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Abstract: Accurately solving transient nonlinear inverse heat conduction problems in complex structures is of great
importance to provide key parameters for modeling coupled heat transfer process and the structure’s optimization
design. The finite element method in ABAQUS is employed to solve the direct transient nonlinear heat conduction
problem. Improved particle swarm optimization（PSO）method is developed and used to solve the transient nonlinear
inverse problem. To investigate the inverse performances，some numerical tests are provided. Boundary conditions at
inaccessible surfaces of a scramjet combustor with the regenerative cooling system are inversely identified. The results
show that the new methodology can accurately and efficiently determine the boundary conditions in the scramjet
combustor with the regenerative cooling system. By solving the transient nonlinear inverse problem，the improved
particle swarm optimization for solving the transient nonlinear inverse heat conduction problem in a complex structure
is verified.
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0 Introduction

For the traditional heat conduction problem，

the temperature field of an object is calculated by
giving the initial condition and boundary condition of
the material property，which is called the direct heat
conduction problem［1］. Many different innovation
methods were proposed by scholars to solve the di⁃
rect heat conduction problems. However，limited by
various factors，solving the inverse problems of heat
conduction under some circumstances is difficult. A
large number of inverse methods were proposed and
studied，which could help estimate unknown values
or unmeasurable quantities by some known and easi⁃
ly measured information［2］. So，solving the inverse
problems of heat conduction is of great importance.

In order to solve the inverse problems of heat
conduction with excellent performances，numerous
algorithms have been proposed and developed［3］. An
enormous amount of research has been put into solv⁃
ing inverse problems of heat conduction［4］. Based on
conjugate gradient method and discrepancy princi⁃
ple，Yang et al.［5］ proposed a new anti-identification
algorithm for the heat flow of disc brake system
with time and space changes. Liu et al.［6］ solved the
problem with heat source and boundary condition re⁃
covery by multiple-scale polynomial Trefftz meth⁃
od. Mohasseb et al.［7］ presented an innovative hy⁃
brid optimization algorithm to solve inverse heat
conduction problems，which used genetic algorithm
as the leading optimizer and used sequential quadrat⁃
ic programming to reduce the calculation time. In ad⁃
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dition，a number of other methods were innovative⁃
ly proposed， such as the Levenberg-Marquardt
method［8-10］，the krill herd algorithm［11］，the Fourier
transform［12］， the fundamental solutions［13］， a do⁃
main decomposition method［14］，the bee colony algo⁃
rithm［15］，the particle swarm optimization［16-17］，and
the genetic algorithm［18］，which were introduced in
Ref.［4］.

Those algorithms could be divided into two
groups，the gradient-based algorithm and stochastic
algorithm［3］. For most inverse problems，the gradi⁃
ent-based methods could usually converge rapidly，
and had high inverse identification accuracy. Howev⁃
er，the properties of these methods were easily af⁃
fected by some factors，e.g. cost function of the in⁃
verse problem，which made the optimization meth⁃
od fall into the local optimum and missed the global
optimal solution. Moreover，sensitivity coefficients
must be evaluated in this way. As for the stochastic
methods，they have excellent global searching ability
because of the randomness of the initial population
and the calculation based on lots of possible solutions
instead of an initial solution. However，stochastic
methods are generally with a slow convergence rate，
and a mass of iterations are required inevitably.

For linear inverse heat conduction problems，
satisfactory results could be obtained by using gradi⁃
ent-based methods. But for nonlinear heat conduc⁃
tion problems（e.g. the present work），the sensitivi⁃
ty coefficient matrix is difficult to be precisely deter⁃
mined，and then sometimes the inversion results ob⁃
tained by the gradient-based method are unreason⁃
able. For example，with the same random number，
the error of inverse identification would become
smaller with the increase of measuring error，when
the algorithm［4］ was employed to solve the corre⁃
sponding nonlinear inverse problem. However，
compared with gradient-based methods，the particle
swarm optimization（PSO）has some advantages in
solving nonlinear heat conduction problems. The
stronger ability of global search prevents the identifi⁃
cation from falling into local optimum. Only a few
parameters need to be input before calculation，so
the operation is very convenient and estimation re⁃
sults are very stable. In addition，PSO algorithm

combined interpolation method can quickly solve the
nonlinear heat conduction problems without repeat⁃
ed calculation of direct problems. Therefore，to ac⁃
curately and robustly identify the boundary condi⁃
tions of a scramjet combustor with the regenerative
cooling system in Ref.［4］，this paper tries to pro⁃
pose a new stochastic algorithm，namely the im⁃
proved PSO，to avoid the determination of the sen⁃
sitivity coefficient matrix and ensure the accuracy，
efficiency and robustness of inverse identification at
the same time.

1 Principle of Traditional PSO

PSO was first proposed by Eberhart and Ken⁃
nedy［19］. The idea of PSO was derived from the pre⁃
dation behavior of birds，which generated swarm in⁃
telligence and guided the inverse identification by
consociation and competition of particles［20-21］. Re⁃
cently，as a high efficiency，excellent stability and
strong ability of global searching algorithm， the
PSO algorithm has attracted wide extension of re⁃
searchers. In the PSO algorithm，every particle in
the searching space represented a possible solution，
which adjusted the next site according to the flight
experiences of individual and group［22-23］. There are
M individual particles in D-dimensional searching
space with velocity vector V and position coordinate
X. The fitness values of individual particles are esti⁃
mated by objective function according to their posi⁃
tion coordinates. The biggest or smallest fitness val⁃
ues of individual particle and particle swarm encoun⁃
tered so far are named as local best position Pi and
global best position Pg，respectively，which are re⁃
garded as individual flying experience and group par⁃
ticle’s experience，and affect the positions of next-
generation particle swarm. The basic PSO algo⁃
rithm formula can be described as
Vi ( t+ 1) = ωVi ( t) + C 1R 1 [ P i ( )t - Xi ( )t ]+

C 2R 2 [ P g ( )t - Xi ( )t ] (1)
Xi ( t+ 1) = Xi ( t) + Vi ( t) (2)

where i denotes the ith individual particle，i =1，
2，…，N；ω the inertia weight factor；Vi（t）the ve⁃
locity of the ith particle in tth generation；Vi（t+1）
the velocity of the ith particle in generation（t+1）；
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Xi（t）the location of the ith particle at generation t；
Pi（t）the individual particle best location at genera⁃
tion t；and Pg（t）the global best location of particle
swarm at generation t. C1，C2 denote the accelera⁃
tion coefficients；and R1，R2 the random numbers
which are uniformly distributed in［0，1］.

2 Improved PSO

2. 1 Coefficients of improved PSO

For the inversion identification algorithm，its
performance is not only affected by the mechanism
of the algorithm itself，but also by the values of coef⁃
ficients. As we know，an excellent inversion identifi⁃
cation algorithm usually has powerful global explora⁃
tion at the initial stage and outstanding local explora⁃
tion at the last stage. However，the inertia weight
factor ω and acceleration coefficients C1 and C2 in
PSO method are constant，which limits the proper⁃
ty of PSO method. Some studies show that the larg⁃
er coefficients of inertia weight and acceleration C1
and the smaller coefficient of acceleration C2 can en⁃
hance the global searching ability. In contrast，the
smaller coefficients of inertia weight and accelera⁃
tion C1，as well as the larger coefficient of accelera⁃
tion C2，maintain the local searching capability of
the algorithm. Therefore，inertia weight factor and
acceleration coefficients in improved PSO method
have been redefined，which are shown as

ω= ω ini -
t
M
⋅(ω ini - ω fin ) (3)

C 1 = C 1,ini +
C 1,fin - C 1,ini

M
⋅ t (4)

C 2 = C 2,ini +
C 2,fin - C 2,ini

M
⋅ t (5)

where ω ini denotes the initial value of ω and ω fin the
final value；M is an integer representing the biggest
value of the generation. C1，ini and C1，fin denote the
initial and final value of C1，respectively；C2.ini and
and C2，fin the initial and final value of C2，respec⁃
tively.

2. 2 Iteration equation

The velocity of particles in the traditional PSO
algorithm is only affected by the individual best po⁃
sition，group best position and the speed of the pre⁃

vious generation，in which iteration strategy cannot
be adjusted in time according to the speed of con⁃
vergence and population distribution. Therefore，
the PSO method is easy to fall into the local opti⁃
mum for solving the complicated inverse problem.
To overcome this drawback of the traditional PSO
algorithm，we propose the improved PSO method
with a new evolution strategy in this paper. For the
new improved PSO method， the randomness of
the particles’evolution is increased while the fit⁃
ness of global best position remains unchanged for
a certain number of iterations and the value of parti⁃
cle diversity is very low，which enables the parti⁃
cles to escape from the region nearby the local opti⁃
mum and to search for the global optimum. The it⁃
eration equation of the（t+1）th generation can be
expressed as

Vi ( t+ 1) = ωVt+ R 1C 1 [ P i ( )t - Xi ( )t ]+
R 2C 2 [ P g ( )t - Xi ( )t ] (6)

Xi ( t+ 1) = Xi ( t) + Vi ( t+ 1)
diversity ( )t > ξ or N quit < n or R 3 > N quit α (7)
Vi,j ( t+ 1) = R 4 ( j ) [ Lmax ( j )- Lmin ( j ) ] μ (8)

Xi，j ( t+ 1) = Lmin ( j )+ R 5 ( j ) [ Lmax ( j )- Lmin ( j ) ]
diversity ( )t ≤ ξ，N quit ≥ n，R 3 ≤ N quit/α (9)

where R1，R2，R3，R4 and R5 denote random num⁃
bers uniformly distributed between 0 and 1，and ξ，
n the restrictions of diversity（t） and N quit，respec⁃
tively. Nquit is the number of the algorithm conver⁃
gence stagnation and α a parameter used to control
the probability of particle initialization.

2. 3 Particle diversity

The particle diversity is a parameter used to
evaluate the dispersion degree of particle distribu⁃
tion in the whole searching space. In the process of
identification，the particle diversity decreases slowly
with the enhancement of particle tracking ability to
the optimal position of group. Particle diversity is re⁃
lated to the ability of particles to jump out of the ar⁃
ea near optimal local location. In some cases，the
optimal position of the group is not the global opti⁃
mal solution，and particles of traditional PSO algo⁃
rithm cannot escape from the area near the local opti⁃
mal solution at the last stage，which inevitably
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causes the algorithm to fail to identify. Particles di⁃
versity is defined as
diversity ( t) =

1
N ∑i= 1

N

∑
j= 1

D

é

ë

ê
êê
ê

ù

û

ú
úú
úXt ( i,j )-

1
N ∑i= 1

N

Xt ( i,j )

Lmax ( j )- Lmin ( j )

2

(10)

where Lmax（j）and Lmin（j）denote the maximum and
minimum values of the jth dimension in the search⁃
ing space，respectively；diversity（t）denotes parti⁃
cle diversity at generation t and D the total number
of identified parameters.

3 Direct Problem： Three⁃Dimen⁃
sional Transient Nonlinear Heat
Conduction Problem

The direct problem is a three-dimensional tran⁃
sient nonlinear heat conduction problem，which is
solved by the finite element method （FEM） in
ABAQUS. Initial conditions，boundary conditions
and physical property parameters of the model are
certain，then the temperature field for inverse identi⁃
fication can be obtained. The energy equations of
the direct problem can be described as

ρ (T) c (T) ∂T ( x,y,z,t )∂T =

∂T ( x,y,x,t )
∂x

é
ë
êλ (T) ∂T ( x,y,z,t )∂x

ù
û
ú +

∂T ( x,y,z,t )
∂y

é

ë
êλ (T) ∂T ( x,y,z,t )∂y

ù

û
ú +

∂T ( x,y,z,t )
∂z

é
ë
êλ (T) ∂T ( z,y,z,t )∂z

ù
û
ú (11)

with the initial condition
T ( x,y,z,t ) | t= 0 = T ( x,y,z ) (12)

and boundary conditions

-λ (T) ∂T ( x,y,z,t )∂n |Γ1 = qΓ1 ( x,y,z,t ) (13)

q ( x,y,z,t ) |Γ2 = h (Tw - T f ) (14)

4 Inverse Problem

For the inverse heat conduction problem，tem⁃
peratures at some positions in the scramjet combus⁃
tor are known，but some important unknown param⁃
eters of boundary conditions， e. g. heat flux in
boundary，need to be inversely identified. In the pro⁃

cess of inverse identification，the possible solutions
are assessed by the minimization objective function，
which are determined by the temperatures of esti⁃
mated and measured. The objective function of the
inverse problem is described as
S ( q1,q2,…,qD )=

1
M ∑i= 1

M é

ë
ê

ù

û
ú

T *
i - Ti ( q1,q2,…,qD )

T *
i

2

(15)

Iteration stops until the generation M or the ob⁃
jective function value of global best position less
than a specified value f. The procedure for inverse
identification is described as follows，and the flow
chart is drawn in Fig.1.

Step 1 Prepare necessary data of the inverse
problem and control parameters of the algorithm：

Input the number of particles N，the maximum num⁃
ber of iteration M，number of identified parameters
D and searching space［Lmin（j），Lmax（j），j=1，2，…，

D］. Input acceleration coefficients C1，ini， C1，fin，

C2，ini，C2，fin， initial and final inertia weight factors
ωini and ωfin，restrictions ξ and n，control parameters
α and tolerance value for objective function f.

Fig.1 Flow chart of identification

819



Vol. 38Transactions of Nanjing University of Aeronautics and Astronautics

Step 2 Initialize the positions of particle
swarm in D-dimensional searching space and the ve⁃
locities of particle swarm，and turn to Step 4.

Step 3 Calculate the velocities of particle
swarm by Eq.（6） and the positions of particle
swarm in D-dimensional search space by Eq.（7）.

Step 4 Compute the values of temperatures
at measuring positions by solving the direct prob⁃
lem，then the objective function of each particle can
be obtained. Calculate the individual best position
Pi（t），global best position Pg（t），the objective func⁃
tion value obji of Pi（t）and the objective function val⁃
ue objg of Pg（t）.

Step 5 Calculate the diversity（t）of the parti⁃
cle swarm and Nquit at generation t. Generate a ran⁃
dom number R3，and compare with the criterion of
running the iteration equation： If the conditions
diversity ( )t ≤ ξ， N quit ≥ n and R 3 ≤ N quit/α are
achieved，turn to Step 6；Otherwise，turn to Step 7.

Step 6 Generate the random numbers R4 and
R5，and initialize the positions and velocities of parti⁃
cles at generation（t+1） by Eq.（8） and Eq.（9），

then turn to Step 8.
Step 7 Generate the random numbers R1 and

R2，and calculate the new position of particle accord⁃
ing to Eq.（6）and Eq.（7）. If the position is outside
of the searching space at the jth dimension，make it
to be equal to Lmin（j）or Lmax（j）. Turn to Step 8.

Step 8 Calculate the objective function value
of the new particles；Update the individual best po⁃
sition and the global best position. Check the stop
criteria：If the value of objg is smaller than the speci⁃
fied value f or the number of current iteration is
equal M，turn to Step 9；Otherwise，turn to Step 3.

Step 9 Output the computation，results and
stop the program.

5 Examples of Improved PSO Al⁃
gorithm for Solving Transient
Nonlinear Inverse Problems

In this section，a model of outer wall struc⁃
ture［4］with steel mental material is used，and it is a
part of the scramjet combustor in Ref.［4］. When
the inversion methodology in Ref.［4］ is applied to

solve the corresponding nonlinear inverse problem，

the results are unacceptable，due to the fact that the
sensitivity coefficients cannot be evaluated accurate⁃
ly. Therefore，the improved PSO algorithm is used
to solve the transient nonlinear inverse problem，in
which sensitivity coefficients are unnecessary. The
computer that was used to produce results of estima⁃
tion has an Intel Core i7-4900 3.60 GHz CPU，

16.0 GB of memory.
In the physical model，the bottom surface is a

wall of the combustor，and 14 regenerative cooling
channels are designed inside. But only one of them
is considered in this work because the heat transfer
mechanism in each one is the same. The length，
width and height of selected structure are 0.2，0.005
and 0.019 m，respectively. The diameter of the chan⁃
nel is 0.001 5 m，and the density is 8 240 kg/m3.

In order to investigate the property of improved
PSO to solve the transient nonlinear heat conduc⁃
tion problem in complex structures，some physical
property parameters，such as conductivity and spe⁃
cific heat of the selected structure，are not constant
and change nonlinearly with temperature. The
curves of temperature-dependent conductivity and
specific heat are shown in Fig.2.

The initial temperature in the example is 1 200 K.
The convective heat transfer boundary condition is
imposed on the inner channel，and the temperature
of the coolant is 300 K，which is a constant. Heat
flux on the bottom surface is known. On the left，
right，front，back and upper surfaces，the heat flux
is zero. Boundary conditions of the selected struc⁃
ture are shown in Fig.3［4］.

Fig.2 Temperature-dependent thermal properties
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The unstructured grids are used in the FEM
model for ABAQUS， which contains 23 188
nodes and 109 992 elements. The temperature field
of the three-dimensional transient nonlinear heat
conduction problem is shown in Fig. 4. It can be
seen that temperature in the region near the middle
of bottom surface increases with the increase of
time，even the convective heat transfer has been
imposed on the inner channel to cool the selected
structure. This is because the heat fluxes on the
bottom surface are so high that coolant in the chan⁃
nel cannot fully absorb the heat. In addition，the
conductivity of the nonlinear problem increases
with the increase of temperature，which accelerates
the heat transfer rate in the selected structure and
makes the temperature distribution in Fig. 4 more

uniform， that is， the temperature difference be⁃
tween different positions in Fig.4 is smaller than
that in Ref.［4］.

Solutions to the direct problem will provide
temperature information for the inverse identifica⁃
tion of the boundary conditions.

5. 1 Impact of measuring points’position

In the direct problem，each ABAQUS calcula⁃
tion needs about 3 min. Therefore，it is time-con⁃
suming to use the improved PSO algorithm to iden⁃
tify boundary conditions in the scramjet combustor
with a regenerative cooling system，which needs
multiple times to call ABAQUS. Long identifica⁃
tion time is unfavorable to practice application. To
overcome this deficiency，the database is used in
this paper. We divide each dimension of searching
space into Q equal parts，and the temperature mea⁃
surements with each P（i， j， k）（i， j， k=1，
2，… ，Q+1） are obtained by solving the direct
problem. All the temperature measurements are
stored in the database. During the estimation using
the improved PSO algorithm，there is no need to
call ABAQUS to solve the direct problem. In⁃
stead， temperature measurements are obtained
from the database by interpolation. Using the data⁃
base in inverse analysis instead of calling
ABAQUS can be reused in inversion processes.
This methodology can significantly reduce the in⁃
version time and improve the efficiency，which is
favorable for practical applications，especially in re⁃
al-time occasions.

By solving the inverse transient nonlinear
heat conduction problem in a complex configura⁃
tion， the capability of the improved PSO algo⁃
rithm will be demonstrated in this part. Boundary
conditions at three points，on the bottom surface
of the model，are selected to be identified. The
exact values of the identified heat fluxes are 460，
480， and 500 kW/m2， respectively. To examine
the accuracy and efficiency of the improved PSO
algorithm，measuring temperatures at six points
are numbered 1，2，3，4，5，and 6，and all the
results summarized in the following part are aver⁃
ages of the best five estimation selected from sev⁃

Fig.3 Boundary conditions

Fig.4 Nonlinear transient temperature fields of the selected
structure
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eral calculations for clear conclusions. Tempera⁃
tures of selected points are measured every 10 s
until 200 s. Some parameters of the improved
PSO algorithm are defined：D=3，C1，ini=C2，fin=
2.5， C1，fin=C2，ini=0.5， ω max=0.9， ω min=0.4，
ξ=20，n=10，α =100. It is necessary to point
out that the values of the coefficients are based on
results of multiple calculation，which can guaran⁃
tee that the results are stable and accurate. Also，
comparing with other kinds of interpolation func⁃
tions， the cubic spline interpolation usually has
high accuracy of results，so it is used in the in⁃
verse identification.

Generally speaking， the performances of the
improved PSO algorithm are not only related to the
algorithm itself，but also related to specific inverse
problems，such as the number of measuring points，
the position of measuring points，the number of par⁃

ticles，the measuring errors and so on.
To analyze the impact of positions of measur⁃

ing points and numbers of measuring points on esti⁃
mation，measuring points are divided into three
groups：Group 1 contains points 1—3，group 2
contains points 4—6，and group 3 contains all the
six points. Estimation results of the improved PSO
algorithm with noiseless measurements are depicted
in Tables 1—3，and the corresponding objective
function value curves with different number of parti⁃
cles are shown in Fig.5. The program stops run⁃
ning if the iteration number reaches 50. The“Er⁃
ror”stands for the absolute error，which is an abso⁃
lute value of the difference between the exact and
identified value of heat fluxes，and the relative er⁃
ror is the ratio of absolute error to the exact value
times 100%.”It is observed that all the relative er⁃
rors of identified heat fluxes are smaller than

Table 1 Estimation results of the improved PSO with different particles number in group 1

The number of
particle

100

1 000

10 000

Error(Erel/%)
1st

0.000 7
(0.002)
0.000 0
(0.000 0)
0.000 0
(0.000 0)

2nd
2.700 9
(0.56)
0.222 2
(0.046 3)
0.034 2
(0.007 1)

3rd
0.000 0
(0.000 0)
0.000 0
(0.000 0)
0.000 0
(0.000 0)

Computation time/s

1.251 0

1.361 8

2.810 4

Best fitness

2.235 2×10-8

2.702 9×10-9

7.514 1×10-10

Table 2 Estimation results of the improved PSO with different particles number in group 2

The number of
particle

100

1 000

10 000

Error(Erel/%)
1st

0.000 0
(0.000 0)
0.000 0
(0.000 0)
0.000 0
(0.000 0)

2nd
0.000 0
(0.000 0)
0.000 0
(0.000 0)
0.000 0
(0.000 0)

3rd
0.000 0
(0.000 0)
0.000 0
(0.000 0)
0.000 0
(0.000 0)

Computation time /s

1.178 6

1.368 6

2.899 6

Best fitness

2.021 2×10-8

1.668 2×10-9

5.810 9×10-11

Table 3 Estimation results of the improved PSO with different particles number in group 3

The number of
particle

100

1 000

10 000

Error(Erel/%)
1st

0.000 0
(0.000 0)
0.000 0
(0.000 0)
0.000 0
(0.000 0)

2nd
0.000 0
(0.000 0)
0.000 0
(0.000 0)
0.000 0
(0.000 0)

3rd
0.000 0
(0.000 0)
0.000 0
(0.000 0)
0.000 0
(0.000 0)

Computation time /s

2.336 4

2.648 2

5.449 4

Best fitness

2.365 8×10-8

1.666 8×10-9

8.912 4×10-11
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0.56%. Comparing the estimation of group 1 and
group 2 can find that the results of group 1 obvious⁃
ly have bigger relative errors than group 2. This is
because the position of point 2 in group 1 is on the
right side of the upper surface，and temperature in
that position only varies slightly with different
boundary conditions on the bottom surface during
the cooling process，so the inverse identification be⁃
comes more difficult. It is indicated that the accura⁃
cy of results can be affected by the positions of mea⁃
suring points. Therefore，in order to improve the
accuracy of the inversion， the measuring points
whose temperatures change obviously with the
boundary conditions should be selected.

5. 2 Effects of measuring points’number

In addition to the position of measuring points，
the influence of measuring points’number should
be also analyzed. Results using measuring points in
group 1 have been introduced before，and their accu⁃
racy is the worst among the results of the three
groups of measuring points. Compared with group
1，group 3 has three more measuring points 4—6.
Estimation results for group 3 are shown in Table 3.
It is found that all the best fitness is less than 1.5×
10-8 in group 3. However，the relative errors are ze⁃
ro when the particle numbers are 100，1 000 and
10 000，which reveals the results in group 3 are
very accurate. In addition， it indicates that more
measuring points can improve the accuracy of esti⁃
mation.

5. 3 Estimation of PSO method

In order to examine the performances of the im ⁃
proved PSO method for solving the inverse nonlin⁃
ear transient heat conduct problem in a complex
structure，the PSO method is also used to retrieve
the identified parameters with measuring points of
group 1，and the particle numbers are 100，1 000
and 10 000，respectively. The program stops run⁃
ning when the iteration number equals 50. Fig.6
shows the objective function value curves with three
different number of particles. It is observed that the
results of the first and the third parameters with dif⁃
ferent particle number are accurate in Table 4，
whereas the relative errors of the second parameter
are unsatisfied. Comparing the results of the PSO
method with the improved PSO method，it is easy

Fig.5 Objective function value curves with different num⁃
ber of particles

Fig.6 Objective function value curves with different num⁃
ber of particles
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to see that relative errors of the second parameter of
the PSO method are many times as much as that of
the improved method. Hence，for inverse identifica⁃
tion the boundary conditions in scramjet combustor，
the improved PSO method shows higher accuracy
than the PSO method. Also，the time shown in Ta⁃
ble 1 and Table 4 is CPU time，which is used to
compare the efficiency of the PSO method and the
improved PSO method. The results show that both
of the two methods with the same particle number
take about the same time.

5. 4 Efficiency and accuracy of the improved
PSO method

In this section，the program stops running until
the iteration number reaches 100 or the best fitness
is less than 1×10-6. Measuring points of group 1
are used in this analysis. In Table 5，it can be seen
that the convergence speed for 20 000 particles is
the most fast and only three iterations are needed，
while 23 iterations are needed when the particle
number is 5 000. It is observed that the iterations de⁃
crease with the increase of particle number，which
is as expected. Also，results of three selected repre⁃
sentative estimations with three different numbers of
particles are chosen as observations， which are
shown in Figs.7—8 and Table 5. From Fig.8，it is
obvious that the objective function value of the im ⁃
proved PSO with 20 000 particles rapidly decreases.
While the methods with 10 000 particles and 5 000
particles experience a period of stability in process
of estimation，which cause the convergence speed
slowly. So it inevitably needs more time for identifi⁃
cation. Convergence curves of three heat fluxes with
different particle numbers are shown in Fig.7. It can
be concluded that an increasing in particle number

can speed up the estimation. Computation time
shown in Table 5 is only about 1 s. In addition，all
the relative errors shown in Table 6 are less than
0.5%. It indicates that the improved PSO method

Table 4 Estimated results of PSO with different particles number

The number of
particle

100

1 000

10 000

Error(Erel/%)
1st

0.001 6
(0.000 4)
0.000 8
(0.000 2)
0.000 4
(0.000 1)

2nd
6.248 9
(1.301 9)
3.304 3
(0.688 4)
1.483 5
(0.309 1)

3rd
0.000 0
(0.000 0)
0.000 0
(0.000 0)
0.000 0
(0.000 0)

Computation time/s

1.190 2

1.340 0

2.850 4

Best fitness

3.825 5×10-8

2.740 3×10-8

1.519 6×10-8

Fig.7 Convergence curves of three heat flux with different
numbers of particles
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can predict the boundary conditions of nonlinear
transient heat conduction problems in a complex
structure efficiently and accurately.

5. 5 Effects of measuring errors

In above analysis，the performances of the im⁃
proved PSO method to estimate the inverse nonlin⁃
ear heat conduction problem with noiseless tempera⁃
ture measurement are examined. However，noise⁃
less data is unavailable in practice. Hence，it is nec⁃
essary to investigate the property of the improved
PSO method with certain measuring errors. A ran⁃
dom error term is added to measuring temperature
to simulate the measuring error，which is described
as

T ( x,y,z,t )= T ( x,y,z,t ) |exact ( 1+ ζη/2.576 ) (16)
where ζ is a random number follow normally distrib⁃
uted with zero mean；η is a certain number used to
control the range of measurement error，here η are
set as 1%，3% and 5%.

The ratio of the noise to the exact solution
（NSR） of measuring temperature is depicted as
Eq.（17）. The NSR distributions with the measuring
errors of 1%，3% and 5% are shown in Fig. 9，
which are turbulent.

NSR= ζη/2.576 (17)
To assess the results of inverse identification，

relative error is used in this work. The definition of
relative error is described as

E rel =
|| q ( x,y,z,t ) |identified - q ( x,y,z,t ) |exact

q ( x,y,z,t ) |exact
× 100%

(18)

Measuring errors of 1%，3% and 5% are used
to examine the performance of the improved PSO
method. The particle number is 25，and measuring
points are No. 1，No. 2 and No. 6. The program of
the algorithm will stop running until iteration reach⁃
es 25. Fig.10 shows the convergence curves of three
heat flux with different measuring errors. Fig.11
shows the convergence curves with different measur⁃

Fig.9 NSR distributions with different measuring errors

Fig.8 Objective function value curves with different num⁃
bers of particles

Table 5 Inversion time with different particle numbers

The number
of particle
5 000
10 000
20 000

Iteration times

23
14
3

Computation time/s

1.059 0
0.953 0
0.816 0

Table 6 Estimated results of the improved PSO method
with different particles numbers

The num⁃
ber of
particle

5 000

10 000

20 000

Error(Erel/%)

1st

0.023 6
(0.005 1)

0.030 6
(0.006 7)

0.018 0
(0.003 9)

2nd

0.948 6
(0.197 6)

2.353 9
(0.490 4)

1.017 3
(0.211 9)

3rd

0.001 0
(0.000 2)

0.001 1
(0.000 2)

0.000 5
(0.000 1)

Best
fitness

6.957 6×
10-7

8.935 3×
10-7

5.601 6×
10-7
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ing errors of temperature，and results and corre⁃
sponding relative errors of identification are listed in
Table 7. It is observed that all the relative errors of
identified parameters are smaller than 1%，even the
biggest measuring error is 5%. In addition，relative
errors of identification are smaller than measuring er⁃
rors. It is validated that the improved PSO method
has ability to overcome the inevitable measuring er⁃
rors for identifying the boundary conditions in scram⁃
jet combustor with a regenerative cooling system ac⁃
curately.

6 Conclusions

An improved PSO is proposed and used to
solve three-dimensional transient nonlinear inverse
heat conduction problems with complex structures，
then the boundary conditions in the scramjet com⁃
bustor with a regenerative cooling system are identi⁃
fied. By analyzing the performances of the improved
PSO method，several conclusions can be obtained
as follows：

（1）Comparing with the traditional PSO meth⁃
od，the improved PSO method can solve the tran⁃
sient nonlinear inverse heat conduct problem more
accurately with the same efficiency.

（2）The methodology of obtaining temperature
measurements by using database can obviously re⁃
duce the estimation time，i.e.，improve the efficien⁃
cy.

（3） The improved PSO method can identify
the boundary conditions in the scramjet combustor
accurately and efficiently， for different measuring
points and positions，which effectively solves the
problem encountered by using the method in

Fig.11 Objective function values with different random
temperature measuring errors

Table 7 Estimated results of improved PSO with differ⁃
ent measuring errors

Measuring error
ζ/%

1.0

3.0

5.0

Error(Erel/%)
1st

0.405 4
(0.088 1)
1.564 8
(0.340 2)
1.004 1
(0.218 0)

2nd
0.778 4
(0.162 2)
1.359 4
(0.283 2)
4.016 1
(0.836 7)

3rd
1.089 7
(0.217 9)
2.133 3
(0.426 7)
4.909 7
(0.981 8)

Fig.10 Convergence curves of three identified parameters
with different measuring errors
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Ref.［4］.
（4）The improved PSO method can predict the

boundary conditions in the scramjet combustor accu⁃
rately，even in the case of containing certain measur⁃
ing errors.

In general， it is verified the improved PSO
method can solve the transient nonlinear inverse
heat conduction problems in complex structures
with good performances.
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改进粒子群算法求解具有复杂结构的瞬态非线性热传导反问题

周 凌，张春云，白宇帅，刘 焜，崔 苗
（大连理工大学工业装备结构分析国家重点实验室，辽宁省航天飞行器先进技术重点实验室，大连 116024，中国）

摘要：精确求解具有复杂结构的瞬态热传导反问题对于为耦合传热问题建模和结构优化设计提供关键参数具有

重要意义。本文采用ABAQUS软件中的有限元法计算瞬态非线性热传导正问题，提出的改进粒子群算法（Par⁃
ticle swarm optimization，PSO）用于求解瞬态非线性热传导反问题；以具有再生冷却系统的超燃冲压发动机燃烧

室不可接触表面的边界条件作为反向辨识参数，文中给出了一些数值测试用于检验该算法的性能。结果表明，

新方法可以精确且有效地反向辨识具有可再生冷却系统的超燃冲压发动机燃烧室边界条件。通过求解瞬态非

线性反问题，验证了改进例子群算法对求解具有复杂结构的瞬态非线性热传导反问题的有效性。

关键词：改进粒子群算法；瞬态非线性热传导问题；反向辨识；有限单元法；复杂结构
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