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Abstract: The vibration and instability of functionally graded material（FGM）sandwich cylindrical shells conveying
fluid are investigated. The Navier-Stokes relation is used to describe the fluid pressure acting on the FGM sandwich
shells. Based on the third-order shear deformation shell theory，the governing equations of the system are derived by
using the Hamilton’s principle. To check the validity of the present analysis，the results are compared with those in
previous studies for the special cases. Results manifest that the natural frequency of the fluid-conveying FGM
sandwich shells increases with the rise of the core-to-thickness ratio and power-law exponent，while decreases with
the rise of fluid density，radius-to-thickness ratio and length-to-radius ratio. The fluid-conveying FGM sandwich shells
lose stability when the non-dimensional flow velocity falls in 2.1—2.5，which should be avoided in engineering
application.
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0 Introduction

Pipes conveying fluid are found in numerous in⁃
dustrial applications，in particular in water conser⁃
vancy project and submarine oil transport［1-2］. For
pipes containing fluid，couple vibrations are a major
problem due to fluid flow［3-4］. The dynamics of fluid-

conveying pipes were extensively reviewed in Refs.
［5-7］. One of the earliest studies in the area of dy⁃
namics and stability of pipes conveying fluid was
proposed by Paidoussis et al.［8］. Zhang et al.［9］ inves⁃
tigated the multi-pulse chaotic dynamics of pipes
conveying pulsating fluid in parametric resonance.
Ding et al.［10］ studied the nonlinear vibration isola⁃
tion of pipes conveying fluid using quasi-zero stiff⁃
ness characteristics. Tan et al.［11］ studied the para⁃
metric resonances of pipes conveying pulsating high-

speed fluid based on the Timoshenko beam theory.
Selmane et al.［12］ discussed the effect of flowing flu⁃
id on the vibration characteristics of an open，aniso⁃
tropic cylindrical shell submerged and subjected si⁃
multaneously to internal and external flow. Amabili
et al.［13］ investigated the non-linear dynamics and
stability of simply supported， circular cylindrical
shells containing inviscid and incompressible fluid
flow.

Functionally gradient materials（FGMs） have
some prominent advantages such as avoiding crack，
avoiding delamination， reducing stress concentra⁃
tion， eliminating residual stress， etc.［14］. Due to
these superiorities，vibrations and dynamics stability
of structures with FGM properties have attracted
much attention［15-21］. Chen et al.［22］ studied the free
vibration of simply supported，fluid-filled FGM cy⁃
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lindrical shells with arbitrary thickness based on the
three-dimensional elasticity theory. Sheng et al.［23］

studied dynamic characteristics of fluid-conveying
FGM cylindrical shells under mechanical and ther⁃
mal loads. Park et al.［24］ presented vibration charac⁃
teristics of fluid-conveying FGM cylindrical shells
resting on Pasternak elastic foundation with an
oblique edge.

As one of the most prevalent composite struc⁃
tures applied in aerospace，naval，automotive and
nuclear engineering，sandwich structures have at⁃
tracted tremendous interests from academic and in⁃
dustrial communities［25-33］. Note that the use of
FGMs in sandwich shells can mitigate the interfacial
shear stress concentration. Thus，dynamics studies
of FGM sandwich shells have been carried out by
several researchers. Based on the Donnell’s shell
theory，Dung et al.［34］ studied the nonlinear buckling
and post-bucking behavior of FGM sandwich circu⁃
lar cylindrical shells. Chen et al.［35］ presented the
free vibration analysis of FGM sandwich doubly-

curved shallow shells under simply supported condi⁃
tion. Fazzolari et al.［36］ studied the free vibration of
FGM sandwich shells using the Ritz minimum ener⁃
gy method. Tornabene et al.［37］ studied the free vi⁃
bration of rotating FGM sandwich shells with vari⁃
able thicknesses.

Due to the good thermal insulation of sandwich
shells，they can be used as pipelines for transporting
petroleum to prevent the paraffin in the crude oil
from depositing on the pipe wall after the oil temper⁃
ature is lowered. The core layer usually uses a mate⁃
rial with good heat insulation properties，such as ce⁃

ramics［38-40］. However，sandwich shells have the in⁃
terfacial shear stress concentration and are prone to
some accidents［41］. Nowadays， FGM sandwich
shells can solve this problem and have promising ap⁃
plications in submarine oil transport.

In the present study，we deal with the vibration
and instability of FGM sandwich shells conveying
fluid. The Navier-Stokes relation is used to describe
the fluid pressure acting on the shells. The third-or⁃
der shear deformation shell theory is used to model
the present system. Then，the governing equations
and boundary conditions are derived by using the
Hamilton’s principle. Finally， the frequency and
stability results are presented for FGM sandwich
shells conveying fluid under various conditions.

1 Theoretical Formulation

1. 1 FGM sandwich cylindrical shell

As shown in Fig.1，a fluid-conveying FGM
sandwich cylindrical shell made up of three layers，
namely，Layer 1，Layer 2 and Layer 3，is consid⁃
ered. The thicknesses of the three layers are h1，h2
and h3，respectively. Layer 2 is the pure ceramic lay⁃
er，and Layer 1 and Layer 3 are FGM layers. The
material properties of Layer 1 and Layer 3 change
from pure metal at the outer and inner surfaces to
pure ceramic. The dimensions of the shell are denot⁃
ed by the length L，the middle-surface radius R and
the thickness h. A cylindrical coordinate system（x，

θ，z）is chosen，where x- and θ-axes define the mid⁃
dle-surface of the shell and z-axis denotes the out-of-
surface coordinate.

Fig.1 FGM sandwich cylindrical shell conveying fluid
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For the FGM sandwich shell，the effective ma⁃
terial properties of layer j（j = 1，2，3）can be ex⁃
pressed as［42］

P ( j ) ( z )=( P c - Pm )V ( j ) ( z )+ P c (1)
where Pm and Pc denote the material properties of
metal and ceramic，respectively；the volume frac⁃
tion V（j）（j = 1，2，3）through the thickness of the
sandwich shell follows a power law while it equals
unity in the core layer，which reads［43］
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where k∈[ 0，∞ ) is the power-law exponent.
Therefore，the Poisson’s ratio ν( j ) ( z )，Young’s

modulus E ( j ) ( z ) and mass density ρ( j ) ( z )（j = 1，
2，3）of the FGM sandwich shell are expressed as

ν( j ) ( z )=( νc - νm )V ( j ) ( z )+ νm (3)
E ( j ) ( z )=( E c - Em )V ( j ) ( z )+ Em (4)
ρ( j ) ( z )=( ρ c - ρm )V ( j ) ( z )+ ρm (5)

where νm，ρm，Em are the Poisson ratio，mass densi⁃
ty and Young’s modulus of metal，respectively；νc，
ρ c，E c the Poisson ratio，mass density and Young’s
modulus of ceramic，respectively.

1. 2 Fluid⁃shell interaction

The fluid inside the shell is assumed to be in⁃
compressible，isentropic and time independent. To
simplify the problem，we ignore the influence of the
deformation and vibration of the shell on the liquid
flow，the shear force transferred from the flow，the
flow separation and the Reynold number. The mo⁃
mentum-balance equation for the fluid motion can
be described by the well-known Navier-Stokes equa⁃
tion［44］

ρ f
dv
dt =-∇P+ μ∇2v+ F body (6)

where v≡( vr，vθ，vx ) is the flow velocity with com⁃
ponents in the r，θ and x directions；P and μ are the
pressure and the viscosity of the fluid，respectively；
ρ f is the mass density of the internal fluid；∇2 the
Laplacian operator and Fbody the body forces. In this

paper，we neglect the action of body forces and con⁃
sider Newtonian fluid，i.e.，the viscosity is time-in⁃
dependent.

At the interface between the fluid and the
shell，the velocity of the fluid is equal to the shell in
the radial direction. These relationships can be writ⁃
ten as［3］

vr=
dw
dt (7)

where r is the distance from the center of the shell to
an arbitrary point in the radial direction，and

d
dt =

∂
∂t + U

∂
∂x (8)

where U is the mean flow velocity.
Consider the fluid as inviscid. By substituting

Eqs.（7，8）into Eq.（6），the fluid pressure P is ob⁃
tained as［3］

P= ρ f( )∂2w
∂t 2

+ 2U ∂2w
∂x∂t + U 2 ∂2w

∂x2
(9)

1. 3 Third⁃order shear deformation theory

According to the third-order shear deformation
shell theory，the displacement fields of the fluid-con⁃
veying FGM sandwich shell are expressed as［45］
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u ( x, θ, z, t )= u0 ( x, θ, t )+

zϕx ( x, θ, t )- c1 z3 ( )ϕx+
∂w 0

∂x
v ( x, θ, z, t )= v0 ( x, θ, t )+

zϕθ ( x, θ, t )- c1 z3 ( )ϕθ+
1
R
∂w 0

∂θ
w ( x, θ, z, t )= w 0 ( x, θ, t )

(10)

where c1 = 4/3h2；u，v and w are the displacements
of an arbitrary point of the shell；u0，v0 and w0 the
displacements of a generic point of the middle sur⁃
face；ϕx and ϕθ the rotations of a normal to the mid-

surface about θ and x axes，respectively.
The strain components at a distance z from the

mid-plane are［45］

( )εxεθγxθ = ( )ε0xε0θγ0xθ + z ( )k 1xk 1θk 1xθ + z3 ( )k 3xk 3θk 3xθ (11)

( )γxz
γθz

= ( )γ0xz
γ0θz

+ z2( )k 2xz
k 2θz

(12)

where
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where εx，εθ，γxθ，γxz and γθz are the strains of an ar⁃
bitrary point；ε0x，ε0θ，γ0xθ，γ0xz and γ0θz the strains of a
generic point of the middle surface；k 1x，k 1θ，k 1xθ，k 3x，
k 3θ，k 3xθ，k 2xz and k 2θz the curvatures of a generic point
of the middle surface.

The relationship between stresses and strains
of the fluid-conveying FGM sandwich shell is stated
as
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where Qij is given by

Q ( j )
11 =

E ( j ) ( z )
1- v ( j ) ( z )2

, Q ( j )
12 =
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(19)
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1. 4 Governing equations and solution

The strain energy of the FGM sandwich shell
can be expressed as
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where the resultant forces Nx，Nθ and Nxθ，moments
Mx，Mθ and Mxθ，shear forces Qxz and Qθz，and high⁃
er-order stress resultants Px，Pθ，Pxθ，Kxz and Kθz

are defined by

( Nx, Nθ, Nxθ )=∑
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The kinetic energy of the FGM sandwich shell
is written as
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In addition，the potential energy associated to
the fluid pressure is given by［4］

Πp=∫
0

2π∫
0

L

P Rdxdθ (25)

By using the Hamilton principle

δ ∫
t1

t2 ( )ΠT- ΠS- Πp dt= 0 (26)

and then equating the coefficients of δu0，δv0，δw 0，

δϕx and δϕθ to zero，the motion equations of the flu⁃
id-conveying FGM sandwich shell can be obtained
as
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∂ẅ
∂x (27)

∂Nxθ

∂x + 1
R
∂Nθ

∂θ = I ͂ 1 v̈0 + I ͂ 2 ϕ̈θ- I ͂ 3
1
R
∂ẅ
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where the inertias Ī i and I ͂i（i = 1，2，3，4，5）are
defined by
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Ī4 = I3 - 2c1 I5 + c21 I7, I ͂ 4 = I3 - 2c1 I5 + c21 I7 (35)
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By substituting Eq.（23） into Eqs.（27—31），

the equations of motion can be rewritten as follows

L 1 ( u0,v0,w 0,ϕx,ϕθ )= Ī1 ü0 + Ī2 ϕ̈x- Ī3
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∂x2
+ 1
R2

∂2 ẅ 0
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The simply supported boundary condition is
considered in this study. It is given by［46］

The solutions to Eqs.（38—42） and Eq.（43）
can be separated into a function of time and position
as follows［46］
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where λm= mπ/L； umn( t )，vmn( t )，wmn( t )，ϕmn( t )
and ϕ̄mn( t ) represent generalized coordinates.

Substituting Eqs.（44—48） into Eqs.（38—42）
yields

M 11 ümn ( t )+M 13 ẅmn ( t )+M 14 ϕ̈mn ( t )+
K 11umn ( t )+ K 12vmn ( t )+ K 13wmn ( t )+
K 14ϕmn ( t )+ K 15 ϕ̄mn ( t )= 0 (49)

M 22 v̈mn ( t )+M 23 ẅmn ( t )+M 25 ϕ̈̄mn ( t )+
K 21umn ( t )+ K 22vmn ( t )+ K 23wmn ( t )+
K 24ϕmn ( t )+ K 25 ϕ̄mn ( t )= 0 (50)
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M 31 ümn ( t )+M 32 v̈mn ( t )+M 33 ẅmn ( t )+
M 34 ϕ̈mn ( t )+M 35 ϕ̈̄mn ( t )+ K 31umn ( t )+
8ρ fmU
L ∑

i= 1

m̄ i
m 2 - i2

ẇ in ( t )+ K 32vmn ( t )+

K 33wmn ( t )+ K 34ϕmn ( t )+ K 35 ϕ̄mn ( t )= 0 (51)
M 41 ümn ( t )+M 43 ẅmn ( t )+M 44 ϕ̈mn ( t )+

K 41umn ( t )+ K 42vmn ( t )+ K 43wmn ( t )+
K 44ϕmn ( t )+ K 45 ϕ̄mn ( t )= 0 (52)

M 52 v̈mn ( t )+M 53 ẅmn ( t )+M 55 ϕ̈̄mn ( t )+
K 51umn ( t )+ K 52vmn ( t )+ K 53wmn ( t )+
K 54ϕmn ( t )+ K 55 ϕ̄mn ( t )= 0 (53)

where m = 1，2，…，m̄；i = 1，2，…，m̄；n = 1，
2，… ，N；m ≠ i and m ± i are odd numbers.
Mij and Kij are integral coefficients.

Eqs.（49—53） can be written in the matrix
form as

MẌ+ CẊ+ KX= 0 (54)
where M，C，K denote the mass，damping and stiff⁃
ness matrices，respectively；X is a 5×m̄×N col⁃
umn vector consisting of umn( t )，vmn( t )，wmn( t )，
ϕmn( t ) and ϕ̄mn( t ).

Eq.（54） is solved in the state space by setting
X= eΛ tq， which gives the following eigenvalue
equation

Λ
ì
í
î

ü
ý
þ

q

Λq
= é
ë
êêêê

ù
û
úúúú0 I

-M-1K -M-1C

ì
í
î

ü
ý
þ

q

Λq
(55)

where {q Λq }T is the state vector. It should be
noted that eigenvalue Λ is a non-zero complex num⁃
ber. The imaginary part of Λ is the frequency and
the real part is the damping.

2 Numerical Results and Discus⁃
sion

The natural frequency is obtained by finding

the eigenvalues of the matrix é
ë
êêêê

ù
û
úúúú0 I

-M-1K -M-1C
.

In order to demonstrate the accuracy of the present
analysis，a comparison investigation related to a liq⁃
uid-filled homogenous cylindrical shell is carried
out. The used parameters are：h/R = 0.01，ρf =
1 000 kg/m3，iron density ρ = 7 850 kg/m3，L/
R = 2 and ν = 0.3. For convenience，the non-di⁃
mensional axial flow velocity V is defined as V =

U/ { ( π/L2 ) [ D/( ρh ) ]1/2 } with D = Eh3/ [ 12( 1-
ν2 ) ]； the non-dimensional eigenvalue Ω is intro⁃
duced as Ω = Λ/ { ( π2/L2 ) [ D/( ρh ) ]1/2 }. As can be
seen from Fig. 2，the result obtained from the cur⁃
rent analysis is in good agreement with Amabili et
al.［47］. The small difference between them is because
the rotational inertia terms I2 ϕ̈x and I2 ϕ̈θ were ne⁃
glected by Amabili et al.［47］. It is worth mentioning
that the real part represents the natural frequency in
Ref.［47］，which is caused by the use of different so⁃
lutions.

Next，we investigate the stability and free vi⁃
bration of FGM sandwich shells conveying fluid.
The fluid is considered as crude oil，with a mass
density ρf = 0.81 g/cm3［48］. Here，the ceramic and
metal forming the FGM sandwich shell shown in
Fig.1 are considered as Zirconia and Aluminum，re⁃
spectively. Their properties are［49］

Aluminum：Em = 70 GPa，νm = 0.3，ρm =
2 707 kg/m3

Zirconia：Ec = 151 GPa， νc = 0.3，ρc =

Fig.2 Non-dimensional eigenvalue Ω versus non-dimension⁃
al flow velocity V
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3 000 kg/m3

Fig.3 plots the non-dimensional natural fre⁃
quency versus the circumferential wave number n of
FGM sandwich shell conveying fluid. An obvious
trend can be found that the frequency first decreases
and then increases with the circumferential wave
number n. As a result，the fundamental natural fre⁃
quency of the system happens at mode（n = 5，
m = 1 for V = 0）. When V≠0，the modes are
coupled for the same circumferential wave number
n，and we take n = 5 as the representative circum⁃
ferential wave number for analysis.

Fig.4 shows the first two non-dimensional natu⁃
ral frequencies versus the non-dimensional flow ve⁃
locity of FGM sandwich shell conveying fluid，
where m̄ = 2 is adopted because more axial modes
have no effect on the first two natural frequencies.
As the flow velocity increases，it is found that both
frequencies decrease at first. If the flow velocity
reaches certain value，the first frequency vanishes.
This velocity is named the critical velocity，at which
the system loses its stability due to the divergence
via a pitchfork bifurcation. After a small range of in⁃
stability，the first frequency increases and then coin⁃
cides with the second frequency，and the system re⁃
covers its stability. Moreover，when the flow veloci⁃
ty is between about 2.1—2.5，the fluid-conveying
FGM sandwich shell loses stability，which should
be avoided in real application.

Fig.5 gives the first non-dimensional natural
frequency versus the length-to-radius ratio of fluid-

conveying FGM sandwich shell with different pow⁃
er-law exponents. It is shown that as the power-law
exponent increases，the first non-dimensional natu⁃
ral frequency shows an increasing trend. But the ef⁃
fect of power-law exponent becomes more and more
insignificant with increasing length-to-radius ratio. It
is also found that as the length-to-radius ratio L/R
increases，the first non-dimensional natural frequen⁃
cy decrease. When the length-to-radius ratio is
small，the first non-dimensional natural frequency
changes obviously. However，when this ratio is
large，the first non-dimensional natural frequency is
no more sensitive to the length-to-radius ratio.

Fig.3 Non-dimensional natural frequency versus cir⁃
cumferential wave number n of FGM sandwich
shell conveying fluid (m=1, L/R = 2.0, V =
0, k = 1, R/h = 80, h2/h = 0.2)

Fig.4 The first two non-dimensional natural frequen⁃
cies versus non-dimensional flow velocity of
FGM sandwich shell conveying fluid (n = 5,
L/R = 2.0, m̄= 2, k = 1, R/h = 80,
h2/h = 0.2)

Fig.5 The first non-dimensional natural frequency
versus length-to-radius ratio L/R of fluid-con⁃
veying FGM sandwich shell with different pow⁃
er-law exponents (n = 5, V = 1, m̄= 2,
R/h = 80, h2/h = 0.2)
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Fig.6 illustrates the first non-dimensional natu⁃
ral frequency versus the radius-to-thickness ratio of
fluid-conveying FGM sandwich shell with different
power-law exponents. It is shown that as radius-to-

thickness ratio R/h increases，the first non-dimen⁃
sional natural frequency of the fluid-conveying FGM
sandwich shell decreases.

Fig.7 presents the first non-dimensional natural
frequency versus the mass density ρf of fluid-convey⁃
ing FGM sandwich shell with different power-law
exponents. The first non-dimensional natural fre⁃
quency of the fluid-conveying FGM sandwich shell
decreases with increasing fluid mass density. This is
reasonable because the FGM sandwich shell vi⁃
brates as though its mass is increased by the mass of
fluid，which is defined as added virtual mass effect.

Fig.8 plots the first non-dimensional natural fre⁃
quency versus the core-to-thickness ratio h2/h of flu⁃
id-conveying FGM sandwich shell with different
power-law exponents. It is found that the first non-

dimensional natural frequency increases gradually as
the core-to-thickness ratio h2/h increases. This can
be understood because the increase of core-to-thick⁃
ness ratio enhances the stiffness of the structure.

3 Conclusions

The vibration and instability of FGM sandwich
shells conveying fluid are investigated based on the
third-order shear deformation shell theory. By using
the Hamilton’s principle，the governing equations
of the present system are derived. Results show that
as the flow velocity increases，the natural frequen⁃
cies of the fluid-conveying FGM sandwich shells de⁃
crease at first. When reaching the critical velocity，
the first frequency vanishes and the system loses its
stability. Moreover，the fluid-conveying FGM sand⁃
wich shells lose stability when the non-dimensional
flow velocity falls in 2.1—2.5，which should be
avoided in submarine oil transport. Besides，the first
non-dimensional natural frequency decreases with
the rise of fluid density， radius-to-thickness ratio
and length-to-radius ratio while increases with the
raise of core-to-thickness ratio and power-law expo⁃
nent. The fluid viscosity has insignificant effect on
the first non-dimensional natural frequency of the
fluid-conveying FGM sandwich shells.

Fig.6 The first non-dimensional natural frequency ver⁃
sus radius-to-thickness ratio R/h of fluid-con⁃
veying FGM sandwich shell with different pow⁃
er-law exponents (n = 5, L/R = 2.0, m̄= 2,
V = 1, h2/h = 0.2)

Fig.7 The first non-dimensional natural frequency versus
the fluid density ρf of fluid-conveying FGM sand⁃
wich shell with different power-law exponents (n =
5, L/R = 2.0, m̄= 2, V = 1, h2/h = 0.2,
R/h = 80)

Fig.8 The first non-dimensional natural frequency versus
core-to-thickness ratio h2/h of fluid-conveying
FGM sandwich shell with different power-law ex⁃
ponents (n = 5, L/R = 2.0, m̄= 2, V = 1,
R/h = 80)
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基于三阶剪切变形理论功能梯度夹层输流圆柱壳的振动与

稳定性研究

李志航 1，张宇飞 2，王延庆 1

（1.东北大学理学院结构动力学重点实验室，沈阳 110819, 中国；2.沈阳航空航天大学航天工程学院，

沈阳 110136，中国）

摘要：研究了功能梯度夹层圆柱壳输送流体时的振动与稳定性。使用 Navier⁃Stokes方程推导得出作用在功能梯

度夹层圆柱壳上的流体动压力。基于三阶剪切变形壳理论，利用哈密顿原理推导得出输流功能梯度夹层圆柱壳

的控制方程。本文结果与已有结果的对比研究检验了本文方法的有效性。结果表明：输流功能梯度夹层圆柱壳

的固有频率随着芯厚比和幂律指数的增大而增大，随流体密度、径厚比和长径比的增大而减小。当无量纲流速

在 2.1~2.5时，输流功能梯度夹层圆柱壳将失去稳定，工程应用中应避免这种情况。

关键词：功能梯度夹层圆柱壳；流体；三阶剪切变形壳理论；振动；稳定性
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