar system.

4 Simulation Results

In this section，we employ Monte Carlo simu⁃

lation to simulate the proposed algorithm. The num⁃
ber of Monte Carlo simulation is 500. Assume that
the incident angles are ( θ1，ϕ 1 ) = (20°，30°)
( θ2，ϕ 2 ) = (40°，50°) of two unrelated sources
( i.e.K= 2). Inter-element spacing d equals half
wavelength. We can define the root mean square er⁃
ror（RMSE）of the 2D-DOA estimation as

RMSE= 1
K ∑k= 1

K 1
500 ∑i= 1

500

( ϕ̂k,i- ϕk )2 +( θ̂ k,i- θk )2

(32)
where ϕk and θk represent the true azimuth and eleva⁃
tion of the kth target，respectively. ϕ̂ k，i and θ̂ k，i are
estimated value of ϕk and θk in the ith Monte Carlo
simulation，respectively.

4. 1 Scatter figures

Fig.4 shows the scatter figures of the proposed
algorithm，where M = 6 and N = 6. The SNR of
Fig.4（a）and Fig.4（b）are -10 dB and 10 dB，re⁃
spectively. It is obviously shown that the proposed
algorithm can obtain paired azimuth and elevation ef⁃
fectively.

Fig.4 Scatter figures of the proposed algorithm
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4. 2 RMSE performance comparison results
versus snapshot

Fig.5 gives the comparison results of RMSE
performance for UPA versus snapshot，where M =
6，N = 6. An increased number of snapshots means
more sampling data. As the number of snapshots in⁃
creases，it is illustrated clearly that the 2D-DOA es⁃
timation performance gets better in Fig.5.

4. 3 RMSE performance comparison results

versus sensor

Fig.6 depicts the comparison results of RMSE
performance versus sensors M and N，where L=
200. An increased number of sensors means more di⁃
versity gain received by UPA. Fig.6 indicates that
the 2D-DOA estimation performance is enhanced as
the number of sensors increases.

4. 4 2D⁃DOA performance comparison results

of different algorithms

We investigate 2D-DOA estimation perfor⁃
mance comparison results of the proposed algo⁃
rithm， 2D-MUSIC algorithm， 2D-PM algo⁃
rithm［21］，2D RD-MUSIC and 2D-ESPRIT algo⁃

rithms for UPA， where M = 6，N = 6，SNR=
10 dB in Fig.7（a） and M = 6，N = 6，L= 200 in
Fig.7（b）. The range of spectrum searching for 2D-

MUSIC is ( 0°，90°)，and searching interval is Δ=
0.01° . As depicted in Fig.7，the performance of the
proposed algorithm is almost identical to the 2D-

MUSIC algorithm and RD-MUSIC algorithm.
Compared with the 2D-ESPRIT and 2D-PM algo⁃
rithms，the proposed algorithm performs significant⁃
ly better，verifying its effectiveness.

5 Conclusions

Based on RD polynomial rooting technique and
2D-MUSIC algorithm，a novel computationally effi⁃
cient algorithm with improved DOA estimation per⁃
formance is proposed in this paper. We first take 2D
ROOT-MUSIC polynomial into consideration，
which contains infinitely many solutions，and it is
difficult to get paired solutions directly. For further，
a novel method termed RD-ROOT-MUSIC algo⁃
rithm with UPA is proposed to solve this problem.
It converts 2D polynomial into two 1D polynomi⁃

Fig.5 RMSE performance versus snapshot

Fig.6 RMSE performance versus sensors

Fig.7 Comparison of RMSE performance of different algo⁃
rithms
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als， then the computational complexity and root
finding difficulty can be reduced，effectively. In addi⁃
tion，a better trade-off between computational com⁃
plexity and 2D-DOA performance is achieved，as
compared with other existing methods. Numerical
simulations validate the effectiveness and efficiency
of the proposed algorithm.

Appendix A

Fundamental theorem of algebra：Every non-constant
single-variable polynomial with complex coefficients has at
least one complex root.

According to Eqs.（11—13），2D-ROOT-MUSIC poly⁃
nomial can be rewritten as

V ( z1,z2 )= c ( z1,z2 )HE nE H
n c ( z1,z2 )= 0 (A1)

where
c ( z1,z2 )=[ ay ( z1 )⊗ ax ( z2 ) ]=

[ ax ( z2 )T,z1ax ( z2 )T,⋯,zN - 11 ax ( z2 )T ]T (A2)

To eliminate z∗1 and z∗2，we can replace c ( z1，z2 ) H with

zN - 11 zM - 12 c ( z-11 ，z-12 ) T，then

V ( z1,z2 )= zN - 11 zM - 12 c ( z-11 ,z-12 )T E nE H
n c ( z1,z2 )= 0 (A3)

Expand the coefficient of V ( z1，z2 )
V ( z1,z2 )= zN - 11 zM - 12 c ( z-11 ,z-12 )T E nE H

n c ( z1,z2 )=
a1 ( z2 ) z

N - 1
1 +a2 ( z2 ) z

N - 2
1 +a3 ( z2 ) z

N - 3
1 +⋯+

a( )N - 1 ( z2 ) z1 + aN ( z2 )+ C (A4)

where a1 ( z2 )，⋯，aN ( z2 ) are all polynomials of z2 and C is a

constant.
According to Eq.（16）， polynomial coefficients of

a1 ( z2 )，⋯，aN ( z2 ) are not all zero. Give z2 an arbitrary value

that satisfies

z2 = ej2πdv λ,v= cosθ sinϕ∈ [- 1,1] (A5)

then Eq.（A4）is converted into a univariate equation with on⁃
ly the variable z1. The value of z2 is an arbitrary complex
number that satisfies the value range. There are infinitely
many z2 values and each z2 corresponds to at least one z1. Ac⁃
cording to Fundamental theorem of algebra，Eq.（11） con⁃
tains infinitely many solutions in the complex number range.
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均匀面阵中高效率的二维波达方向估计方法：

降维求根MUSIC算法

叶长波 1，2，朱倍佐 1，2，李宝宝 1，2，张小飞 1，2

（1.南京航空航天大学天地一体频谱认知智能实验室,南京 211106, 中国；

2.南京航空航天大学电子信息工程学院, 南京 211106, 中国）

摘要：波达方向估计是阵列信号处理研究的重要方向之一。本文在降维求根技术和MUSIC算法的基础上，研究

了均匀平面阵列的二维波达方向估计问题。首先基于噪声子空间和方向矢量之间的正交关系构造二维求根多

项式，并证明该多项式包含无限多个解。为获取这些解中包含的真实目标参数，提出了一种新的低复杂度、计算

效率高的算法，即降维求根MUSIC算法。所提算法应用降维求根技术目标的真实解，其中二维求根方程被转换

为两次一维求根，该过程有效降低了求根难度。最后，通过一次配对过程获取目标角度参数的估计值。数值模

拟验证了该方法的有效性和优越性。

关键词：均匀面阵；波达方向估计；降维求根MUSIC算法
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