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Abstract: A data-driven method for arrival pattern recognition and prediction is proposed to provide air traffic
controllers (ATCOs) with decision support. For arrival pattern recognition, a clustering-based method is proposed to
cluster arrival patterns by control intentions. For arrival pattern prediction, two predictors are trained to estimate the
most possible command issued by the ATCOs in a particular traffic situation. Training the arrival pattern predictor
could be regarded as building an ATCOs simulator. The simulator can assign an appropriate arrival pattern for each
arrival aircraft, just like real ATCOs do. Therefore, the simulator is considered to be able to provide effective advice
for part of the work of ATCOs. Finally, a case study is carried out and demonstrates that the convolutional neural
network (CNN )-based predictor performs better than the radom forest (RF)-based one.
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0 Introduction

Rapid growth of air traffic and limited space-
time resources have led to traffic congestion in termi-
nal control areas (TMAs) , resulting in flight de-
lays, energy waste, and air pollution. Improving
runway utilization and scheduling arrival aircraft will
mitigate these problems. Arrival management
(AMAN)'" is one particular tool in this field and
has been widely used around the world.

AMAN could allocate the runway for arrival
aircraft'”’, as well as schedule the arrival aircraft ac-
cording to the optimization objectives and operation-
al constraints™*'. Recent studies on AMAN focus
on model construction and algorithm design. For op-
timization objectives, Rosenthal et al. aimed to min-
imize the total cost” , i.e., the sum of delay cost.
Takeichi minimized the operational cost that was de-
fined as the linear sum of the fuel cost and time

cost'™. Ji et al. optimized the scheduled time of the
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last aircraft'”. Mokhtarimousavi et al. evaluated
ground staffs’ workload'®. Zhao et al. chose the av-
erage schedule time, the maximum flow time, and
the maximum delay time as multiple objectives'.
For solution algorithms, Vadlamani et al. applied
CPLEX to solve small-scale AMAN problems'" ;
Lieder et al. implemented dynamic programming to
solve large-scale AMAN problems""" ; and Solvel-
ing et al. deployed branch and bound to solve large-
scale AMAN problem'*?’.

In previous studies, AMAN only outputs the
optimal landing runway and the scheduled time of ar-
rival (STA). These cannot provide air traffic con-
trollers (ATCOs) with advices on how to arrange
arrival aircraft to achieve such STAs. In other
words, they failed to notice the feasibility of optimal
arrival scheduling, and ATCOs had to spend extra
time finding out potential tactical commands to
maintain the landing sequence and guarantee safe

separation for arrival aircraft. The point merge sys-
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tem (PMS), initialized by Eurocontrol, could help
ATCOs to meet the requirements of AMAN out-

[13-14]

puts However, implementing PMS needs a

large area of airspace, which will further worsen the
lack of airspace resources in China'"’.

To address such issues, this paper aims to de-
velop a decision support tool for arrival pattern as-
signment. Inspired by multi-step prediction'"'",
this paper provides a data-driven method for arrival
pattern recognition and prediction. The arrival pat-
terns are those commonly used by the arrival aircraft
in horizontal trajectories, which could reflect the
clearance delivered by the ATCOs. Recognizing the
arrival pattern could be viewed as identifying the
control instruction (clearance delivered by the AT-
COs). To predict the arrival pattern could be
viewed as an estimate of the control intention,

which means the most possible clearance will be de-

livered by the ATCOs in a particular traffic situa-
tion. Therefore, exploring the relationship between
the arrival pattern and air traffic situation is the main
task of this study.

The rest of this paper is organized as follows.
The whole scheme for arrival pattern recognition
and prediction is described in section 1. Section 2
provides a clustering-based arrival pattern recogni-
tion method. Two classification-based arrival pat-
tern prediction methods are proposed in section 3.
The results and discussion are illustrated in section

4, followed by concluding remarks in section 5.

1 Overview

The process of building the decision support
model for ATCOs in TMA is shown in Fig.1. This
framework includes data preprocessing, arrival pat-

tern recognition, and arrival pattern prediction.

\\

Arrival pattern recognition
. . ¢~ Arrival pattern prediction
Data preprocessing Trajectory d1.v151on based on P p
entry point (known)
Data filtering
s elsaiiig v +—&| Group 1 Group n
. 4D . T i—i | Trajectory division based on
trajectories landing runway (known) Traini
Remove outlier T raining
trajectories
Trajectory division based on . .
.................................. S laLdm;ymode (unknown) |1 T Classifier 1| **+ | Classifier n
| = ~/

Fig.1 Tllustration of building decision suggestion models

After the four-dimensional (4D) trajectories
are decoded from the raw radar data, data prepro-
cessing is applied to clean the data. Trajectories that
neither pass the boundary nor land on runways are
removed from the dataset since they are incom-
plete; and trajectory segments outside of the bound-
ary are also filtered out.

After cleaning data and removing outliers from
the raw data, arrival pattern recognition is applied to
identify the arrival patterns step by step. Trajecto-
ries are divided into different groups according to en-
try fixes, landing runways, and landing modes. For
the entry fix, once the aircraft enters the termirial ar-
ea(TMA), we can capture its position, so the air-
cralt’ s entry fix is known. For the landing runway,

since the runway selection is affected by its entry fix

and its stands assignment, and this is out of the
scope of this paper, we assume that the landing run-
way is known. For the landing mode, aircraft fly dif-
ferently in the TMA for different traffic situations.
Therefore, the landing mode is unknown and needs
to be recognized. In this work, we apply the trajecto-
ry clustering method to recognize the landing modes.

The task of arrival pattern prediction is to pre-
dict the landing mode that the aircraft is likely to
adopt according to the traffic situation. Firstly, we
divide trajectories into different groups according to
their entry fixes and landing runways. Secondly, we
build a classification model for each group to predict
the aircraft’s landing mode. When conducting the ar-
rival pattern prediction for a new arrival aircraft, we

choose the corresponding classification model ac-
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cording to the entry fix and the landing runway.

2 Arrival Pattern Recognition

As an unsupervised method, trajectory cluster-

181 can group trajectories so that the trajectories

ing
in the same group share similar flight intentions. To
cluster trajectories efficiently, a new clustering
method is proposed that consists of a new form of
trajectory representation and a step-by-step cluster-
ing framework.

For the new form of trajectory representation, a
control-intention-oriented format is introduced to rep-
resent the trajectories. This format focuses on the
heading of the aircraft rather than their geometric po-
sitions since ATCOs rely on radar vectoring for re-
solving conflicts and establishing the landing se-
quence.

The step-by-step clustering framework is intro-
duced in this paper for not only mitigating informa-
tion loss in the process of one-time similarity mea-
surement but also reducing the calculation complexi-
ty of similarity measurement, thus the speed of clus-

tering could be greatly improved.
2.1 Trajectory representation

Radar data used in this paper includes the re-
corded timestamp, and the aircraft position. Sup-
pose there is a set of radar trajectories R, where
R={riry

sists of a series of points: r,=(p}, ps, *

,Tiy oty 7wy Each trajectory r, con-
D)
where L (i) represents the number of points of the
trajectory r,. Each record of trajectory r, contains the
time stamp ¢, heading y, latitude L,, longitude L,,
and altitude A.

Heading and flight distance can represent con-
trol intention directly since ATCOs rely on radar
vectoring for resolving conflicts and establishing the
landing sequence. Therefore, this paper denotes tra-
jectories by adjusted headings and distance-to-go
(DTG) to capture more details about control inten-
tion'"’.

The way of representing trajectories by adjust-
ed headings and DTG 1is described as follows.

Step 1 Find the difference in the heading be-

tween two consecutive points.

Ayj =y =y j=1,-, L)—1 (1)
where j is the particular point of trajectory r, and
L(7)the number of points of the trajectory r,.

Step 2 Modify Ay according to the left- or

right-turning

Ay —360° Ay > 180°
Ay)'= Ay +360° Ay, << —180°  (2)
Ay Others

where Ay/'is the modified value of Ay;.
Step 3 Calculate the adjusted heading
0=y, J=L(1) )
;=06 + Ay} j=L(i)—1,--,2,1
Then, the trajectory is represented by a series
of adjusted headings: ¢,=(01, 01, ---, 0;,), where
01 is the initial adjusted heading of trajectory r; and

0}, the final adjusted heading (landing direction).
2.2 Step-by-step clustering framework

In this subsection, details of how to recognize
arrival patterns are illustrated step by step.

Step 1 Eliminate trajectories with holding pat-
terns. As shown in Fig.2, AC#4 has a holding pat-

tern, and its adjusted heading has a continuous
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Fig.2 Trajectory clustering diagram
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change when its DTG between 130 and 160 km.
Therefore, AC#4 is separated from other aircraft.

Step 2 Divide trajectories into groups accord-
ing to their entry fixes. As shown in Fig.2(a) , ac-
cording to the aircraft’s entry fix, AC#5 can be sep-
arated from other aircraft.

Step 3 Divide trajectories into groups accord-
ing to their landing runways.

After the above steps, only AC#1 and AC#2
are in the same group since both of them have the
same entry fix and landing runway. Then, the initial
adjusted heading (4]) of AC#1 and AC#2 can be
used to distinguish AC#1 and ACH2 conveniently
since they are different.

Further clustering can be conducted if neces-
sary. For trajectories with the same entry fix, land-
ing runway, and landing mode, the K-means algo-
rithm can be used to cluster those trajectories direct-
ly. K-means assigns trajectories to exactly one of £
clusters defined by centroids, where £ is a pre-
defined parameter. Further, squared Euclidean dis-
tance is adopted to measure the similarity between
trajectories in this paper. However, such a measure
requires that the number of trajectory points should
be equal. Thereupon, it is necessary to resample the

points of each trajectory by interpolation.

3 Arrival Pattern Prediction

Two different classification methods are adopt-
ed to predict the most likely command issued by the
ATCOs in a particular traffic situation. The first one

®1 which requires

is based on random forest (RF)'
efficient feature engineering to extract features from
data. The second one is based on convolutional neu-
ral network (CNN) ™" | which could learn features

from data automatically.
3.1 RF-based arrival pattern classification

Ensemble learning methods, such as RF,
could achieve a better performance than other meth-
ods, both in Kaggle competitions and academic re-
search. RF builds multiple decision trees and merg-
es them to get a more accurate and stable predic-
tion. Table 1 shows the feature set and the corre-

sponding description for RF. The features, used in

22-23]

previous studies' ®*"', are also included in this fea-
ture set.

The sine value and cosine value of the heading
(#Feal and #Fea2) are used to replace the aircraft’s
heading. #Fea3 and #Fead are used to reflect the
control intentions of ATCOs. Since the change of al-
titude and speed are the most common tactical com-
mands. #Feab and #Fea6 are used to represent the
position information of the aircraft. #Fea7 and
£Fea8 are used to capture periodic information of
TMA. The values of #Fea7 and #Fea8 range from
0 to 1. For example, while the arrival time of the
aircraft is 8:30, #Fea7 = 0.354 (8.5X 3600/
86 400 ~ 0.354).

Table 1 Features for arrival pattern classification

Symbol Description
#Feal Sine value of heading
#Fea2 Cosine value of heading
#Fea3 Altitude

ZFead Ground speed
#Feab Longitude of the aircraft
#Feab Latitude of the aircraft
#Fea? The moment of entering
#Feca8 Weekly periodicity

3.2 CNN-based arrival pattern classification

3.2.1 Air traffic situation image construction

One of the contributions of this study is to ex-
tract features about the air traffic situation from imag-
es to predict arrival patterns. To this end, we con-
struct the images to reflect the air traffic situations.
The traffic situation image is composed of three chan-
nels, each channel is an image of 28X 28 pixels, as
shownin Fig.3.

Fig.3(a) presents the historical information lay-
er, which records trajectories of all the arrival air-
craft that land on the runway in the past 30 min.
From the historical information layer, we can find
the ATCOs’ working habits and the current landing
direction. The process is as follows: First, the
TMA is converted into an image of 28X 28 pixels;
second, for each pixel in this image, if there is no
landing aircraft that has passed this pixel in the past
30 min, the value of this pixel is set to 0, other-

wise, set to 1.
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(a) Historical information layer (b) Current information layer

"
- -

(¢) Dynamic information layer (d) Airspace situation picture
Fig.3

Traffic situation image

Fig.3(b) presents the current information layer
with records of current positions of all the arrival air-
craft within the TMA. From the current information
layer, we can find the relative position of each air-
craft. The process is as follows: First, the TMA is
converted into an image of 28X 28 pixels; second,
for each pixel in this image, if there is no arrival air-
craft, the value of this pixel is set to O, otherwise,

set to a number greater than O (when the aircraft

reaches higher altitude, the value is closer to 1).
Since each pixel i1s a square with 7.14 km of each
side. Therefore, two aircraft are unlikely to appear
in the same pixel.

Fig.3(c) presents the dynamic information lay-
er, which records the movement information of all
the arrival aircraft within the TMA. From the dy-
namic information layer, we can find aircraft’s
movements in the past period. The specific process
is as follows: Firstly, the TMA is coverted into an
image of 28X 28 pixels; secondly, for each pixel in
this image, if there is no arrival aircraft that has
passed this pixel in the past 5 min, the value of this
pixel is set to O, otherwise, set to 1.

So far, we have defined three layers with differ-
ent information, then we combine them into a color
image, as shown in Fig.3(d). The red, the green,
and the blue layers denote the historical information
layer, the current information layer, and the dynam-
ic information layer, respectively.

3.2.2 CNN configuration

CNN is used to extract features from a traffic
situation image.

The CNN configuration proposed in this paper
is simple, in order to improve the speed of training
and prediction and reduce the risk of overfitting. Ta-

ble 2 lists the CNN configuration used in this paper.

Table 2 Network configuration of CNN

Name Input Operation Kernel Output
Imageinput — Image Input — 28X 28X 3
Size : 3X3X3
Number : 32
Conv 28X 28X3 Convolution 26X 26X 32
e:[11]
Padding : [0 0 0 0]
Size : 2X2
. Number : 1
Maxpool 26X 26X 32 Max pooling 13X13X 32
e:[22]
Padding : [0 0 0 0]
Fe 13X13X32 Fully connected — 1 X1 X LabelNum
Softmax 1X1X2 Softmax — 1X1XLabelNum
Classoutput 1X1X2 Classification output — 1X1X1

3.3 Performance indicators

If there are only two arrival patterns in a group

of trajectories, the problem of arrival pattern predic-

tion could be regarded as a binary classification prob-
lem. Precision, recall, and accuracy are used to

measure the performance of the binary classifier.
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TP

Precision = TP LFP (4)
TP
Recall= m (5)
TP+ TN

(6)

A —
ey = TP FP+ TN + FN

where true-positive (TP) is the number of positive
arrival patterns correctly predicted; false-positive
(FP) the number of positive arrival patterns incor-
rectly predicted; true-negative (TN) the number of
negative arrival patterns correctly predicted, and
false-negative (FN) the number of negative arrival
patterns incorrectly predicted.

If there are more than two arrival patterns in a
group of trajectories, the problem of arrival pattern
prediction could be viewed as a multi-classification
problem. Purity and rand index (RI) are used to

measure the performance of the multi-classifier.
. . 1
Purity (2, C) :ZZ‘ w[ﬂc,’ (7)

NSS + NI)I)

RI=
Nss + Nsp 1 Nps + Npp

(8)

where 2 is the classification results 2= {w,vli:
1, 2, ---,K}; w,; the ith class in the classification re-
sults; C the actual class C= {ch: 1,2, ---, L}; ¢
the jth label in the actual class; m the number of da-
ta; Nss the number of pairs of arrival patterns in the
same class in C and the same cluster in 2; Ngp the
number of pairs of arrival patterns in the same class
in C but not in the same cluster in 2; Nps the num-
ber of pairs of arrival patterns in the same cluster in
0 but not in the same class in C; and Npp the num-
ber of pairs of arrival patterns in the different class in

C and the different cluster in 2.

4 Case Study

In this section, we first introduce the dataset
and the procedure of data preprocessing. Then, we
offer two arrival pattern recognition cases. The num-
ber of arrival patterns of those two cases are two
(ATAGA-RWYO01) and three (GYA-RWY19).
Finally, we present the results of arrival pattern pre-
diction. The two cases, ATAGA-RWYOl and
GYA-RWY19, are used to verify the proposed clas-

sification method in both binary and multivariate

classification problems.
4.1 Data preparation

The radar data used in this paper is from
Guangzhou Baiyun International Airport (ZGGG) ,
where there are three parallel runways 01/19, 02L/
20R, 02R/20L, and six entry fixes ATAGA, 1GO-
NO, P270, IDUMA, GYA, P71. Fig.4 presents
the heatmap of radar tracks with a two-month opera-
tion (November and December in 2019). In Fig.4,
the research scope is defined as a green circle with
the airport reference point as the center and the radi-
us of 100 km. Most of the terminal areas are sur-

rounded by the scope defined in this paper.

Latitude / (%)

[~ muMA

1125 1130 1135 1140
Longitude / (°)

Fig.4 Heatmap image of radar tracks and entry fixes

The pseudo-code of preprocessing is described
as follows.

[ ValidTra] = Preprocessing( RadarData)

ValidTra = [ ]

for iy, in RadarData.ArrFlight:

igign 2ip () FEliminate invalidate or redundancy
points

paw = greatcircledistance (7g,, AirportRef-
Point)

Lo = (paw =100 km).index.head(1)

ing-remove( /0 :end) # Confirm start point

infnl = isincuboid 7gy,.index.tail(1)

ingn-remove( 1:infinal) #Confirm end point

if ~(empty(/iq00)|empty(infnl) ) :

ValidTra.append( igg,)

For each flight, we eliminated the invalidate or
redundancy points. Then, we found the last point
whose distance from airport reference point (ARP)

was larger than 100 km and removed all the points
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before that point. The above step ensured that all
the following points were within the research scope.
Next, we found the first point passed through the
predefined cuboids and removed all the points after
that point. The cuboids were predefined to deter-
mine whether the aircraft had joined the final. Final-
ly, if a trajectory had both the start and the end-
point, it was a valid trajectory.

After data preprocessing, there are 38 771 ar-

rival flights from the original raw data.
4.2 Results of arrival pattern recognition

A step-by-step recognition method was adopt-
ed to recognize arrival patterns from the cleaned da-
ta.

Firstly, we divided trajectories into different
groups according to their entry fixes. For example,
Fig.5 presents the trajectories’ entry from ATA-
GA, where the northbound trajectories are denoted
by red while the southbound by blue.

2421 __ Northbound
—— Southbound
240+

[

@

o0
T

2361

Latitude / (%)

2341

23.2¢

23.0F

22.8¢ . .
112.5 113.0 113.5 114.0
Longitude / (°)

Fig.5 Trajectories entry from ATAGA

Secondly, for each group of trajectories with
the same entry fix, we divided them into different
groups based on the landing runways. Fig.6 displays
the trajectories entered from ATAGA and landed
on RWYO1, where the right-turning trajectories are
denoted by red while the left-turning by blue. How-
ever, these two kinds of trajectories, which reflect
different control intentions, are difficult to separate,
since a large part of them overlap. That is why the
following step is needed.

Thirdly, for each group of trajectories with the

same entry fix and the same landing runway, we di-

24.2 1 —Right turning track /p\ /
—Left turning track_~ff |
2401 j
~ 238}
< 23.61
£
8 234t
232
23.0F
112.5 113.0 113.5 114.0
Longitude / (°)

Fig.6 Trajectories via ATAGA to RWYO01 (2D- tracks)

vided them into different groups according to their
landing modes. To this end, we denoted trajectories
by their DTG and adjusted heading. Then, the tra-
jectories with different turning directions can be di-
vided easily. As shown in Fig.7, trajectories with
different landing modes are significantly different ac-

cording to the new representation.

o

5=

3 ——Right turning track

g —Left turning track

2

=

)

<

0 50 100 150 200 250
DTG / km
Fig.7 Trajectories via ATAGA to RWYO1 (new represen-
tation)

Further clustering can be done if necessary. As

shown in Fig.8, although we got trajectories with

eLor ——Cluster 1
— Cluster 2
23.8¢
E 23,61
=]
£
T 2341
-
232}
no ¥
112.2112.4112.6 112.8 113.0 113.2 113.4 113.6

Longitude / (°)
Fig.8 Clustering results of arrival trajectories via GYA to
RWY19 (Right turning)
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the same entry fix, the same landing runway, and
the same slanding mode, there were two different
control intentions. To divide these trajectories into
two groups, Euclidean distance was adopted to mea-
sure the similarity between trajectories, and K-
means was used to assign these trajectories to exact-
ly one of two clusters defined by centroids.

Fig.9 presents the final clustering results of the
trajectories entered from GYA and landed on
RWY19. Compared with trajectories in Fig. 6 that
entered from ATAGA and landed on RWYO01,
there are three different landing modes in the trajec-
tories in Fig.8. This means the clearance delivered
by the ATCOs for these trajectories can be more di-

verse than that for trajectories in Fig.6.

24.0— Cluster 1
— Cluster 2
-------- Left turning track
23.8+
= 236}
QO
kS|
£
= 234
|
232}
230 & . . ; .
112.4 112.6 112.8 113.0 113.2 113.4 113.6
Longitude / (°)

Fig.9 Clustering results of arrival trajectories via GYA to
RWY19

4.3 Results of arrival pattern prediction

As mentioned above, for an aircraft when en-
tering the TMA, its entry fix and landing runway
are known, and its landing mode is unknown.
Therefore, the task of arrival pattern prediction is

to predict the landing mode that the aircraft is likely

to adopt. This paper uses data set ATAGA-
RWYOI to refer to the trajectories in Fig.6 that en-
tered from ATAGA and landed on RWYO01, and
data set GYA-RW Y19 to refer to the trajectories in
Fig.9 that entered from GYA and landed on
RWY19.

Arrival pattern prediction for trajectories in
ATAGA-RWYOI could be viewed as a binary clas-
sification problem since there are only two arrival
patterns. Precision, recall, and accuracy were ad-
opted to measure the performance of the predictor.
Arrival pattern prediction for trajectories in GYA-
RWY19 could be viewed as a multi-classification
problem since there are three arrival patterns. Purity
and RI were adopted to measure the performance of
the predictor. The results of arrival pattern predic-
tion are shown in Table 3.

For ATAGA-RWYO01, the CNN-based arrival
pattern predictor performed better than that of the
RF-based arrival pattern predictor. Specifically, the
CNN-based prediction precision for right-turning tra-
jectories (93.8% ) was higher than the RF-based
one (72.1%). The CNN-based prediction recall for
right-turning trajectories (91.0% ) was higher than
the RF-based one (75.6% ). Besides, the CNN-
based prediction accuracy (92.2% ) was higher than
the RF-based one (74.4%)

For GYA-RWY19, the CNN-based arrival
pattern predictor performed better than that of the
RF-based arrival pattern predictor. Specifically, the
CNN-based prediction purity (89.1% ) was higher
than the RF-based one (60.9% ). Besides, the RI
value for the CNN-based predictor was 0.853,
which was 0.288 larger than the RF-based predictor.

Table 3 RF-based arrival pattern prediction results

Prediction performance

Dataset Method Precision Recall Precision Recall Aceurac Purit RI
. . d 1
(right-turn)  (right-turn)  (left-turn)  (left-turn) uracy unty
L CNN 0.938 0.910 0.907 0.936 0.922 — —
ATAGARWYOIL RF 0.721 0.756 0.767 0.733 0.744 — —
. B CNN — — — — — 0.891 0.853
CYARWYLY RF — — — — — 0.609  0.565

The accuracy in binary classification and the pu-

rity in multi-classification can be calculated in the

same way, so the two were comparable. By compar-

ing the two data sets, we can see that as the number
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of landing modes increased, the prediction perfor-

mance decreased.

5 Conclusions

This paper aims to provide decision support for
ATCOs when providing service for the arrival air-
craft. One contribution of this work is to recognize
control intentions from historical data, and the other
contribution is to build a classification model to pre-
dict ATCOs’ intentions.

First, this paper proposes an arrival pattern rec-
ognition method to divide arrival patterns hierarchi-
cally by control intentions. Compared with tradition-
al trajectory clustering methods, dividing trajecto-
ries step-by-step can diminish the loss of trajectory
information.

Second, this paper proposes two arrival pattern
prediction algorithms to estimate the most likely
commands issued by the ATCOs in a particular traf-
fic situation. The case study of ZGGG proves that
the CNN-based arrival pattern predictor performs
better than that of the RF-based arrival pattern pre-
dictor (The prediction purity could achieve 89.1% ).
The reason is probably that the CNN-based predic-
tor extracts more information about the traffic situa-
tion in the TMA. That means the traffic situation
has a non-negligible effect on trajectory prediction in
most cases. Therefore, this paper may be a refer-
ence for future trajectory prediction.

In this paper, we have to reduce the number of
arrival patterns to ensure that the predictor could
achieve satisfactory performance. However, the lim-
ited number of flight patterns means that it is impos-
sible to provide detailed decision support for AT~
COs. Therefore, increasing the number of arrival
patterns while maintaining the prediction perfor-

mance 1s our future work.
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