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Abstract: The modified couple stress theory (MCST) is applied to analyze axisymmetric bending and buckling
behaviors of circular microplates with sinusoidal shear deformation theory. The differential governing equations and
boundary conditions are derived through the principle of minimum total potential energy, and expressed in nominal
form with the introduced nominal variables. With the application of generalized differential quadrature method
(GDQM), both the differential governing equations and boundary conditions are expressed in discrete form, and a set
of linear equations are obtained. The bending deflection can be obtained through solving the linear equations, while
buckling loads can be determined through solving general eigenvalue problems. The influence of material length scale
parameter and plate geometrical dimensions on the bending deflection and buckling loads of circular microplates is
investigated numerically for different boundary conditions.
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0 Introduction

Recent years, the micro- and nano-scale circu-
lar and annular plates are widely applied in micro-/
nano-electro-mechanical systems such as accua-

I, sensors™’, resonators®® and so on. Both

tors'
experimental tests and molecule simulation have
shown that the mechanical responses of micro- and
nano-scale structures are size-dependent. Classical
continuum mechanics fails to capture the size-depen-
dent behaviors of micro- and nano-scale structures
due to the absence of intrinsic length parameters.
Several high-order continuum mechanical models,
e.g. modified couple stress theory (MCST) """ and
strain gradient theory (SGT)'®? | have been devel-
oped to address the size-dependent behaviors.

SGT: Gousias and Lazopoulos'” derived the

in-close form solution for static bending of clamped
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and simply-supported circular Kirchhoff plates. Ji et
al.""" compared the bending and vibration responses
of circular Kirchhoff plate with different strain gradi-

ent theories. Li et al.['?’

applied general differential
quadrature method (GDQM) to study the nonlinear
bending of circular Kirchhoff plate. Ansari et al.'**'"
applied GDQM to study thermal stability of annular
Mindlin microplates and the nonlinear bending,
buckling and free vibration of Mindlin plate. Mo~
hammadimehr et al.'"”’ applied GDQM to study the
dynamic stability of annular Mindlin sandwich
plates. Zhang et al.'"" applied GDQM to study the
bending, buckling and vibration of third-order shear
deformable circular microplates.

MCST: Combining the orthogonal collocation
point method and Newton-Raphson iteration meth-

1ﬁ17]

od, Wang et a studied the nonlinear bending be-

havior of clamped and simply-supported circular
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Kirchhoff plates. Ke et al.'"™ employed GDQM to
study the bending, buckling and vibration behaviors
of annular Mindlin plate. Arshid et al."”” studied the
influence of Pasternak foundation on the bending
and buckling response of annular/circular sandwich
Mindlin sandwich microplate. Reddy and Ber-
ry"™ and Reddy et al."*"’ derived the differential gov-
erning equations and developed finite element model
for nonlinear axisymmetric bending of functionally
graded circular Kirchhoff and Mindlin plates, respec-
tively. Zhou and Gao'** applied Fourier-Bessel se-
ries to study the linear bending of clamped circular
Mindlin plate. Eshraghi et al."* applied GDQM to
study the bending and free vibrations of thermally
loaded FG annular and circular micro-plates based
on Kirchhoff plate, Mindlin plate and third-order
shear deformation theories. Sadoughifar et al."*") em-
ployed GDQM to study the influence of Kerr elastic
foundation on the nonlinear bending of thick annular
and circular microplate based on two-variable shear
deformation theory.

In this paper, MCST is applied to study the ax-
isymmetric bending and buckling circular micro-
plates based on sinusoidal shear deformation theory.
The differential governing equations and boundary
conditions are derived through the principle of mini-
mum potential energy. Several nominal variable are
introduced to simplify the mathematical expression,
and the governing differential equations and bound-
ary conditions are discretized with GDQM. The ef-
fect of material length scale parameter and plate di-
mensions as well as boundary conditions on bending
deflections and buckling loads is investigated numer-

ically.
1 Mathematical Modeling

The annular plate with thickness /4, inner radi-
us a and outer radius & is defined in a cylindrical co-
ordinate system(r,z) where the 7axis is on the mid-
plane and the z-axis is parallel to the thickness direc-
tion, as shown in Fig.1. Notice that the annular
plate turns to be solid circular plate for a=0.

The displacement field of circular plate based

(5

Fig.1 Schematic diagram of annular plate

on sinusoidal shear deformation theory is assumed

[25]

as'
[y, up,u. ]=[—2w'(r)+ sin(Bz)¢(r),0,w(r)]

(1)

where p=mx/h and “'” denotes the differentiation

with respect to r.

According to the modified couple stress theo-
rym , the nonzero strain e; and symmetric curvature
components y,; can be expressed as

g, = —zw"+ sin(Bz)¢’
ep="(—zw'+sin(pz)¢p)/r
y==pcos(Bz)¢

Y=L 2w'— 2rw"— Bcos( Bz )(p — r¢'") 1 /4r

(2)

The virtual strain energy of the plate can be cal-

culated as

SU = 2r|[(rM,, ) — My + M +(rM )] 0|’ +
(PNa+ M,/2) 89| — r(M,+ M) 0w 1+
[(Ny =Ny = ((rMp, )+ Mo, ) /24 rQ,) 8¢ +
(Mf)—(M,)"— My —(rM,, ))ow 1dr)  (3)

where

|: N1, Ny ]:JM , I: Orrs 0'56] Sm(ﬂz)dz

—h/2

h/2

[QMyl=| [o.my]feos(pz)dz (4

02
[ M., M g5, M 5, ]:J [ 20, X0, mrﬂ] dz
—h/2

The virtual work done by the external axisym-

metric loads is given by

b

oW = 271{ rPw'dw ’b +J [rg — P(rw')]owdr) (5)

where ¢ and P are the distributed transverse load

and inplane radial compressive force, respectively.
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Based on the principle of minimum potential en-
ergy, the differential governing equations and

boundary conditions can be expressed as

N —(rNa)' =M ) + Mo ] /2 +rQ, =0
M, —(rM,.)"— M), —(rM,,)" —rg + P(rw')=0
(6)
(PNa+M,/2) 8¢] =0
[(#M,,) — M, + M, +(rM,m ) —rPw
[r(M,+M,)]
(7)

Based on the modified couple stress theory,
the relation between general stress and strain compo-
nents can be expressed as

o,=FE (e, +vey)/(1—1V")

0 =E(ve, + e,)/(1—")

0.= Gy,

m,y=2Gl* %,
where E, G and v are Young’s modulus, shear mod-
ulus, Poisson’s ratio, respectively, and /is the ma-
terial length scale parameter which describes the mi-
crostructural effect.

Combination of Eq.(4) with Egs.(2) and (8)

gives
Ny=—D,(w"+vw'/r)+ D, (¢ + vp/r)
Ny =—D,(vw"+w'/r)+ D,(vp'+ ¢/r)
Q, :Dzs¢
M., D(w"+vw'/r)+ D, (¢ +vp/r) (9)

D(

M, D(vw"+ w'/r )+ D, (vp'+ ¢/r)

M,y =D.(¢'— ¢/r)/2+ Ghl*(w'/r —w")
Mr027 (¢*¢/7’)/2+D;4(w’/r*w”)

where

D=ER/[12(1 —*)]
E h/2 ‘ .,
- ZJ [2f(2),f% (=

1% —h/2

[D:l,Dzz]:

D.=G[ (f'=))de

h/2
= Glzj f'(z)dz
—h/2

Do=Gt[ (fi(e)rde

Taking into account Eq.(9), the differential

governing equations and boundary conditions can be

expressed as
(D,+D.)(w/r—w'—rw”)—
(Do+Ds)(¢p/r—¢'—r¢")—rD,p =0
[(D+ Gh* ) (w'/r* — w"/r + 2w"+ rw'™)—
(Da+Du)(@/r*—¢'/r+2¢"+rp") I=1rq
(11)
rw"+vw')— D, (r¢'+vp)— Doy (w'—
w')/2+ D (—rg)/4] 0| =0
[(D+ GrP N (w'/r—w
(Do +D./2)(/r—¢'— "] dw| =0
[D(rw"+vw')— Ghl* (w'— rw”)—
D (rd' 4 v)+ Dos(p— rg) /210w =0

[ D

"__ rww)i

(12)

2 Numerical Solution Based GDQM

In order to simplify the mathematical expres-

sion, the following nominal variables are introduced

R=b—ua

a=a/R

n=(r—a)/R (13)
W(p)=w(r)/R

D(p)=¢(r)

Therefore, the differential governing equations

and boundary conditions can be expressed in nomi-

nal form as

(Do +Du/2) LW W g, — W'/pil—
(Do = D/4)[@"+ @'/9, — @/72 ]+
DsR°®=0

(D+ Ghl*) (W +2W"/ g, — W"/5. +
W,/Wz]*( D, + D:4/2 ) [ Q"+ @”/770( -
Q'/pi+ /51— RPg=0

(14)

(W' (D, + D./2)+ W'(vD,— D,/2) /9, —
@'(D.,+ D;/4)— ®(vD., —
D../4)/7.)] 60| =0

(D4 Gh* YW+ W9, — W'/92)— (D, +
D./2)(@"+ @'/y,— @/9:)] oW | =0

[W"(D+ Ghl*)+ W'(vD — Ghi*) /5, —

@' (D, +Dy/2)— ®(D., —
D./2)/7.16W'|,=0

where 7, = a + 7.
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Based on the basic procedure of the GDQM,
the nominal radial coordinate is discretized by N
nodes
7,=[1—cos((i—1)n/(N—1))]/2 (16)
where i =1, 2, ---, N.

According to Bellman et al.”®’, and Wu and

Liu?", the function @ and W can be approximated
as
N
®=>L.(7)of
k=1
N+2 (17)
W= S[}k(ﬁ )é\kw

k=1

where L, and ¢, are L.agrange and Hermite interpola-

tion basis functions which are defined explicitly

in[26’27]’ and
64):[@(7]1) @(772) @(ﬂw)]T
oV =[Wi(n) W(y,) Wpy) (18)

W' (n) Wip)]'

Performing derivative respect to 5 on Eq.(17),

one obtains
. (i) q @

where X' and Y are the weighting coefficients of
the ith-order derivative and Einstein summation con-
vention is adopted in this paper. m and n vary from 1
to N and N+2, respectively.
(Dy+Dy/2) [W"+ W"/p,— W'/pi]l—

(D.—Ds/4)[ "+ @'/9,—

/92 ]+ D,R*®=0
(D+ Ghl* ) W +2W"/p,— W"/9:+

W'/9:]— (Do + D./2) [ @"+ @"/9, —

Q'/pi+ @/9.]1— R'¢q=0

(20)

[W"(D.+ Do/2)+ W'Dy — D./2) /7. —
®'(D.,+D,/4)— d(vD., —
D./4)/7.)] 6@] =0

[(D+ GR*YW"+ W"/ g, — W'/p2)—
(D, +Du/2)(@"+ @'/7,— (21)
@/72)] oW | =0

[W"(D+ Ghi*)+ W'(vD — Ghi®) /5. —
®'(D.,+ D./2)— ®(vD., —
D./2)/7.16W'|,=0

The differential governing equations and bound-
ary conditions can be expressed in discrete form,
and there are 2N+ 2 linear equations. One can ex-
press the discrete linear equation in matrix form as

[K—Pn—&'M]d=gq (22)
where K, n, and M are stiffness, geometrical stiff-
ness and mass matrices based on GDQM, respec-
tively. d=[ 6" &% ], ¢ is the load vector.

For a circular plate (¢ =a=10) , according to
the L’ Hospital’ s rule, the boundary conditions
(Eq.(15)) at y = 0 can be approximated as

W'=0
(D+ GhP)W"—(D,+ D,/2)®"=0 (23)
D.W"—D_,®'=0

Therefore, the boundary condition at 7 =0 for
solid circular plates can be expressed in discrete
form as

X16) =0
(D+phl*)] X0 —(Da+ D./2)Y1) 60 =0
Xi'Dad) — D,Yy/00=0

(24)

3 Numerical Results and Discussion

In this section, the influence of the material
length scale parameter and geometrical dimensions
on the bending and buckling responses of circular
plates is investigated numerically. The material pa-
rameters are adopted as following®™': E=
1.44 GPa, v=10.38, [=17.6 pm.

Fig.2 illustrates the influence of R/h on nomi-
nal bending deflection (NBD) and nominal buckling
load (NBL) of circular solid plates without micro-
structural effect under clamped and hinged boundary
conditions, where CM indicates current model and

NBD=w(0)/[¢R"'/(64D)]
NBL = PR*/D

Meanwhile, results based on Kirchhoff and

(25)

Mindlin plate theories'*"

are plotted for comparison.
Fig.2 shows that, with the increase of R, bending
deflection and buckling loads based on CM approach
to those based on Kirchhoff plate theory. In addi-

tion, compared with bending deflection based on
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Fig.2 Validation of current model NBD and NBL of solid

circular plates without microstructural effect

Mindlin plate theory, CM would provide higher and
lower prediction for bending deflection of clamped
and hinged plates, respectively.

Fig.3 illustrates the influence of A// on normal-
ized bending deflection and buckling load of circular

solid microplates under clamped and hinged bound-

—
(=

=
g
51
% U
B [—
%008- —hli=2
g —hll=5
207t —h/i=10
Q
N
S 0.6
E
R

’ 8 12 16 20 24

R/
(a) Bending deflection
EZ.O- i
2 —hl=2
= —h/l=5
B Le6f —h/l=10
<
Q
N
'S
g V2 - ___
Z ~\‘ ~~~~~
8 12 16 20 24
R/h
(b) Buckling load

Fig.3 Microstructural effect on normalized bending deflec-

tion and buckling load of solid circular plates

ary conditions, in which, normalized bending deflec-
tion and buckling load are defined as the ratio be-
tween with and without microstructural effect.
Meanwhile, solid and dash lines represent results
for solid circular hinged and clamped microplates. It
can be seen that bending deflections decrease and
buckling loads increase with the decrease of A//. In
addition, the microstructural effect on clamped
plates is larger than on hinged plates.

Fig.4 illustrates the influence of buckling order
on normalized buckling load of circular solid micro-
plates under clamped and hinged boundary condi-
tions, where solid, dash-dot and dash lines repre-
sent data for A/[=2, h/[=5 and h/[=10; 1—6 de-
note buckling order. It can be seen that the micro-
structural effect increases with the decrease of h//

and the increase of buckling order.
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(b) Hinged solid circular plate

Fig.4 High-order normalized buckling loads of clamped and

hinged solid circular plates

Fig.5 illustrates the influence of R/Ah and a/h
on nominal buckling loads of annular microplates un-
der clamped-clamped and hinged-hinged boundary
conditions, in which, red, green and blue lines rep-
resent data for h//=2, h/[=5 and h//=10. It can
be seen that NBLs increase consistently with the in-

crease of R/h and decrease of a/h.
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Fig.5 Nominal buckling loads of clamped-clamped and

hinged-hinged annular plates

4 Conclusions

Static bending and elastic buckling of circular
microplates are investigated on the basis of modified
stress couple theory and sinusoidal shear deforma-
tion theory. The differential governing equations
and boundary conditions are derived through the
principle of minimum total potential energy. Several
nominal variables are introduced to simplify the
mathematical expression. I” Hospital’ s rule is ap-
plied to deal with the boundary conditions of plate
center for circular microplates. The general differen-
tial quadrature method is applied to discretize the dif-
ferential governing equations and the boundary con-
ditions, and a set of linear equations are obtained.
Validation 1s performed through comparing the re-
sults of the proposed model without microstructural
effect with those of the methods based on classic
Kirchhoff and Mindlin plate theories.

Based on numerical results of this study, one
can obtain the following conclusions:

(1) For circular solid microplates, bending de-

flections increase and buckling loads decrease with

the increase of 4//, and nominal bending deflections
and buckling loads approach to constants with the in-
crease of R/h.

(2) For annular microplates, nominal buckling
loads increase with the increase of R/A and decrease
of a/h.
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