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Abstract: A rotating axisymmetric circular nanoplate is modeled by the Mindlin plate theory. The Mindlin plate
theory incorporates the nonlocal scale and strain gradient effects. The shear deformation of the circular nanoplate is
considered and the nonlocal strain gradient theory is utilized to derive the governing differential equation of motion that
describes the out-of-plane free vibration behaviors of the nanoplate. The differential quadrature method is used to solve
the governing equation numerically，and the natural frequencies of the out-of-plane vibration of rotating nanoplates are
obtained accordingly. Two kinds of boundary conditions are commonly used in practical engineering，namely the fixed
and simply supported constraints，and are considered in numerical examples. The variations of natural frequencies
with respect to the thickness to radius ratio，the angular velocity，the nonlocal characteristic scale and the material
characteristic scale are analyzed in detail. In particular，the critical angular velocity that measures whether the rotating
circular nanoplate is stable or not is obtained numerically. The presented study has reference significance for the
dynamic design and control of rotating circular nanostructures in current nano-technologies and nano-devices.
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0 Introduction

With the rapid development of nanotechnolo⁃
gy，the materials and structures at a nanoscale have
attracted increasing attentions during the past two
decades［1-3］. As a new research field，nanotechnolo⁃
gy involves the property，optimization and applica⁃
tion of materials with scales between 1 nm and
100 nm，including nanoelectronics，nanophotonics，
nanobiology，nanomedicine and other branch sub⁃
jects， among which the mechanical property of
nanomaterials and nanostructures，i.e.，the nanome⁃
chanics plays an important role. The mechanical
characterizations with related nanoscale properties
and parameters are indispensable in the preparation，
testing，modification and optimization of nanomate⁃
rials［4］. Stationary nanomaterials and nanostructures

are currently characterized and tested easily but re⁃
quires a static condition. Performance characteriza⁃
tion under motion is one of the technical difficulties，
which hinders the development of new nanomateri⁃
als and functional structures based on kinetic de⁃
sign［5］. Therefore，it has important scientific signifi⁃
cance in studying the mechanical properties of nano⁃
materials and nanostructures，especially the dynam⁃
ic properties of those with motion. Regarding the re⁃
search methodologies， theoretical approaches and
corresponding models and analyses are more popu⁃
lar in view of the complexity of manipulation and
testing of nanoscale dynamic experiments［6］. The
theoretical approaches are mainly divided into two
categories. One is the discrete atomic model［7］. By
regarding nanomaterials as an integration of a cer⁃
tain number of atoms，the discrete model of nano⁃
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materials is established by considering the forces be⁃
tween atoms. The other is the non-classical continu⁃
um model［8］ that regards nanomaterials as a general⁃
ized continuum and accounts for the internal charac⁃
teristic scale parameters of materials. However，
when the number of atoms compose nanomaterials
and nanostructures is relatively large，the discrete
model is cumbersome in both modeling and calcula⁃
tion. For instance，the calculation costs extra hard⁃
ware and long time. With the requirements of ana⁃
lyzing complex nanosystems，the non-classical con⁃
tinuum model dominates the theoretical prediction
of dynamic phenomena in nanomaterials and nano⁃
structures.

For non-classical continuum models，since the
beginning of the last century，the couple stress theo⁃
ry and its modified versions，the micropole and mi⁃
crostate theory， the strain gradient theory， the
nonlocal theory，and the nonlocal strain gradient the⁃
ory have been proposed successively［9］. These theo⁃
retical methods have been applied to the analysis of
mechanical properties of nanostructures during past
years. For instance，Akgöz et al.［10］ proposed a size-
dependent higher-order shear deformation beam
model based on the Navier method and the modified
strain gradient theory in which both the microstruc⁃
tural and shear deformation effects were taken into
consideration. Akgöz et al.［11］ studied the thermo-

mechanical buckling behaviors of embedded func⁃
tionally graded microbeams based on the sinusoidal
shear deformation beam theory and modified couple
stress theory. Numanoğlu et al.［12］ investigated the
longitudinal dynamic properties of nanorods with
various boundary conditions based on the nonlocal
theory. Ebrahimi et al.［13］ developed a nonlocal cou⁃
ple stress theory to reveal the vibration behaviors
and stabilities of functionally graded nanobeams us⁃
ing the Chebyshev-Ritz method. Nevertheless，
there are still some unsolved problems in the theo⁃
retical application. For example，the micro-soften⁃
ing and hardening predictions were contradicted［14］，
and the undefined or inconsistent internal character⁃
istic scale parameters［15］were used in previous stud⁃
ies. In regard of these，Lim et al.［16］ established a
nonlocal strain gradient theory in 2015，which intro⁃

duced and coupled both the nonlocal parameter and
material characteristic scale parameter to measure
the nonlocal effect and strain gradient effect of nano⁃
materials and structures，respectively. Accordingly，
the total nonlocal strain gradient stress is defined，
and the constitutive relations reflect the nonlocal ef⁃
fect of classical strains and strain gradients，as well
as the gradient effect of nonlocal stresses and total
stresses，which promotes the application adaptabili⁃
ty of the nonlocal strain gradient theory at a na⁃
noscale. Meanwhile，it has been proved that the mi⁃
cro-softening and hardening phenomena are ob⁃
served and in fact they are described by two special
cases of the theory，namely，corresponding to two
simplified forms of the theory［17］. Moreover，it also
has the guiding significance for the determination of
the internal characteristic scale parameters in the
non-classical continuum theory［18］. Consequently，
the nonlocal strain gradient theory is suitable for the
study of nanomechanics. This is why it has became
a popular research method in nanomechanics since
the theory was put forward［19-24］. In this paper，the
nonlocal strain gradient theory is used to examine
the vibration behavior of circular nanoplates.

The vibration and stability of axially moving
nanostructures have been fully studied during the
past several years［25-30］. However， rotating nano⁃
structures are relatively less studied. The rotating
circular nanoplate is one of the important compo⁃
nents in the nanoelectromechanical system［31］ that is
usually used to realize power and motion transmis⁃
sions. Hence it is a common structure for the system
operation. To solve the vibration equations to show
dynamic behaviors and other related characteristics
of the circular nanoplates，the differential quadra⁃
ture method and the nonlocal finite element method
are usually used［32-34］. Generally，the structural char⁃
acteristics，forces and constraints of circular nano⁃
plates are axisymmetric. Therefore， the present
work concerns the free vibration characteristics of
axisymmetric circular nanoplates with rotational mo⁃
tion. The results may provide a theoretical basis for
the dynamic design and optimization of key compo⁃
nents in the nanoelectromechanical system.
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1 Theory and Method

1. 1 Nonlocal strain gradient theory

The nonlocal strain gradient theory combines
the higher-order stress gradients with the nonlocal
effect of strain gradients. The constitutive relations
can be expressed as［16］
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ï
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ï
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σ=∫V α0 ( )x ′,x,e0a C:ε ′dV ′

σ( )1 = l 2∫V α1 ( )x ′,x,e1a C:∇ε ′dV ′

t= σ-∇σ( )1

(1)

where σ and σ( )1 represent the nonlocal stress tensor
and the higher-order nonlocal stress tensor in vol⁃
ume V，respectively；α0 and α1 the nonlocal kernel
functions related to the strain and the first-order
strain gradient；and e0 and e1 the traditional nonlocal
and higher-order nonlocal material constants. t repre⁃
sents the nonlocal strain gradient total stress tensor；
C the elastic tensor；ε ′ the strain tensor at point x ′；
a the nonlocal characteristic scale； l the material
characteristic scale related to higher-order strain gra⁃
dients；and ∇ the gradient operator. As a result，the
nonlocal stress and higher-order nonlocal stress at
point x depends on not only the strain and strain gra⁃
dient at point x，but also the strain and strain gradi⁃
ent at point x ′ in the nonlocal strain gradient theory.
That is，the idea of long-range interactions between
molecules/atoms is introduced into both the nonlo⁃
cal and strain gradient constitutive relations.

The above integral constitutive equations are
difficult to solve. Fortunately，they can be trans⁃
formed into differential constitutive equations.
Based on certain assumptions，the core constitutive
relation of the nonlocal strain gradient theory can be
simplified by reorganizing the integral constitutive
equations and introducing the Laplace operator as［16］

[1-( ea ) 2∇2 ] txx= E ( 1- l 2∇2 ) εxx (2)

where ∇2 is the Laplace operator，and two material
constants are assumed to be identical，i.e. e0=e1=e.

1. 2 Differential quadrature method

There are different methods to solve differen⁃
tial equations，among which the differential quadra⁃
ture method has been widely used due to its fast cal⁃

culation and high accuracy. In this numerical meth⁃
od，the function values of all nodes in the whole do⁃
main are weighted and summed to represent the
function value and its derivatives at the selected
node. Resultingly，the differential equations can be
discretized into a set of algebraic equations with the
node values as the unknown variables. For a one-di⁃
mensional function f（x），let it be continuously dif⁃
ferentiable in the interval［a，b］，and one obtains

L{ }f ( )x =∑
m= 1

N

Wm( x ) f ( )xm (3)

where L is a linear differential operator；Wm（x）the
interpolation basis function；and xm the mth node in
the interval［a，b］.

Let L= d
dx， C ( )1jm =Wm ( xj )， fm= f ( xm )，

then

Lf ( xj )=
df ( )xj
dx = f ( )1j =∑

m= 1

N

C ( )1jm fm (4)

where j= 1，2，⋯，N， and C ( )1jm is the first-order
weighting coefficient of function f（x）. Accordingly，
[C ( )1jm ] is the weighting coefficient matrix of its first
derivative.

Denote f ( )kj = f ( )k ( xj )， then the higher-order
derivative at the function node can be represented by
the interpolation of function values as

d2 f ( )xj
dx2

= f ( )2j =∑
m= 1

N

C ( )2jm fj (5)

d3 f ( )xj
dx3

= f ( )3j =∑
m= 1

N

C ( )3jm fj (6)

d4 f ( )xj
dx4

= f ( )4j =∑
m= 1

N

C ( )4jm fj (7)

where C ( )2jm ，C ( )3jm and C ( )4jm are the weighting coeffi⁃
cients of the second，the third，and the fourth deriv⁃
atives of function f（x）. Accordingly，the higher-or⁃
der derivative can be regarded as the derivation of
the first-order derivative.

To determine the weight coefficients， let
f ( x )= xk- 1，the following formula can be obtained
from Eq.（4）as

( k- 1) xk- 2j =∑
m= 1

N

C ( )1jm xk- 1m (8)

Eq.（8）can be written in a matrix form as G=
CV，where

25



Vol. 39Transactions of Nanjing University of Aeronautics and Astronautics
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ú1 x1 … xN- 21

1 x2 … xN- 22

1 xN … xN- 2N N× N

(10)

Lagrange interpolation can be used as the ex⁃
pression of a function node

f ( x )= ∑
m= 1

N

lm( )x f ( xm ) (11)

where lm（x）is the Lagrange interpolation polynomi⁃
al as

lm( x )=∏
k= 1
k≠ m

N x- xk
xm- xk

(12)

The first derivative of Eq.（11）is

f ′( x )= ∑
m= 1

N

l ′m( )x f (13)

Consequently

fj ′= f ′( xj )= ∑
m= 1

N

l ′m( )xj f (14)

Comparing Eq.（4）and Eq.（14），we can get
C ( )1jm = l ′m ( xj ) (15)

Therefore，the explicit expressions of the first-
order and higher-order weight coefficients can be de⁃
termined. Furthermore，a reasonable node distribu⁃
tion should be selected while using the differential
quadrature method. The previous studies［32］ show
that the roots of Chebyshev polynomial can make
the calculation faster with more accurate. There⁃
fore，it is adopted in the present study as

xm=
1
2
é

ë
ê
êê
ê1- cos ( m- 1N- 1 π) ùûúúúú (16)

2 Problem Model and Governing
Equation

Considering an axisymmetric circular nanoplate
rotating at an angular velocity Ω，with a radius R
and thickness h，we establish a polar coordinate sys⁃
tem， as shown in Fig.1，where z-coordinate is
along the axis（i.e. thickness direction）of the circu⁃
lar nanoplate.

Based on the Mindlin plate theory，the radial

displacement ur and lateral displacement uz of the cir⁃
cular nanoplate can be expressed as

ì
í
î

ïï
ïï

ur( )r,z,t = zφ ( )r,t
uz( )r,z,t = w ( )r,t

(17)

where w（r，t）represents the lateral displacement of
any point on the midplane；φ（r，t）the rotational an⁃
gle of the midplane normal；and t the time.

From Eq.（17），the geometric equation can be
obtained as

εr= z
∂φ
∂r , εθ= z

φ
r
, γrz= φ+ ∂w

∂r (18)

Considering Eq.（18） together with the physi⁃
cal equation，one can obtain the classical stress com⁃
ponents as

σr=
E

1- ν2
( εr+ νεθ)= E

1- ν2
é
ë
êêêêz
∂φ
∂r + ν

z
r
φù
û
úúúú (19)

σθ=
E

1- ν2
(νεr+ εθ)= E

1- ν2
é
ë
êêêêzν
∂φ
∂r +

z
r
φù
û
úúúú (20)

τrz=
E

2( )1+ ν
γrz=

E
2( )1+ ν (φ+ ∂w

∂r ) (21)

where εr，εθ and γrz are the radial strain，the hoop
strain and the shear strain，respectively；σr，σθ and
τrz the radial stress，the hoop stress and the trans⁃
verse shear stress，respectively；and E and ν the
elastic modulus and the Poisson’s ratio，respective⁃
ly. Subsequently，the internal forces including the
axial force，the bending moment and the transverse
shear force can be obtained by integrating Eqs.（19—
21）. Therefore，the constitutive equations based on
the nonlocal strain gradient theory can be derived

[1-( ea ) 2∇2 ]Nr=∫
- h
2

h
2
σrdz= B 1 ( )∂φ

∂r + ν
φ
r

(22)

[1-( ea ) 2∇2 ]Nθ=∫
- h
2

h
2
σθdz= B 1 ( )ν

∂φ
∂r +

φ
r

(23)

Fig.1 Diagrammatic sketch of an axisymmetric rotating cir⁃
cular nanoplate
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[1-( ea ) 2∇2 ]Mr=∫
- h
2

h
2
σr zdz=

(1- l 2∇2 ) é
ë
ê
êê
êD 1 ( ∂φ∂r + ν

φ
r ) ùûúúúú (24)

[1-( ea ) 2∇2 ]Mθ=∫
- h
2

h
2
σθ zdz=

(1- l 2∇2 ) é
ë
ê
êê
êD 1 (ν ∂φ∂r + φ

r ) ùûúúúú (25)

[1-( ea ) 2∇2 ]Qr=∫
- h
2

h
2
τrzdz=

(1- l 2∇2 ) S1
κ (φ+ ∂w

∂r ) (26)

B 1 =∫
- h
2

h
2 Ez
1- ν2

dz= 0 (27)

D 1 =∫
- h
2

h
2 E
1- ν2

z2 dz= Eh3

12 ( )1- ν2
(28)

S1 =∫
- h
2

h
2 E
2( )1+ ν

dz= Eh
2( )1+ ν

(29)

where Nr and Nθ are the components of the axial
force；and Mr and Mθ the components of the bend⁃
ing moment. Qr is the transverse shear force，and
κ=12/π2 the shear correction factor［35］.

The first-order variation of the strain energy U
of the rotating axisymmetric circular nanoplate can
be calculated as

δU= δ ∫V 12 (σr εr+ σθ εθ+ τrz γrz) dV=

∫V éë
ê
êê
ê( )σr zδ

∂φ
∂r + ( )σθ z

δφ
r
+

ù

û
úúúú( )τrz δφ+ τrz δ

∂w
∂r dV=

∫ |rMrδφ
R

0
dθ-∬ ∂ ( )rMr

∂r δφdrdθ+

∬Mθδφdrdθ+∬Qrδφrdrdθ+

∫ |rQr δw
R

0
dθ-∬ ∂ ( )rQr

∂r δwdrdθ (30)

where V represents the volume occupied by the cir⁃
cular nanoplate. The first-order variation of the ki⁃
netic energy T can be determined as

δT= δ ∫V 12 ρ
é

ë

ê
êê
ê
ê
ê( ∂ur∂t )

2

+ ( ∂uz∂t )
2ù

û

ú
úú
ú dV=

∬( I0 ∂w∂t δ ∂w∂t + I2
∂φ
∂t δ

∂φ
∂t ) rdrdθ (31)

I0 =∫
- h
2

h
2
ρdz= ρh (32)

I2 =∫
- h
2

h
2
ρz2 dz= ρh3

12 (33)

where ρ is the bulk density of the circular nanoplate.
The variation of the potential energy H caused by
the rotation is

δH= δ∬ 12 N R ( ∂w∂r )
2

rdrdθ=∬N R ∂w
∂r δ

∂w
∂r rdrdθ

(34)
where NR is the radial tension caused by the rotation.
For the fixed and simply supported boundary con⁃
straints，NR can be derived as［33］

N R= 3+ ν
8 ρhΩ 2R2( 1+ ν

3+ ν
- r 2

R2 ) (35)

Based on Hamilton’s principle，the equation of
motion that governs the free out-of-plane vibration
of rotating axisymmetric circular nanoplates can be
derived as

1
r
∂ ( )rQr

∂r - 1
r
∂
∂r ( rN R ∂w

∂r )= I0
∂2w
∂t 2

(36)

1
r
∂ ( )rMr

∂r - Mθ

r
- Qr= I2

∂2φ
∂t 2

(37)

Substituting Eqs.（22—26）into Eqs.（36，37），

the vibration governing equation of the rotating axi⁃
symmetric circular nanoplate in the framework of
the nonlocal strain gradient theory is

( 1- l 2∇2 )
é

ë

ê
êê
êS1
κ ( ∂φ∂r + φ

r
+ ∂2w
∂r 2

+ 1
r
∂w
∂r ) ùûúúúú-

[1-( ea ) 2∇2 ] I0 ∂
2w
∂t 2

- 3+ ν
8 ρhΩ 2R2[1-

( ea ) 2∇2 ] é
ë
ê
êê
ê( )1
r
1+ ν
3+ ν

- 3r
R2

∂w
∂r +

ù

û

ú
úú
ú( )1+ ν

3+ ν
- r 2

R2

∂2w
∂r 2

= 0 (38)
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( 1- l 2∇2 )
é

ë

ê
êê
êD 1 ( ∂2φ∂r 2 + 1

r
∂φ
∂r -

φ
r 2 )-

S1
κ (φ+ ∂w

∂r ) ùûúúúú- [1-( ea ) 2∇2 ] I2 ∂
2φ
∂t 2
= 0 (39)

The classical out-of-plane vibration model of a
rotating circular plate is recovered in case of ea=l=
0. The dimensionless quantities are introduced

w̄= w
R
,r̄= r

R
,b= h

R
,τ= ea

R

ζ= l
R
,t̄= t

R2

D 1

ρh
,λ= R2Ω

ρh
D 1

(40)

After that，dimensionless forms of Eqs.（38，
39）can be obtained as

(1- ζ 2 ∇̄2) é
ë

ê
êê
ê 6( )1- ν

κb2 ( ∂φ∂r̄ + φ
r̄
+ ∂2 w̄
∂r̄ 2

+

1
r̄
∂w̄
∂r̄ ) ùûúúúú- (1- τ 2 ∇̄2) ∂

2 w̄
∂t̄ 2

- 3+ ν
8 λ2 ⋅

(1- τ 2 ∇̄2) é
ë
ê
êê
ê( 1r̄ 1+ ν

3+ ν
- 3r̄ ) ∂w̄∂r̄ +

( 1+ ν
3+ ν

- r̄ 2) ∂2 w̄∂r̄ 2 ùûúúúú= 0 (41)

(1- ζ 2 ∇̄2) é
ë

ê
êê
ê( ∂2φ∂r̄ 2 + 1

r̄
∂φ
∂r̄ -

φ
r̄ 2 )- 6( )1- ν

κb2 (φ+
∂w̄
∂r̄ ) ùûúúúú- b2

12 (1- τ 2 ∇̄2) ∂
2φ
∂t̄ 2
= 0 (42)

The solutions of Eqs.（41，42）can be set as
w̄ ( r̄,t̄ )= w͂ ( r̄ ) ejωt̄, φ ( r̄,t̄ )= φ͂ ( r̄ ) ejωt̄ (43)

where w͂ ( r̄ ) and φ͂ ( r̄ ) are the vibration mode func⁃
tions and ω is the non-dimensional natural frequency
of the free out-of-plane vibration.

Substituting Eq.（43） into Eqs.（41，42），one
gets

(1- ζ 2 ∇̄2) é
ë

ê
êê
ê 6( )1- ν

κb2 ( ∂φ͂∂r̄ + φ͂
r̄
+ ∂2 w͂
∂r̄ 2

+

1
r̄
∂w͂
∂r̄ ) ùûúúúú+ ω2(1- τ 2 ∇̄2) w͂- 3+ ν

8 λ2(1-

τ 2 ∇̄2) é
ë
ê
êê
ê( 1r̄ 1+ ν

3+ ν
- 3r̄ ) ∂w͂∂r̄ +

( 1+ ν
3+ ν

- r̄ 2) ∂2 w͂∂r̄ 2 ùûúúúú= 0 (44)

(1- ζ 2 ∇̄2) é
ë

ê
êê
ê( ∂2 φ͂∂r̄ 2 + 1

r̄
∂φ͂
∂r̄ -

φ͂
r̄ 2 )-

6( )1- ν
κb2 ( φ͂+ ∂w͂

∂r̄ ) ùûúúúú+ b2

12 ω
2(1- τ 2 ∇̄2) φ͂=0

(45)
The boundary conditions are

r̄= 0: φ͂= 0, φ͂+ ∂w͂
∂r̄ = 0

r̄= 1:
ì
í

î

ïïïï

ïïïï

Fixed w͂= 0, φ͂= 0

Simply supported ∂φ͂
∂r̄ + ν

φ͂
r̄
= 0, w͂= 0

(46)
Using the differential quadrature method，we

can discretize Eqs.（44，45）as

6( )1- ν
κb2

é

ë

ê
êê
ê
ê
ê- ζ 2∑

m= 1

N

C ( )3jm φ͂m-
2ζ 2
r̄ j ∑m= 1

N

C ( )2jm φ͂m+

(1+ ζ 2

r̄ j 2 )∑m= 1N

C ( )1jm φ͂m+ ( 1r̄ j - ζ 2

r̄ j 3 ) φ͂ jùûúúúú+
6( )1- ν
κb2

é

ë

ê
êê
ê
ê
ê- ζ 2∑

m= 1

N

C ( )4jm w͂m-
2ζ 2
r̄ j ∑m= 1

N

C ( )3jm w͂m+

(1+ ζ 2

r̄ j 2 )∑m= 1N

C ( )2jm w͂m+ ( 1r̄ j - ζ 2

r̄ j 3 )∑m= 1N

C ( )1jm w͂m

ù

û

ú
úú
ú-

3+ ν
8 λ2

ì
í
îïï( )1
r̄ j
1+ ν
3+ ν

- 3r̄ j ∑
m= 1

N

C ( )1jm w͂m+

( )1+ ν
3+ ν

- r̄ j 2 ∑
m= 1

N

C ( )2jm w͂m-

τ 2
é
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ê
êê
ê( )1+ ν
3+ ν

- r̄ j 2 ∑
m= 1

N

C ( )4jm w͂m+

( )2
r̄ j
1+ ν
3+ ν

- 8r̄ ∑
m= 1

N
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where j= 2，3，⋯，N- 1.
Combining Eqs.（47， 48） and the boundary

conditions， the characteristic equation in matrix
form can be written as
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where K，M are the stiffness matrix and the mass
matrix，respectively. Subscript d represents the gov⁃
erning equations；subscript b the boundary condi⁃
tions；and q the nodal displacement including the
lateral displacement q1 and the rotational angle q2.
Therefore，K，M are the coefficient matrices with
respect to the lateral displacement and the rotational
angle. The elements of the matrix consist of differ⁃
ent equations that are associated with parameters ζ，
b and so on. The expression of each element in the
matrix is rather lengthy and is not specifically listed
here.

3 Results and Discussion

In order to verify the effectiveness of the pro⁃
posed calculation method，a simplified case of the
present model，that is，the free vibration of a non-

rotating circular macro-plate， is discussed herein.
Let τ= ζ= λ=0. We can determine the first three
natural frequencies of the circular nanoplate with dif⁃
ferent ratios of thickness to radius under the fixed
and simply supported boundary conditions according
to Eqs.（47，48），which are compared with the re⁃
sults available in Ref.［34］，as shown in Tables
1，2.

From Tables 1，2，the presented results are
very close to those in Ref.［34］. Accordingly，the
solution method and the numerical results are vali⁃
dated. Besides，with an increase of the thickness to
radius ratio（e.g. from b=0.05 to b=0.2），there is
a decrease in the natural frequency. Note that reduc⁃
ing of the natural frequency means the nanostructur⁃
al stiffness weakening. However， increasing the
thickness to radius ratio corresponds to increasing
the thickness or decreasing the radius. Increasing
the thickness means increasing the nanostructural
stiffness，while decreasing the radius means decreas⁃
ing the nanostructural stiffness. As from the two as⁃
pects，one can infer that the stiffness weakening ef⁃
fect caused by decreasing the radius is greater than
the stiffness enhancement effect caused by increas⁃
ing the thickness. This is because only in this way
the stiffness of the circular nanoplate will eventually

Table 1 Comparison of the first three natural frequencies of the circular plate under the fixed boundary condition

Mode

1
2
3

b=0.05
The presented
10.143
38.852
84.992

Ref.[34]
10.145
38.855
84.995

b=0.1
The presented
9.940 6
36.473
75.661

Ref.[34]
9.940 8
36.479
75.664

b=0.15
The presented
9.628 3
33.392
65.547

Ref.[34]
9.628 6
33.393
65.551

b=0.2
The presented
9.240 0
30.208
56.677

Ref.[34]
9.240 0
30.211
56.682

Table 2 Comparison of the first three natural frequencies of the circular plate under the simply supported boundary
condition

Mode

1
2
3

b=0.05
The presented
4.924 3
29.320
71.751

Ref.[34]
4.924 7
29.323
71.756

b=0.1
The presented
4.893 2
28.238
65.936

Ref.[34]
4.893 8
28.240
65.942

b=0.15
The presented
4.843 6
26.711
59.058

Ref.[34]
4.844 0
26.715
59.062

b=0.2
The presented
4.777 0
24.991
52.509

Ref.[34]
4.777 3
24.994
52.514
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reduce. Moreover， the natural frequencies under
fixed support conditions are higher than those under
simply supported ones.

Considering a circular nanoplate made of ce⁃
ramics（Si3N4）with the thickness h=2.5 nm，radi⁃
us R=50 nm，density ρc=2 370 kg/m3，elastic
modulus Ec=348.43 GPa，and Poisson’s ratio ν=
0.3. Node N=18 is selected in the numerical calcu⁃
lations，and we examine the vibration characteristics
of the rotating axisymmetric circular nanoplate with
the fixed and simply supported outer boundary con⁃
straints.

The effect of the thickness to radius ratio b on
the first three dimensionless natural frequencies of
the circular nanoplate is shown in Fig.2，where ea=
0.5 nm，l=1 nm，τ=0.01 and ζ=0.02. The natu⁃
ral frequency decreases with the increase of the
thickness to radius ratio，and the higher-order vibra⁃
tion is affected more obviously by the change of the
thickness to radius ratio.

The natural frequencies versus the angular ve⁃
locity λ，the nonlocal characteristic scale parameter
ea，and the material characteristic scale parameter l

are shown in Figs. 3—6. The nonlocal and material
characteristic scale parameters represent the nonlo⁃
cal and strain gradient effects，respectively，and are
selected as zero in Fig.3，and the out-of-plane vibra⁃
tion of the rotating axisymmetric circular plate or the
classical model can be recovered. From Fig.3（a），it
can be seen that natural frequencies with the periph⁃
eral fixed boundaries decrease with the increasing
angular velocity. When the angular velocity increas⁃
es to λ1=15.689， the first natural frequency be⁃
comes zero which indicates that the vibration of the
rotating circular plate appears divergent instability.
So λ1=15.689 is called the first-order critical angu⁃
lar velocity. Similarly，λ2=30.307 is the second-or⁃
der critical angular velocity. From Fig.3（b），one
can see that the first natural frequency of the periph⁃
eral simply supported case does not decrease monot⁃
onously with the increase of the angular velocity，
which is different from the peripheral fixed con⁃
straint，and the boundary effect in the out-of-plane
vibration of the rotating axisymmetric circular plate
is thus reflected. The instability characteristics are

Fig.2 Influence of the thickness to radius ratio on natural
frequencies (τ=0.01, ζ=0.02, λ=0)

Fig.3 Influence of the dimensionless angular velocity on
natural frequencies (τ=ζ=0)

30



No. 1 WANG Xinyue, et al. On the Out-of-Plane Vibration of Rotating Circular Nanoplates

the same as those of the peripheral fixed rotating cir⁃
cular nanoplate.

Comparing the results from Figs.3—6，we find
that the natural frequency decreases with the increas⁃
ing nonlocal characteristic scale parameter. The de⁃
crease of natural frequencies means a stiffness weak⁃
ening of structures. Hence it is demonstrated that
the nonlocal characteristic scale has a softening ef⁃
fect on the nanostructure. In Fig.4（a），the first-or⁃
der critical angular velocity decreases from 15.689
to 15.324， and the second-order decreases from
30.307 to 27.626 with the increase of the nonlocal
characteristic scale parameter. This means the
nonlocal characteristic scale makes the critical angu⁃
lar velocity decrease. In fact，such an observation is
also one of the manifestations of the nonlocal soften⁃
ing effect. Fig.5（a）shows that the natural frequen⁃
cy increases with the increase of the material charac⁃
teristic scale parameter，so the strain gradient has a
hardening effect on the nanostructure. With the in⁃
crease of the material characteristic scale parameter，
the first-order and the second-order critical angular
velocities increase from 15.689 to 15.783 and from
30.307 to 31.046，respectively. This indicates that
the existence of the material characteristic scale in⁃

Fig.4 Influence of the dimensionless angular velocity on
natural frequencies (τ=0.04, ζ=0)

Fig.5 Influence of the dimensionless angular velocity on
natural frequencies (τ=0, ζ=0.02)

Fig.6 Influence of the dimensionless angular velocity on
natural frequencies (τ=0.04, ζ=0.02)
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creases the critical angular velocity and the strain
gradient hardening effect is revealed again.

To reveal the relationship between the nonlocal
scale and strain gradient effects in the out-of-plane
vibration of the rotating axisymmetric circular nano⁃
plate，we display the effect of the ratio ea/l on the
first three natural frequencies，as shown in Fig.7.
As observed，the natural frequency decreases with
the increase of ea/l. As mentioned before，the theo⁃
retical model will degenerate to the classical counter⁃
part when ea and l are both equal to zero. In fact，
this condition can be relaxed. As long as ea is equal
to l，even if both are not zero，the natural frequen⁃
cies keep unchanged with respect to the ratio ea/l.
Consequently，the results are always equal to those

of the classical counterpart，and both the softening
and hardening phenomena disappear，which shows
that the softening/hardening effects derived from
the two internal characteristic scale parameters on
the nanostructures can cancel each other. This im⁃
plies that the nonlocal scale effect and strain gradi⁃
ent effect have the opposite mechanisms in nano⁃
structures，but the degree of effects is equivalent.
When ea/l is less than 1，that is，ea is less than l，
the natural frequencies based on the nonlocal strain
gradient theory is greater than those based on the
classical vibration theory，and the larger the materi⁃
al characteristic scale parameter，the greater the de⁃
gree of deviation from the classical results. In this in⁃
stance，the characteristic scale parameters strength⁃

Fig.7 Relationship between ea/l and the dimensionless natural frequency (λ=0)
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en the stiffness of the rotating circular nanoplate.
However，when ea/l is greater than 1，that is，ea is
greater than l，the natural frequency based on the
nonlocal strain gradient theory is less than their clas⁃
sical counterparts，and the larger the material char⁃
acteristic scale parameter is，the more obvious this
phenomenon is. So the internal characteristic scale
parameters weaken the nanoplate stiffness. There⁃
fore，there is a coupling relationship between the
nonlocal and material characteristic scale parame⁃
ters. The magnitude relationship between the two
internal characteristic scale parameters will deter⁃
mine the specific manifestation of the internal scale
effects in the nonlocal strain gradient theory，that
is，the nonlocal softening or strain gradient harden⁃
ing phenomenon in the rotating circular nanoplate.
When the nonlocal characteristic scale parameter is
larger than the material characteristic scale parame⁃
ter，the nonlocal softening effect plays a dominated
role in the nonlocal strain gradient theory. Other⁃
wise，the strain gradient hardening effect dominates
the internal characteristic scale effects

4 Conclusions

The out-of-plane vibration analyses of the rotat⁃
ing axisymmetric circular nanoplate is carried out
based on the nonlocal strain gradient theory and the
Mindlin plate model. The governing differential
equation of motion that includes the nonlocal and
material characteristic scale effects is derived，and
the natural frequency is calculated by the differential
quadrature method. The natural frequency decreases
with the increase of the thickness to radius ratio，
and the higher-order frequencies are influenced more
significantly. The natural frequency decreases with
the increase of the angular velocity. When the angu⁃
lar velocity increases to a critical value，the natural
frequency becomes zero. The critical angular veloci⁃
ty is greatly affected by the internal characteristic
scale parameters. The existence of the nonlocal char⁃
acteristic scale parameter reduces the critical angular
velocity，but the existence of the material character⁃
istic scale parameter causes it to increase. The stiff⁃

ness of the circular nanoplate decreases with the in⁃
crease of the nonlocal characteristic scale parame⁃
ter，but increases with the increase of the material
characteristic scale parameter. The two internal
scale parameters are coupled in the nonlocal strain
gradient theory. The parameter with a larger value
is dominant in the internal characteristic scale ef⁃
fects.
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旋转圆形纳米板的面外振动

王馨悦 1，罗秋阳 1，李 成 1，谢中友 2

（1.苏州大学轨道交通学院,苏州 215131, 中国；2.铜陵大学建筑工程学院,铜陵 244061, 中国）

摘要：通过结合非局部尺度和应变梯度效应的 Mindlin 板理论对轴对称旋转纳米圆板进行建模。考虑纳米圆板

的剪切变形，应用非局部应变梯度理论推导出描述纳米板面外自由振动行为的控制微分运动方程。应用微分求

积法对控制方程进行数值求解，从而得到旋转纳米板面外振动的固有频率。在数值算例中考虑了实际工程中常

见的两种边界条件，即固定约束和简支约束。分析了固有频率随厚径比、角速度、非局部特征尺度和材料特征尺

度的变化。特别地，旋转纳米圆板是否稳定的临界角速度是数值获得的。本研究对当前纳米技术和纳米器件中

旋转圆形纳米结构的动态设计和控制具有参考意义。

关键词：纳米圆板；非局部应变梯度；微分求积法；材料特征尺度；角速度
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