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Abstract: The aim of the present study is to develop an efficient weak form quadrature element for free vibration
analysis of arbitrarily shaped membranes. The arbitrarily shaped membrane is firstly mapped into a regular domain
using blending functions，and the displacement in the element is assumed as the trigonometric functions. Explicit
formulations are worked out for nodes of any type and a varying number of nodes. For verifications，results are
compared with exact solutions and data obtained by other numerical methods. It is demonstrated that highly accurate
frequencies can be obtained with a small number of nodes by present method.
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0 Introduction

A membrane is characterized by a negligible re⁃
sistance to bending and a dominating tension. Nu⁃
merous membrane structures exist in practice and
their applications are still growing in importance［1］.
Therefore，free vibration of membranes has attract⁃
ed the attention of many researchers［2-7］. A review
on the study of the membrane vibration was given
by Jenkins and Korde recently［1］.

Numerical modeling and analysis of structural
elements with irregular shapes have continuously
been a popular research topic because of the wide⁃
spread applications of irregular shaped elements in
various fields［8］. Besides，the enhancement of com⁃
putational efficiency and accuracy has always been
an interesting research topic to the computational
mechanics community［9］. Several efficient numerical
methods， such as the strong form differential
quadrature element method（DQEM）［10］，the local

radial basis function-based differential quadrature
（LRBFDQ）［7］ ， the discrete singular convolution
（DSC） algorithm［11］ and the weak form quadrature
element method（QEM）［12］，have been developed
recently and are still under developing，since an effi⁃
cient numerical method is always valuable to design⁃
ers in certain engineering applications［13］.

Free vibration of membranes is the simplest
two-dimensional vibration problem and thus it is of⁃
ten used to test the performance of a numerical tech⁃
nique，e.g.，the collocation method［2］，the p-version
finite element method（p-FEM）［3］，the DSC algo⁃
rithm［4］，the DQEM［5-6］，and LRBFDQ［7］. For arbi⁃
trary shaped membranes， the irregular domain is
usually mapped into a regular domain by using ei⁃
ther blending functions［3，6］，or shape functions of a
Serendipity element［4-5］. Care should be taken that，
however，the mapping accuracy affects the solution
accuracy［5-6，14］ and that inaccurate mapping may even
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cause non-convergent results if the irregular shape
does not have four corners［15-16］，since zero or nega⁃
tive Jacobian determinant will inevitably occur at the
corners［16］. Numerical difficulty may be encountered
since the derivative with respect to x and/or y at the
corner points does not exist. In such cases， the
weak form methods may have some advantages
over the strong form methods，since the numerical
difficulty may be circumvented using Gauss quadra⁃
ture［16］.

Previous research showed that the QEM was
highly accurate［9，12，17-19］ and possessed the potential
to act as a competitive counterpart to other efficient
numerical methods and thus was worth being devel⁃
oped further［9］. An undisputable advantage of the
QEM over the p-FEM is that the pre- and post-pro⁃
cessing is much more convenient due to the physi⁃
cal meaning of its DOFs［19］. Therefore，the objec⁃
tive of present paper is to develop an efficient
quadrature element for the free vibration analysis of
arbitrarily shaped membranes. The arbitrarily shape
is firstly mapped into a regular domain using blend⁃
ing functions and the discretization is then done on
the regular domain. Trigonometric functions are
used as the element displacement to formulate a
sub-parametric element. Explicit formulations are
given for the element with nodes of any type and a
varying number of nodes. Numerical examples are
given. The obtained results are compared with ex⁃
act solutions and data obtained by other numerical
methods for verifications. Finally conclusions are
drawn.

1 Weak Form Quadrature Element
Formulations

1. 1 Expressions of potential energy and kinetic
energy

For the investigation of the free vibration be⁃
havior of membranes by a weak form method，the
expressions of potential energy U and kinetic energy
T of the element are needed and given as
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where w is the transverse displacement and the over
dot on it is the first order derivative with respect to
time t；S the tension per unit length；ρ the mass per
unit area；A the area of the membrane element；and
| J | the determinant of Jacobian matrix. ξ and η are
coordinates in the regular domain.

1. 2 Sub⁃parametric quadrature membrane ele⁃
ment

To develop a sub-parametric quadrature mem⁃
brane element，the arbitrary shaped membrane ele⁃
ment is firstly mapped into a regular domain shown
in Fig.1，and then displacement is assumed as the
function of ξ and η (-1≤ ξ，η≤ 1 ). To increase the
mapping accuracy， blending functions are used，
namely［3，6，16］
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(3)

where Xi ( s ) and Yi ( s ) ( i= 1，2，3，4；s= ξ or η )
are the parametric equations of the four edges of the
membrane element.

To calculate the first order derivatives with re⁃
spect to x and y，the chain rule of the partial differ⁃
entiation is used
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where J-1 is the inverse of Jacobian matrix.
Jacobian matrix J can be easily computed by

Eq.（3）as
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The inverse of Jacobian matrix J-1 is given by

J-1 = 1
( xξ yη- xη yξ )
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Substituting Eq.（6）into Eq.（4）gives
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It is worth noting that ∂w/∂x and ∂w/∂y do not

exist numerically at a point ( ξi，ηi ) if | J ( ξi，ηi ) |= 0.
Let N be the number of nodes in either ξ or η

direction and ( ξj，ηi ) ( i，j= 1，2，⋯，N ) be the coor⁃

dinates of element nodes. The element displacement
is assumed as

w ( ξ,η,t )=∑
i= 1

N

∑
j= 1

N

lj ( ξ ) li ( η )w ( ξj,ηi,t )=

∑
i= 1

N

∑
j= 1

N

lj ( ξ ) li ( η )wij ( t ) (8)

where lj ( ξ ) and li ( η ) are shape functions.
It is reported that p-FEM with trigonometric

functions are numerically more stable than orthogo⁃
nal polynomials as the order is increased［3］. Since
both the QEM and the p-FEM are weak form meth⁃
ods，therefore，trigonometric functions are used as
the shape functions of the QEM，shown as
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lj ( ξ )=∏
k= 1
k≠ j

N sin ( p [ ξ- ξk ] )
sin ( p [ ξj- ξk ] )

li ( η )=∏
k= 1
k≠ i

N sin ( p [ η- ηk ] )
sin ( p [ ηi- ηk ] )

i,j= 1,2,⋯,N ; ξ,η∈[-1,1 ]

(9)

where p（≤ π/4） is a control variable. When p is
very small，Eq.（9）is equivalent to the polynomial-
based shape functions.

The shape functions are new and used to
develop a quadrature element for the first time，al⁃
though Eq.（9） is widely used to compute the
weighting coefficients in the strong form harmonic
differential quadrature（HDQ）method［20］.

Substituting Eq.（8） into Eq.（1）and perform⁃
ing the numerical integration by Gauss quadrature
yield that
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where ξ̄ j，η̄ i ( i，j= 1，2，⋯，M ) are the abscissas of
Gauss quadrature and Hi，Hj the corresponding
weights；k is the stiffness matrix and w the nodal
displacement vector；B ( ξ̄ j，η̄ i ) is
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Fig.1 Sketch of a regular domain
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where superscripts ξ or η mean that the correspond⁃
ing first order derivative is taken with respect to ξ or
η. More precisely，Aξ

jk and Aη
il are the weighting co⁃

efficients of the first order derivative with respect to

ξ and η.
The weighting coefficients Aξ

jk can be explicitly
calculated by

Aξ
jk=

∂lk ( ξ̄ j )
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N

sin ( p [ ξk- ξm ] ) j= 1,2,⋯,M (12)

Aη
il can be calculated in a similar way. In this way，k
can be obtained explicitly for any N and nodes of
any type.

It is worth noting that Eq.（12） is reduced to
the formulas of the weighting coefficient in the
HDQ method［20］ if the integration points are also the
nodes. If lj ( ξ ) and li ( η ) are Lagrange interpolation
functions with polynomials which are commonly
used in the QEM，a similar formula to Eq.（12） is
also available to compute the weighting coeffi⁃
cient Aξ

jk
［17-18］.

Substituting Eq.（8） into Eq.（2）and perform⁃
ing the numerical integration by Gauss quadrature
yield that

T= ρ
2 ∑i= 1

M

∑
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M
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2 ẇ
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where m is the mass matrix and ẇ the nodal veloci⁃
ty vector. L ( ξ̄ j，η̄ i ) is shown as

L ( ξ̄ j,η̄ i )=∑
l= 1

N

∑
k= 1

N

lk ( ξ̄ j ) ll ( η̄ i )wlk

i,j= 1,2,⋯,M (14)
It is seen that neither the type of nodes nor the

number of nodes is fixed a priori in the derivations of
the explicit formulas. Therefore，different types of
nodes can be used and the solution accuracy can be
easily adjusted by changing the number of the nodes
in the developed program.

For free vibration analysis， w ( ξ，η，t )=
W ( ξ，η ) sin ωt and thus w=W sin ωt，where ω is
the circular frequency. After dropping the term
sin ωt，the equation of motion is given by

kW= ω2mW (15)
If more elements are used， the assemblage

procedures are similar to the conventional finite ele⁃
ment method（FEM）. After applying the essential

boundary condition，the matrix equation is modi⁃
fied as

k͂W͂= ω2 m͂W͂ (16)
Solving Eq.（16） by a generalized eigen-value

solver yields the frequencies and mode shapes.

2 Numerical Results and Discus⁃
sion

For demonstrations， the widely used Gauss-
Lobatto-Legendre（GLL）points in QEM are adopt⁃
ed as the element nodes. An explicit formula to cal⁃
culate the GLL points does not exist and thus the
program reported in Ref.［12］ is used to compute
ξk，ηk ( k= 1，2，⋯，N ). Mapping an irregular do⁃
main without four corners into a regular one is more
difficult than the one with four corners， since
| J |= 0 at the added corner point［16］. Therefore，ex⁃
amples of irregular shaped membranes with a part of
an elliptic shape（Fig. 2（a）），full elliptic shape
（Fig.2（b）），half circle+triangle（Fig.3），and gen⁃
eral quadrilateral shape，are given. In Figs. 2，3，
symbols ① — ④ represent the four edges of the
membrane element which are needed in Eq.（3）. Be⁃
sides，only one N×N-node element with p= π/8 is
used in the analysis，since p= π/8 is widely used in
the HDQ method and different values of p affect on⁃
ly the higher mode frequencies which are not studied
in this paper. All edges of the membranes are fixed，
i.e.，w=0 on all edges.

The non-dimensional frequency parameter Ω is
defined as

Ω= ωa ρ/S (17)
where a is the semi-major axis of the ellipse（Fig.2）
or the radius of the circle（Fig.3）.

Example 1 First，consider the free vibration
of a sectorial membrane shown in Fig.2（a）. To map
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it into a regular domain with four corners，as shown
in Fig.1，one additional corner point is needed. Cur⁃
rently the point，i.e.，point 3 shown in Fig.2（a），is
located on the curved edge. Other ways to set the
additional corner point exist and the effect on the fi⁃

nal results is negligible if the mapping is accurate
enough［16］.

The parametric equations of the four edges of
the sectorial membrane，as shown in Fig. 2（a），

are
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X 1 ( ξ )= 0.5( 1+ ξ ) a
Y 1 ( ξ )= 0
X 2 ( η )= a cos [ ( 1+ η )θ/4 ]
Y 2 ( η )= b sin [ ( 1+ η )θ/4 ]
X 3 ( ξ )= a cos [ ( 3- ξ )θ/4 ]
Y 3 ( ξ )= b sin [ ( 3- ξ )θ/4 ]
X 4 ( η )= 0.5( 1+ η ) a cos θ
Y 4 ( η )= 0.5( 1+ η )b sin θ

(18)

where θ equals to arctg ( a* tan (φ ) /b )；a and b are
the semi-major and semi-minor axes of the elliptic
curve.

The first 10 non-dimensional frequencies are
listed in Table 1. The number of nodes in each direc⁃
tion varies from 7 to 12. Available exact solutions
and data obtained by conventional and p-version fi⁃
nite element methods，denoted by c-FEM and p-

FEM，are included for comparisons.

It is seen that the present element is highly ac⁃
curate. Exact first three non-dimensional frequency
parameters can be obtained by using one 9× 9-node
element. When N is 12，all 10 non-dimensional fre⁃
quency parameters are numerically exact. The con⁃
ventional FEM with fine meshes and the p-version
FEM using trigonometric sine functions with p=12

yield slightly lower accurate solutions for higher
modes.

The first eight non-dimensional frequencies for
sectorial membranes with different sector angles and
aspect ratios are listed in Table 2. To ensure the so⁃
lution accuracy，one 14× 14-node element is used.
Obtained results agree well with the data using the

Fig.2 Sketches of arbitrary shaped membranes

Fig.3 Sketche of a half-circle+triangle membrane

Table 1 Comparison of non⁃dimensional frequency parameter Ω for sectorial membrane (φ= π/2)

Condition

QEM(N=7)

QEM(N=9)

QEM(N=11)

QEM(N=12)

c⁃FEM

p⁃FEM(p=12)[3]

Exact[3]

1

5.137

5.136

5.136

5.136

5.136

5.136

5.136

2

7.589

7.588

7.588

7.588

7.589

7.589

7.588

3

8.420

8.417

8.417

8.417

8.417

8.417

8.417

4

9.934

9.936

9.936

9.936

9.937

9.937

9.936

5

11.071

11.065

11.065

11.065

11.065

11.065

11.065

6

11.630

11.620

11.620

11.620

11.621

11.620

11.620

7

12.358

12.230

12.225

12.225

12.226

12.228

12.225

8

14.066

13.617

13.590

13.589

13.590

13.591

13.589

9

15.393

14.419

14.373

14.373

14.374

14.373

14.373

10

15.590

14.506

14.476

14.476

14.477

14.482

14.476
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conventional finite element with fine meshes. The
QEM results listed in Table 2 should be highly accu⁃
rate according to the observation from Table 1 and
thus can serve as references.

Example 2 Second，consider the free vibra⁃
tion of an elliptic membrane shown in Fig.2（b）. To
map it into a regular domain with four corners，as
shown in Fig.1，four corner points are needed. Cur⁃
rently four corner points on the curved edge shown
in Fig.2（b）are adopted. Other ways to set the four
corner points are available and the final results are
independent from the way to place the corner
points［16］.

The parametric equations of the four edges of
the elliptic membrane shown in Fig.2（b）are
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X 1 ( ξ )=-a cos [ ( 1+ ξ ) π/4 ]
Y 1 ( ξ )=-b sin [ ( 1+ ξ ) π/4 ]
X 2 ( η )= a cos [ ( 1- η ) π/4 ]
Y 2 ( η )=-b sin [ ( 1- η ) π/4 ]
X 3 ( ξ )= a cos [ ( 1- ξ ) π/4 ]
Y 3 ( ξ )= b sin [ ( 1- ξ ) π/4 ]
X 4 ( η )=-a cos [ ( 1+ η ) π/4 ]
Y 4 ( η )= b sin [ ( 1+ η ) π/4 ]

(19)

where a and b are the semi-major and semi-minor
axes of the elliptic membrane.

The first ten non-dimensional frequencies are
listed in Table 3. The number of nodes in each direc⁃
tion varies from 7 to 14. Available exact solutions
and data obtained by DQEM are included for com⁃
parisons.

Table 2 Non⁃dimensional frequency parameter Ω for various sectorial membranes (N= 14)

Condition

φ= π/2
a/b= 2

φ= π/2
a/b= 3

φ= π/3
a/b= 1

φ= π/3
a/b= 2

φ= π/3
a/b= 3

QEM
c⁃FEM

QEM
c⁃FEM

QEM
c⁃FEM

QEM
c⁃FEM

QEM
c⁃FEM

1

7.981
7.981

11.039
11.040

6.380
6.380

8.698
8.698

11.564
11.565

2

10.408
10.408

13.323
13.324

9.761
9.761

11.631
11.630

14.197
14.198

3

12.991
12.992

15.755
15.755

9.936
9.936

14.435
14.436

16.936
16.938

4

14.199
14.200

18.303
18.304

13.015
13.015

15.419
15.420

19.692
19.695

5

15.671
15.672

20.420
20.426

13.354
13.354

17.294
17.295

21.209
21.213

6

16.477
16.478

20.941
20.944

13.589
13.590

18.542
18.544

22.564
22.570

7

18.412
18.413

22.586
22.592

16.223
16.225

20.024
20.027

23.885
23.890

8

18.473
18.874

23.647
23.653

16.698
16.700

21.417
21.422

25.381
25.379

Table 3 Comparison of non⁃dimensional frequency parameter Ω for a circular membrane

Condition

QEM(N=7)
QEM(N=9)
QEM(N=11)
QEM(N=13)
QEM(N=14)

DQEM[5]

DQEM[6]

c⁃FEM[2]

c⁃FEM

Exact[5]

1

2.404 8
2.404 8
2.404 8
2.404 8
2.404 8

2.403 0
2.404 8

2.416 6

2.404 8

2.404 8

2

3.836 5
3.831 8
3.831 7
3.831 7
3.831 7

3.828 8
3.831 7

3.851 3

3.831 8

3.831 7

3

3.836 5
3.831 8
3.831 7
3.831 7
3.831 7

3.828 8
3.831 7

3.851 3

3.831 8

3.831 7

4

5.122 3
5.133 8
5.135 6
5.135 6
5.135 6

5.126 9
5.135 6

5.174 4

5.135 7

5.135 6

5

5.172 3
5.136 6
5.135 6
5.135 6
5.135 6

5.126 9
5.135 6

5.174 4

5.135 7

5.135 6

6

5.505 9
5.517 5
5.520 0
5.520 1
5.520 1

5.515 9
5.520 1

5.551 5

5.520 2

5.520 1

7

6.510 7
6.393 6
6.380 8
6.380 2
6.380 2

6.375 3
6.380 2

6.461 0

6.380 2

6.380 2

8

6.510 7
6.393 6
6.380 8
6.380 2
6.380 2

6.375 3
6.380 2

6.461 0

6.380 2

6.380 2

9

7.757 8
7.094 3
7.020 0
7.015 7
7.015 6

7.010 3
7.015 6

7.059 2

7.015 7

7.015 6

10

7.966 0
7.094 3
7.020 0
7.015 7
7.015 6

7.010 3
7.015 6

7.059 2

7.015 7

7.015 6

6
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It is seen that the present element is highly
accurate. one 14× 14 -node element（196 DOFs）
can yield ten numerically exact frequencies. Nu⁃
merically exact first ten frequencies are also ob⁃
tained by the DQEM［6］ employing the same geo⁃
metric mapping with 17× 17 grid points （289
DOFs）. Perhaps due to inaccurate mapping，the
DQEM［5］ can only yield approximate solutions
even with 41× 41 grid points（1 681 DOFs）. It
is expected that the solutions obtained by lower or⁃
der finite element（1 024 DOFs）［2］ are not accu⁃
rate enough. If a very fine mesh is used，the ac⁃

curacy of the recalculated data by the lower order
finite element can be improved greatly. The small⁃
est number of DOFs demonstrates the effective⁃
ness of the QEM.

The first eight non-dimensional frequencies for
elliptic membranes with different aspect ratios are
listed in Table 4. To ensure the solution accuracy，
one 14× 14-node element is used. Obtained results
agree well with the DQEM（17× 17） data using
the same geometric mapping technique. The results
listed in Table 4 should be highly accurate and thus
can serve as references.

The accuracy of geometric mapping affects the
solution accuracy greatly［6，15］. To demonstrate it，
shape functions of G-node serendipity element
fi ( ξ，η ) are used for geometric mapping
ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

x= x ( ξ,η )=∑
i= 1

G

fi ( ξ,η ) xi

y= y ( ξ,η )=∑
i= 1

G

fi ( ξ,η ) yi
-1≤ ξ,η≤ 1 (20)

The percentage relative error listed in Table 5
is defined as Err=( A- πab ) / ( πab ) *100%，

where A is the mapped area. The general shape
functions of the 12-node serendipity element with
non-uniformly distributed nodes are given in
Ref.［16］.

The fundamental frequencies of various elliptic
membranes are listed in Table 5. Geometric map⁃
ping is performed using Eq.（20）（G=8 or 12）.
Available data obtained by the DSC with N=15［4］

and the DQEM with N=41［5］ are included for com⁃

parisons.
It is seen that both the weak form QEM and

the strong form DQEM yield the same convergent
results if the same mapping technique is used. The
mapping error obviously affects the solution accura⁃
cy obtained by various numerical methods. Employ⁃
ing non-uniformly distributed nodes such as the
GLL nodes does improve the mapping accuracy and
thus improves the accuracy of solutions. Therefore，
accurate mapping technique should be always used
to obtain highly accurate results.

Example 3 Further consider the free vibration
of a half-circle+triangle membrane shown in Fig.3.
To map it into a regular domain with four corners
shown in Fig. 1，one more corner point is needed.
Two ways of adding the corner point are shown in
Fig.3. If the curved edge becomes straight，it reduc⁃
es to a triangular element.

The parametric equations of the four edges of

Table 4 Non⁃dimensional frequency parameter Ω for various elliptic membranes (N= 14)

Condition

a
b
= 1.5

a
b
= 2.0

a
b
= 2.5

a
b
= 3.0

QEM
DQEM[6]

QEM
DQEM[6]

QEM
DQEM[6]

QEM
DQEM[6]

1

3.058 7
3.058 7

3.777 2
3.777 2

4.525 7
4.525 7

5.289 0
5.289 0

2

4.373 4
4.373 4

5.010 2
5.010 2

5.704 0
5.704 0

6.430 8
6.430 8

3

5.317 3
5.317 3

6.333 5
6.333 5

6.970 8
6.970 8

7.654 0
7.654 0

4

5.761 5
5.761 5

6.851 8
6.851 8

8.301 5
8.301 5

8.940 8
8.940 8

5

6.506 7
6.506 7

7.714 2
7.714 2

8.403 9
8.403 9

9.963 7
9.963 7

6

7.183 9
7.183 9

7.981 0
7.981 0

9.499 6
9.499 6

10.277
10.277

7

7.654 2
7.654 2

9.131 7
9.131 7

9.678 1
9.678 1

11.039
11.039

8

7.754 7
7.754 7

9.170 2
9.170 2

10.648
10.648

11.652
11.651

7
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the irregular shaped membrane shown in Fig. 3（a）
and Fig.3（b）are

ì

í

î

ï

ï

ï

ï

ï
ïï
ï
ï

ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï
ï

ï

ï

ï

X 1 ( ξ )=-a cos [ ( 1+ ξ ) π/4 ]
Y 1 ( ξ )=-a sin [ ( 1+ ξ ) π/4 ]
X 2 ( η )= a ( 1+ η ) /2 ]
Y 2 ( η )=-a ( 1- η ) /2 ]
X 3 ( η )= a ( 1+ ξ ) /2 ]
Y 3 ( η )= a ( 1- ξ ) /2 ]
X 4 ( η )=-a cos [ ( 1+ η ) π/4 ]
Y 4 ( η )= a sin [ ( 1+ η ) π/4 ]

(21)

ì

í

î

ï

ï

ï

ï

ï
ïï
ï
ï

ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï
ï

ï

ï

ï

X 1 ( ξ )= a ( 1+ ξ ) /2 ]
Y 1 ( ξ )=-a ( 1- ξ ) /2 ]
X 2 ( η )= a

Y 2 ( η )= 0
X 3 ( ξ )= a ( 1+ ξ ) /2 ]
Y 3 ( ξ )= a ( 1- ξ ) /2 ]
X 4 ( η )=-a cos ( ηπ/2 )
Y 4 ( η )= a sin ( ηπ/2 )

(22)

where a is the radius of the half circle.
The first eight non-dimensional frequencies ob⁃

tained using Eq.（21） are listed in Table 6. The
number of nodes in each direction varies from 7 to
14. Existing solutions obtained by other numerical
methods are included for comparisons. Results with
Eq.（22）are similar to the ones with Eq.（21）and
thus only the ones with N=14 are included for com⁃
parisons.

Since exact solutions are not available， the
highly accurate DQEM data cited from Ref.［6］

（289 DOFs） are used for comparisons. It is seen
that accurate non-dimensional frequency parameters
can be obtained by using one 13× 13-node（169
DOFs）element with Eq.（21）. The accuracy of the
QEM with Eq.（22） is slightly lower. Due to the
mapping error，data obtained by the DQEM with
N=41 （1 681 DOFs）［5］ are still not accurate
enough. Some frequencies obtained by the
LRBFDQ with 1 675 DOFs［7］ are not accurate
enough. The data obtained by the lower order FEM
with 1 089 DOFs［2］ are obviously inaccurate. The
accuracy of the FEM data with a fine mesh（5 221
DOFs） is much improved. Based on the total num⁃
ber of DOFs，one may conclude that the QEM is ef⁃
ficient and suitable for analysis of arbitrarily shaped
membranes. Perhaps due to the fact of that the
curved edge is much longer than the other two edg⁃
es，the solution accuracy of the QEM with Eq.（22）
is slightly lower than the one with Eq.（21）when N
is small. The two ways to map the irregular shape
without four corners into a regular one demonstrate
the flexibility of the sub-parametric element formula⁃
tions.

Example 4 Last，consider the free vibration of
a general quadrilateral membrane. The Cartesian co⁃
ordinates of four corners are（0.0，0.0），（3.0，0.0），

（2.5，2.5）and（0.5，2.0） for comparing with exist⁃
ing data.

The irregular domain can be exactly mapped in⁃

Table 5 Effect of the mapping accuracy on the fundamental frequency of various elliptic membranes

a
b

1.0

1.5

2.0

2.5

3.0

Err/%

Exact

2.404 8

3.058 7

3.777 2

4.525 7

5.289 0

8⁃node serendipity element

Uniformly distributed nodes

QEM(N=11)

2.419 4

3.077 7

3.801 8

4.556 5

5.326 3

-1.178 5

DSC[4]

2.406

3.062

3.784

4.535

-

DQEM[5]

2.419 4

3.077 7

3.801 7

4.556 4

5.326 2

12⁃node serendipity element

Uniformly distributed nodes

QEM(N=11)

2.403 0

3.056 0

3.773 2

4.520 2

5.281 7

0.157 45

DQEM[5]

2.403 0

3.061 9

3.773 3

4.520 3

5.281 8

GLL nodes

QEM(N=11)

2.405 1

3.058 6

3.776 2

4.523 5

5.285 4

-0.018 73

8



No. 1 WANG Xinwei, et al. Quadrature Element Vibration Analysis of Arbitrarily Shaped Membranes

to a regular one by Eq.（20）with G=4，where the
shape functions are fi ( ξ，η )=(1+ ξi ξ ) ( 1+ ηiη ) /4
（i=1，2，3，4）. For comparisons with the existing
data， a slightly different frequency parameter Ω *

from Eq.（17）is used，shown as

Ω * = ω ρ/S (23)

The first eight frequencies parameters are list⁃
ed in Table 7. The results are exactly the same as
the DQEM ones. Since the geometric mapping is ex⁃
act，the data in Ref.［5］should be very accurate. As
expected，the conventional FEM can also yield ac⁃
curate results since all edges are straight.

3 Conclusions

Free vibration of arbitrarily shaped membranes
is analyzed by using the weak form quadrature ele⁃
ment method. A novel sub-parametric element is de⁃
veloped. The element domain is accurately mapped
into a regular one using blending functions. Trigono⁃
metric functions are used as the elemental displace⁃
ment for the first time. To ease the programming，
explicit formulas of a varying number of nodes are
given. For verifications，results are compared with
exact solutions and data obtained by other numerical

methods. The solution accuracy can be improved by
increasing the number of nodes easily. It is shown
that highly accurate frequencies can be obtained by
the proposed element with a small number of nodes.
Accurate mapping plays an important role for suc⁃
cessfully using both strong and weak form methods.
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任意形状膜的求积单元振动分析

王鑫伟，蔡登安，周光明
(南京航空航天大学机械结构力学及控制国家重点实验室, 南京 210016，中国)

摘要：本文目的是建立一种能够高效分析任意形状膜的自由振动的弱式求积单元。先采用融合函数将任意形状

变换成规则的区域，然后将单元内的位移场假设为三角函数，最终导出了节点数目可变和节点类型任意的单元

的显式表达式。为了验证本文方法的有效性，将得到的结果与精确解和采用其他数值方法的结果进行了对比。

研究表明：本文方法可以用很少的节点数目给出高精度自由振动频率。

关键词：任意形状膜；自由振动；求积单元；融合函数
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