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Abstract: The dynamics of an axially accelerating beam subjected to axial flow is studied. Based on the Floquet
theory and the Runge-Kutta algorithm，the stability and nonlinear vibration of the beam are analyzed by considering
the effects of several system parameters such as the mean speed，flow velocity，axial added mass coefficient，mass
ratio，slenderness ratio，tension and viscosity coefficient. Numerical results show that when the pulsation frequency of
the axial speed is close to the sum of first- and second-mode frequencies or twice the lowest two natural frequencies，
instability with combination or subharmonic resonance would occur. It is found that the beam can undergo the periodic-
1 motion under subharmonic resonance and the quasi-periodic motion under combination resonance. With the change of
system parameters，the stability boundary may be widened，narrowed or drifted. In addition，the vibration amplitude of
the beam under resonance can also be affected by changing the values of system parameters.
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0 Introduction

In the past decades，the dynamics of axially
moving beams have received increasing attention
due to their widespread industrial applications，such
as aerial cables，power transmission belts and band
saw blades. Ulsoy et al.［1］，Wickert and Mote［2-3］，

and Chen［4］ have conducted extensive literature re‑
views on this dynamical system.

In fact，many real mechanisms can be repre‑
sented by axially moving beams with pulsating or
time-dependent velocities，i. e. axially accelerating
beams. The nonlinear dynamical behaviors of axial‑
ly accelerating beam have been studied extensively
for many years. Chen and his coworkers［5-10］ conduct‑
ed many studies on the stability and nonlinear dy‑
namics of axially accelerating viscoelastic beams by
numerical and analytical methods. Sahoo et al.［11-12］

discussed the internal resonance， bifurcation and
chaotic dynamics of accelerating beams. Based on

the method of multiple scales，Wang et al.［13］ inves‑
tigated the principal parametric resonance of an axi‑
ally accelerating hyperelastic beam. Ghayesh［14］ nu‑
merically calculated the subharmonic dynamics of an
axially accelerating beam，showing that the beam
can exhibit periodic，quasi-periodic，and chaotic re‑
sponses with the variation of system parameters
such as mean value of the speed. Moreover，some
researchers have investigated the nonlinear dynam‑
ics of axially accelerating structures modeled by
Euler‑Bernoulli［15］， Rayleigh［16］and Timoshenko
beam theories［17］.

In many cases，the surrounding fluid can be ig‑
nored，as has been done in the aforementioned liter‑
ature. However，in some special applications such
as the steel strip in continuous hot-dip galvanizing
process［18-19］and the underwater towed slender struc‑
tures，the effect of surrounding fluid on the axially
moving beam is of great significance. Thus，many
investigators have studied the interaction between
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the axially moving beam and the fluid. Ni et al.［20］

and Li et al.［21］ respectively studied the stability and
dynamics of axially moving cantilevered beam and
supported beams in fluid，showing some rich dy‑
namical behaviors of the beam. Wang and Ni［22］ pro‑
posed a theoretical model of an axially moving beam
immersed in fluid supported by two ends with tor‑
sional springs. Their numerical results showed that
the beam can lose stability by buckling. Kheiri et al.［23-24］

derived three-dimensional linear equations of motion
with the consideration of cross flow effect and stud‑
ied the dynamics of underwater towed long pipes.
They concluded that the pipe may lose stability by
either divergence or flutter. Taleb et al.［25］ and Gos‑
selin et al.［26］ studied the dynamics and stability of
an axially deploying/extruding beam submerged in
dense fluid. Motivated by their work，Yan et al.［27］

constructed a theoretical model of an extending
beam attached to an axially moving base immersed
in dense fluid. The numerical results showed that
the moving speed of the base can stabilize the beam.
Moreover，Ref.［28］and Ref.［29］respectively stud‑
ied the linear and nonlinear dynamics of an axially
sliding cantilevered pipe conveying fluid.In Refs.［18-

29］，it was assumed that the beam is immersed in
calm fluid，i. e. the axial flow velocity equals to ze‑
ro. In fact，the case of surrounding fluid flows axial‑
ly with non-zero velocity is very common in many
fields such as ocean engineering. Recently，Yan et
al.［30］ proposed a simple theoretical model for the dy‑
namical behavior of an axially moving beam subject‑
ed to axial flow and derived the nonlinear equation
of motion for this system via force balance method.
Their numerical results showed that the beam can
experience buckling and flutter instabilities with in‑
creasing axial moving speed. The effects of flow ve‑
locity，slenderness ratio and some other parameters
on the instability mode，buckling displacement and
flutter amplitude of the beam were explored. In their
study， however， they only considered the beam
moving with a constant axial speed. In practice，the
beam may undergo axially accelerating or decelerat‑
ing motions in many cases. Motivated by this，we
will further expand the existing works by consider‑
ing an axially accelerating beam with time-varying

moving speed.
In this paper，a theoretical model of an axially

accelerating beam supported at both ends and sub‑
jected to axial flow is established. The nonlinear
equation of motion is derived first and then dis‑
cretized into a set of nonlinear ordinary differential
equations via the Galerkin’s technique. Based on the
Floquet theory and the Runge-Kutta algorithm，the
stability and dynamic response of the beam are ob‑
tained，and the effects of axially moving speed，flow
velocity and several other system parameters on the
dynamical behaviors of the beam are analyzed.

1 Problem Formulation

Fig.1 shows a simply-supported beam of length
l，diameter D，area moment of inertia I，and mass
per unit length m traveling at a time-dependent axial
speed V（t） under an applied tension N 0. It is as‑
sumed that the beam is made of viscoelastic material
of the Kelvin-Voigt model and hence the flexural
stiffness of the beam may be written as E 0 I ( 1+
γ ∂ ∂t )，with E 0 and γ being the Young’s modulus
and viscoelastic coefficient respectively. In addition，
the axially accelerating beam is subjected to an axial
flow with density ρ and velocity V f.

The nonlinear equation of motion of the axially
moving beam in axial flow has been derived previ‑
ously by Yan et al.［30］，and can be given by the fol‑
lowing dimensionless form

η′‴+γ̄η̇′‴+(ϕv2+β 2( )v f+v
2
+(ϕ+β ) φ1 2 v̇ ( )1-ξ -

1
2 c f ε ( )v f-v
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é
ë
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1
2 ε (φ1 2 c f| v f-

Fig.1 Schematic of an axially accelerating beam in axial
flow
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v |+c̄dφ) η̇+η̈=0 (1)

In Eq.（1）， several dimensionless quantities
and parameters are defined by

η= w
l
, ξ= x

l
, τ= E 0 I

m+mv

t
l 2
= αt, v= mv

E 0 I
Vl,

v f =
mv

E 0 I
V f l, φ=

mv

m+ mv

, ϕ= m
mv
, ε= l

D
,γ̄=

αγ,c̄d =
cd
αl
, Γ= N 0 l 2

E 0 I
, μ= Al 2

I
= 16 ( lD ) 2 = 16ε2

(2)
where w ( x，t ) and η ( ξ，τ ) are the dimensional and
dimensionless transverse displacement of the beam；

the over-dot and the prime denote the derivatives
with respect to dimensionless time τ and the coordi‑
nate of the centerline of the beam ξ，respectively；v
and v f are the dimensionless axial speed of the beam
and the flow velocity，respectively；φ and ϕ are two
kinds of mass ratio；β and ε are the axial added mass
coefficient and the slenderness ratio，respectively；
c f and cd are the frictional and the form drag coeffi‑
cients，respectively；γ̄ and Γ are the dimensionless
viscosity coefficient and tension， respectively；
sgn（v f - v） in Eq.（1） is a sign function， i. e.
sgn（v f - v）=1 if v f > v；sgn（v f - v）=-1 if v f <
v，and sgn（v f - v）=0 if v f = v. For an accelerating
beam，the axial speed v is characterized as a small
periodic pulsation on the mean speed v0，namely

v= v0( 1+ a sin ωτ ) (3)
where a and ω are the dimensionless pulsating ampli‑
tude and frequency，respectively.

2 Solution Method

The governing equation can be discretized by
applying Galerkin’s technique，with the simply-sup‑
ported beam eigenfunctions ϕj( ξ )= 2 sin ( jπξ )
being the admissible functions，thus

η ( ξ,τ )=∑
j= 1

N

ϕj( ξ ) qj( τ ) (4)

where qj ( τ ) is the corresponding generalized coordi‑
nates.

Substituting the expression of Eq.（4） into
Eq.（1），multiplying by ϕi( ξ ) and integrating from 0
to 1 leads to

Mq̈+ Cq̇+ Kq+ N (q)= 0 (5)
where M，C，K and N represent the structural mass
matrix，damping matrix，stiffness matrix and non‑
linear vector，respectively. The elements of these
matrices are given by
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with δij being the Kronecker delta function.

Due to the fact that some coefficients of Eq.（5）
are time-dependent and periodic，the Floquet theory
can be utilized for stability analysis［31］. The Runge-
Kutta algorithm will be used to solve Eq.（5） for
nonlinear dynamics analysis. Throughout， unless
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otherwise specified， a truncation of N=4 in the
Galerkin’s method will be chosen for numerical cal‑
culations. The convergence test of the N=4 trunca‑
tion is carried out and the bifurcation diagrams are
shown in Figs.2（a，b）for N=2，3 and 4. As can be
observed that，N=4 is an optimal choice，for the
cases of vf =3，v0 =1 and vf =5，v0 =1.

According to Yan et al.［30］，several system pa‑
rameters in the numerical calculation are given by

φ= 0.5, β= 0.2, ε= 50, a= 0.5, Γ= 1,
γ̄= 0.002, c̄d = 0.002,c f = 0.02 (8)

For the sake of simplicity，the over-bar of γ̄
will not be shown in the following analysis.

3 Results and Discussion

3. 1 Stability analysis

In this subsection，Floquet theory is applied to
study the stability of the axially accelerating beam
system. The effects of several system parameters
such as mean speed v0，flow velocity v f，axial added
mass coefficient β，slenderness ratio ε，mass ratio

φ，tension Γ and viscoelasticity coefficient γ on the
stability boundary are analyzed.

Consider an axially accelerating beam subjected
to an axial flow with v f=5. The stability boundaries
in plane（ω，a） are shown in Fig. 3 for v0=0.5，1
and 1.5. The first two natural frequencies of the
beam are calculated by an eigenvalue analysis and
given in Table 1. By inspecting the results shown in
Fig. 3 and Table 1，subharmonic and combination
resonances of the first and second modes can be ob‑
served in the vicinity of 2ω 1，2ω 2 and ω 1 + ω 2 in the
case of v0=1.5. However，the combination reso‑
nance and the subharmonic resonance of the first
mode disappear as v0 decreases from 1 to 0.5. More‑
over，the decrease of v0 makes the stability boundar‑
ies move towards the increasing direction of the pul‑
sating amplitude a，and drift along the positive direc‑
tion of the pulsating frequency ω in plane（ω，a），

which makes the unstable region become narrow. In
other words，the smaller mean speed v0 leads to the
lager instability threshold of a for a given ω，and the
smaller unstable range of ω for a given a. Thus，one
can conclude that the increase in mean speed v0
makes the beam system more prone to instability.

Recalling the previous work of Ref.［30］，where
the problem of an axially moving beam with constant
speed in axial flow was considered，it was shown
that the beam would lose stability at a critical axial
speed vcr =3.05 as vf =5（Fig.3 in Ref.［30］）. In this

Fig.2 Bifurcation diagrams of beam’s responses by using
different N

Fig.3 Stability boundaries for various v0 ( v f =5)

Table 1 Natural frequencies of beam for various v0(v f =5)

v0
ω 1
ω 2

0.5
11.73
41.73

1
10.77
40.86

1.5
9.516
39.81
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study，however，it can be seen from Fig. 3 that the
axially accelerating beam with vf =5 has the possibil‑
ity of losing stability via parametric resonance when
the axial speed“v”is within the range of［0.5，1.5］
for a=0.5 and v0=1，or within the range of［0.2，
0.8］for a=0.6 and v0 =0.5. It is obvious that under
the same other system parameters， the minimum
moving speed for instability of the axially accelerat‑
ing beam is much lower than that of a beam with con‑
stant axially moving speed in Ref.［30］.

The influences of v f，β，ε，φ，Γ and γ on the
stability boundaries are presented in Fig.4. As a sup‑
plement，Tables 2—7 give the natural frequencies

of the beam for several typical cases.
The stability boundaries in plane（ω，a） are

shown in Fig. 4（a） for v f=0.2，3，5 and v0=1. In
this case，the subharmonic and combination reso‑
nances of the first and second modes are observed as
v f=0.2 and 3. However，the combination resonance
vanishes as v f increases to 5. In addition，one can al‑
so find that the increase of v f makes the stability
boundaries move towards the increasing direction of
a and drift slightly along the positive direction of ω
in plane（ω，a），which makes the unstable region be‑
come narrow. By comparing Fig. 3 with Fig. 4（a），

Table 2 Natural frequencies for beam with different vf

(v0=1)

v f
ω 1
ω 2

0.2
9.684
39.41

3
9.88
39.76

5
10.77
40.86

Table 3 Natural frequencies for beam with different β
(vf=3，v0=1)

β
ω 1
ω 2

0.1
10.17
39.94

0.3
9.41
39.43

0.5
7.857
38.33

Fig.4 Stability boundaries of beam with different parameters

Table 5 Natural frequencies for beam with different φ
(vf=3，v0=1)

φ
ω 1
ω 2

0.3
9.095
39.22

0.4
9.59
39.56

0.5
9.88
39.76

Table 4 Natural frequencies for beam with different ε
(vf=3，v0=1)

ε
ω 1
ω 2

30
9.69
39.57

50
9.88
39.76

70
10.06
39.95

Table 6 Natural frequencies for beam with different Γ
(vf=3，v0=1)

Γ
ω 1
ω 2

0
9.38
39.26

10
13.59
43.96

20
16.79
48.2

Table 7 Natural frequencies for beam with different γ
(vf=3，v0=1)

γ
ω 1
ω 2

0.001
9.882
39.79

0.002
9.88
39.76

0.003
9.877
39.71
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one can find that the v0 and v f have opposite effects
on the stability of the beam.

For fixed values of mean axial speed and flow
velocity，Figs. 4（b—f）show the stability boundar‑
ies of the beam as several parameters are varied，for
v f=3 and v0=1. The subharmonic and combination
resonances of the first and second modes can be ob‑
served. By comparing Figs.4（b—d），it is noted that
slenderness ratio ε and mass ratio φ have the same
effect on the stability boundaries as v f. However，
the influence of axial added mass coefficient β on the
stability boundaries is similar to that of v0，namely，
the decreasing of β makes the stability boundaries
moves towards the increasing direction of a and drift
along the negative direction of ω in plane（ω，a）and
the unstable region becomes narrow.

From Fig. 4（e），it is found that the effect of
tension Γ is mainly reflected in making the unstable
region drift to the left when Γ is decreased. That
means that the increase of Γ would make the stabili‑
ty boundaries move towards the increasing direction
of ω. However，the size of the unstable region in
plane（ω，a） does not change much. On the con‑
trary，the viscoelasticity coefficient γ can change the
size of the unstable region in plane（ω，a），while it
has little effect on the shift of the stability boundar‑
ies，as can be seen from Fig. 4（f）. It is also noted
that the presence of γ can enhance the stability of
the beam system.

What’s more，these figures shown above indi‑
cate that the stability boundary for the summation
resonance is most sensitive to the change of all sys‑
tem parameters discussed.

3. 2 Nonlinear dynamic analysis

According to the linear stability analysis，it is
noted that the beam can experience subharmonic
and combination resonances as a and ω vary. To fur‑
ther understand the dynamical behaviors of the
beam at resonance，the vibration responses of the
beam at resonance are investigated by a nonlinear
dynamic analysis in this subsection.

In the nonlinear dynamic analysis，attention is
concentrated on the vibrations of the midpoint of the

beam（ξ= 0.5）. Effects of system parameters on
the vibration responses of the beam can be summa‑
rized in the form of bifurcation diagrams，by record‑
ing the amplitude of the beam whenever the vibra‑
tion velocity at ξ= 0.5 becomes zero.

Fig.5 shows several bifurcation diagrams of the
beam’s responses for different values of mean speed
v0 and pulsating amplitude a. As can be seen from
Fig. 5（a），for v f=5 and a=5，the beam remains
stable within the ω range of［0，100］ for v0=0.5.
However，the beam would lose stability in some ω
ranges as v0 increases to 1 or 1.5. Recalling the sta‑
bility boundaries shown in Fig.3，it can be seen that
when v0=1.5， the beam suffers， respectively， a
first-mode subharmonic resonance， a combination
resonance and a second-mode subharmonic reso‑
nance in the ω ranges of［16.4，21.6］，［47.8，50.2］
and［70.5，90.4］. When v0=1，the first-mode and
second-mode subharmonic resonances occur， re‑
spectively in the ω ranges of ［20.4， 22.6］ and
［76，88.2］.

In order to analyze the vibration mechanism of
the beam at resonance，phase portraits，Poincaré
maps and power-spectrum-density（PSD）diagrams
are utilized here as powerful techniques in distin‑
guishing chaotic responses from periodic or quasi-pe‑
riodic motions.

For v f=5 and v0=1.5，the cases of ω =20
and 49 are chosen as two typical samples for the
beam at subharmonic and combination resonances.
In the case of ω=20，the phase portrait shown in
Fig.6（a1） presents only a limit cycle， the Poin‑
caré map shows a pair of symmetrical points
（Fig.6（a2）），and the PSD curve is clear with
several obvious peaks and a limited frequency
bandwidth （Fig.6（a3））. These results indicate
that the beam undergoes a periodic motion. Ac‑
cording to Païdoussis［32］， the Poincaré map con‑
sists of a number of points equal to twice the peri‑
od number when the motion is periodic. Thus，the
beam definitely undergoes a periodic-1 motion
when ω=20. As for the case of ω=49，one can
find that a limited number of cycles are contained
in the phase portrait（Fig.6（b1）），and a series of
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points forming a circle are displayed in the Poin‑
caré map（Fig.6（b2））. By inspecting Fig.6（b3）
further， the PSD curve has several peaks and a
broader frequency bandwidth. Thus，we can point
out that the beam undergoes a quasi-periodic mo‑
tion when ω=49.

Compared with a beam with constant axially
moving speed，once the axially accelerating beam
becomes unstable，oscillation rather than statically
buckling would occur. This is because that paramet‑
ric resonance is the preferred form of instability of
the axially accelerating beam，showing the most im‑
portant difference between the dynamical system
and that of Ref.［30］.

Indeed，based on more extensive calculations，
it is found that the phase portraits，Poincaré maps
and PSD diagrams for several other pulsating fre‑
quencies in the resonance ranges are similar to the
results of Fig.6. Thus we can conclude that the
beam would undergo periodic-1 and quasi-periodic
motions in subharmonic resonance and the combina‑
tion resonance，respectively.

A slightly different bifurcation diagram of Fig.5
（b） is constructed for the beam with v f=3，v0=1
and a=0.4，0.5，0.6. Results show that the beam
loses stability in the ω ranges of［18.5，21］ and
［74.9，84.8］ for a=0.4；in the ω ranges of［18，
21.5］and［73.2，86.8］for a=0.5；in the ω ranges
of［17.6，21.9］，［48.6，50.2］and［73.2，86.8］for
a=0.5. These ω ranges for unstable behavior of the
beam are consistent with the results in the linear sta‑
bility analysis.

From Fig. 5，one can also find that the overall
vibration amplitude of the beam at resonance in‑
creases with the increase of v0，a and ω.

Effects of v f，β，ε，φ，Γ and γ on the vibra‑
tion response of the beam are summarized via bifur‑
cation diagrams presented in Fig.7. It should be not‑
ed that all the values of system parameters are cho‑
sen to be the same as those defined in Fig.4. Due to
the fact that the effects of these parameters on the ω
ranges for the beam’s instability are consistent with
that obtained in the linear stability analysis，only
the vibration amplitudes of the beam will be focused
on. Figs. 7（c，d） show the bifurcation diagrams of
the beam for different values of ε and φ，respective‑
ly. Both figures show that the larger the values of
these two parameters are，the smaller the ampli‑
tudes of the beam at resonance become. It can be
found from Fig.7（b） that increasing β can increase
the vibration amplitude of the beam. And the in‑
crease of Γ can increase the vibration amplitude of
the beam at the first-mode subharmonic resonance
and slightly reduce the amplitude of the beam at the
second-mode subharmonic resonance，which can be
observed in Fig.7（e）. Comparing Figs.7（a，f），it is
noted that v f and γ have the same effect on the vi‑
bration amplitude，i. e.，increasing v f or γ can re‑
duce the amplitude of the beam at the first-mode
subharmonic resonance and accelerate the growth
rate of the vibration amplitude of the beam with in‑
creasing ω in the second-mode subharmonic reso‑
nance region.

Fig.5 Bifurcation diagrams of beam’s responses
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Fig.6 Phase portraits, Poincaré maps and PSD diagrams for v f = 5 and v0=1.5

Fig.7 Bifurcation diagrams of beam’s responses with different system parameters
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4 Conclusions

A theoretical analysis of axially accelerating
beams in axial flow has been conducted. The stabili‑
ty and nonlinear dynamic analyses are conducted by
Floquet theory and Runge-Kutta algorithm，respec‑
tively. Extensive numerical calculations are conduct‑
ed to analyze the effects of several system parame‑
ters such as mean axial speed，flow velocity，axial
added mass coefficient，mass ratio，slenderness ra‑
tio，tension and viscosity coefficient on the stability
and vibration response of the beam.

In the stability analysis，results show that the
beam can occur first-mode and second-mode subhar‑
monic resonances in the vicinity of twice the lowest
two natural frequencies respectively，and combina‑
tion resonance in the vicinity of the sum of first- and
second-mode frequencies. Effects of several system
parameters on the stability boundaries can be sum‑
marized as follows：

（1）Increasing the mean speed and axial added
mass coefficient can widen the instability regions.

（2）The increase of flow velocity，slenderness
ratio，mass ratio，tension and viscoelasticity coeffi‑
cient can narrow the instability regions.

（3）The stability boundaries can shift along the
axis of pulsating frequency as some parameters（ex‑
cept viscoelasticity coefficient）vary.

（4）The stability boundary for the summation
resonance is most sensitive to the change of all sys‑
tem parameters.

In the nonlinear dynamic analysis，the conclu‑
sion can be drawn out that the beam undergoes peri‑
odic-1 and quasi-periodic motions at subharmonic
resonance and combination resonance，respectively.
Results also show that the vibration amplitude of the
beam at resonance can be affected by several key
system parameters. Generally speaking，the vibra‑
tion amplitude would increase with the increase of
axial added mass coefficient and pulsating frequency
but decreases with the increase of slenderness ratio
and mass ratio. However，the increase of flow ve‑
locity and viscoelasticity coefficient can reduce the
amplitude of the beam at the first-mode subharmon‑
ic resonance. Moreover，increasing the tension can

increase the vibration amplitude of the beam at the
first-mode subharmonic resonance and slightly re‑
duce the amplitude of the beam at the second-mode
subharmonic resonance.
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受轴向外流作用的轴向变速运动梁非线性振动及稳定性分析

严 浩 1，2，倪 樵 1，2，周 坤 1，2，代胡亮 1，2，王 琳 1，2

（1.华中科技大学航空航天学院，武汉 430074，中国；

2.工程结构分析与安全评定湖北省重点实验室，武汉 430074，中国）

摘要：研究了受轴向流作用的轴向变速梁的稳定性和动力学特性。利用 Floquet 理论和 Runge‑Kutta算法，得到

了轴向变速运动梁动力学响应的数值结果。通过参数分析研究了平均脉动速率、轴向外流速、轴向附加质量参

数、质量比、长细比、初始拉力和粘弹性系数等系统参数对梁动力学的影响。研究结果表明，当梁运动速率的脉

动频率接近一、二阶固有频率的 2倍或前两阶固有频率之和时，轴向运动梁会出现次谐波共振或组合共振现象而

失去稳定。梁在次谐波共振区和一、二阶组合共振区内分别做单周期和概周期运动。梁的稳定区域在各系统参

数的作用下将出现扩大、收缩和平移的现象。此外，梁共振时的振动幅值同样受到各系统参数的影响。

关键词：轴向变速运动梁；轴向流；次谐波共振；组合共振；Floquet理论
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