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Abstract: This paper is focused on control design for high‑precision satellite rendezvous systems. A relative motion
model of leader‑follower satellites described by relative orbit elements（ROE）is adopted，which has clear geometric
meaning and high accuracy. An improved repetitive control（IRC） scheme is proposed to achieve high‑precision
position and velocity tracking，which utilizes the advantage of repetitive control to track the signal precisely and
conquers the effects of aperiodic disturbances by adding a nonsingular terminal sliding mode（NSTSM）controller. In
addition，the nonlinear state error feedback（NLSEF） is used to improve the dynamic performance of repetitive
controller and the radial basis function （RBF） neural networks are employed to approximate the unknown
nonlinearities. From rigorous Lyapunov analysis，the stability of the whole closed‑loop control system is guaranteed.
Finally，numerical simulations are carried out to assess the efficiency and demonstrate the advantages of the proposed
control scheme.
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Nomenclature

Ω/rad Right ascension of ascending node
ω/rad Argument of perigee
i/rad Orbit inclination
a/km Semi‑major axis
e Eccentricity
θ/rad True anomaly
u/rad Argument of attitude
D/(rad·s-1) Relative average drift rate
Δe Relative eccentricity vector
Δi Relative inclination vector
ΔM/rad Difference of mean argument of

latitude
n̄/(rad·s-1) Average angular velocity
n/(rad·s-1) Orbit angular velocity
μ/(m3·s-2) Earth gravitational constant
r/km Distance between satellite and

the Earth

Δr/km Distance between two satellites
xp1 Relative position
xp2 Relative velocity
xp1d Expected relative position
xp2d Expected relative velocity

0 Introduction

Nowadays，people expect satellites to have lon‑
ger life spans， for example， refueling a satellite
when it runs out of fuel，repairing a satellite when
failure happens，or removing components when a
satellite assignment is completed. These are called
on-orbit services（OOS）for satellites. For these op‑
erations，the satellite rendezvous technology is es‑
sential.

To gain better satellite rendezvous control per‑
formance，an accurate model of satellite formation
flying dynamics is essential. Considerable efforts

*Corresponding author，E-mail address：ruiyun.qi@nuaa.edu.cn.
How to cite this article: ZHANG Yi，QI Ruiyun. Improved repetitive control for high-precision satellite rendezvous［J］.
Transactions of Nanjing University of Aeronautics and Astronautics，2022,39(2)：201‑218.
http：//dx.doi.org/10.16356/j.1005‑1120.2022.02.007



Vol. 39Transactions of Nanjing University of Aeronautics and Astronautics

have been devoted to relative motion dynamical
equations. One of the most famous and widespread
models is Clohessy-Wiltshire（C-W） equations of
motion［1］，which is used to describe the relative posi‑
tion and velocity between leader and follower satel‑
lites in close rendezvous phase［2］. The C-W equa‑
tions set a rotating Cartesian coordinate system with
the origin on the leader satellite，resembling Hill
equations in the form［3］. Thus，the equations are al‑
so referred to as Hill-Clohessy-Wiltshire（HCW）

equations. In order to have a simple and linear ex‑
pression，the C-W equations make some assump‑
tions，such as the leader satellite orbit being circu‑
lar， and the Earth being symmetrically sphere.
These assumptions not only affect the model preci‑
sion，but also have effects on fuel consumption.

Among work aiming at promoting the applica‑
tion of C-W equations［4-10］，Tschauner-Hempel（T-

H）equations［9］ describe another widely used model
for formation flying，taking the eccentricity of the
leader satellite orbit into consideration.

Some work followed another idea to obtain a
precise model. A set of six constants can determine
an arbitrary satellite orbit， including the orbit
shape，position，and satellite motion information.
The six constants are named Kepler elements，or
absolute orbit elements（AOE）in this paper. Hill［3］

mentioned another set of six constants，named rela‑
tive orbit elements （ROE） in his lunar theory，
which determines the relative motion between lead‑
er and follower satellites. There is correspondence
and association between absolute and relative orbit
elements. The relative motion model is established
and analyzed based on ROE［11‑12］. The ROE has
clear geometrical meanings，making the model easy
to understand，and the model based on ROE unifies
the expression of both elliptical orbit and circular or‑
bit without singularities，which C-W equations and
T-H equations fail to do. Most importantly， the
model based on ROE is proved to achieve high pre‑
cision［13］. Despite the abovementioned advantages of
ROE，some studies［11-13］ focus on trajectory analy‑
sis，or only design simple control schemes. Com‑

mon controllers are usually described in Cartesian
coordinates. The rendezvous models described by
ROE need transformation before they are suitable
for common controllers.

Based on the relative position and relative ve‑
locity described by ROE［11‑12］，our study transfers
the relative motion model into the form of Cartesian
equations. In this way，the relative motion model in
this paper is more suitable for design process control.

Studies have been done on controling a follower
satellite to maintain a certain position against a leader
satellite. At the early stage， open-loop control
schemes were attempted in satellite rendezvous［14-15］，

which could hardly satisfy the precision and robust‑
ness standard of satellite operations. To deal with
the outer disturbances and model uncertainties，
most methods［16-29］ took them as an external un‑
known term， and designed close-loop control
schemes to reduce the impact of the disturbances on
the models. Sliding mode control is a popular con‑
trol scheme in various circumstances［23-29］. In particu‑
lar， terminal sliding mode （TSM） controller is
proved to have finite convergence time and good an‑
ti-interference performance［29］. However， the con‑
trol precision can be further enhanced if the perturba‑
tions causing model uncertainties and external distur‑
bances are analyzed separately［15，23］. As an impor‑
tant indicator in satellite rendezvous mission，track‑
ing precision was not the priority in some stud‑
ies［24-29］，and the precision level achieved by them
can be further improved.

Sliding mode control provides stability for
tracking. However，in order to meet the precision
requirement of satellite rendezvous mission， the
control scheme needs modification. Our study com‑
bines the advantages of the radial basis function
（RBF） of sliding mode control and the repetitive
control，consequently improving the precision of the
control system，when the stability of the system is
guaranteed.

The repetitive controller is commonly seen in
high-precision periodic control tasks. The repetitive
control loop contains a dynamic model of the track‑
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ing signal，and the control variable of the last period
is added into that of the current period. In time，the
repetitive controller is able to track any periodic sig‑
nals with no steady state error. The impact of the re‑
petitive controller adds up for each period，and a
proper control output can remain even when track‑
ing error comes to zero. Hence，the repetitive con‑
troller is applied widely in various areas. Neverthe‑
less，there are few examples of satellite rendezvous
mission using the repetitive control，because aperi‑
odic disturbances in outer space are amplified by the
repetitive controller［30］.

Considering model complexity increased by the
repetitive controller and the nonlinearity of the con‑
trol system， the nonlinear state error feedback
（NLSEF） containing an extended state observer
（ESO） is utilized to estimate the model states and
improve the dynamic performance of the repetitive
controller. ESO requires very little information and
observes well. The error feedback law made by
NLSEF is more effective than the linear control
law，like traditional PID control. However，it is dif‑
ficult to analyze the convergence characteristics of
NLSEF with ESO. In our study，the repetitive con‑
troller improved by NLSEF is regarded as an aug‑
mented system，and sliding mode control is used to
strengthen the robustness of the system while RBF
neural networks are used to estimate model uncer‑
tainties.

Compared with the previously work on satellite
rendezvous control，the main contributions of this
paper are as follows：First，state-space equations of
the leader-follower satellites are deduced by using
relative position and velocity based on ROE. The
model has clear geometric meaning and high accura‑
cy，and most closed-loop control methods can be ap‑
plied to this model directly. Second，to achieve high-

precision satellite rendezvous with external distur‑
bances and model uncertainties，our study takes ad‑
vantage of the repetitive controller，and tracks ex‑
pected position and velocity signals accurately.
Third，a sliding mode controller is employed to im‑
prove the robustness of the repetitive controller，

and guarantees that the system is converged in finite
time. Further，NLSEF is added to the repetitive
controller to adjust the dynamic performance，and
the model uncertainties caused by various perturba‑
tions are approximated by RBF neural networks.

The remainder of our paper is organized as fol‑
lows. In Section 1，the dynamic model of leader-fol‑
lower satellites is proposed. In Section 2，the con‑
troller combining the repetitive control and sliding
mode control is developed. In Section 3，the stabili‑
ty and convergence property of the control scheme
is analyzed strictly. In Section 4，a numeric simula‑
tion is presented to verity of the control scheme. Fi‑
nally，conclusions are drawn in Section 5.

Notations：A specification of symbols is ex‑
plained in advance.

For an arbitrary vector v=[ v1 v2 v3 ] T ∈ R 3

and an arbitrary real constant c> 0，the exponent of
the vector v c is defined as

v c= é
ësgn ( )v1 || v1

c
sgn ( )v2 || v2

c
sgn ( )v3 || v3

c ù
û

T

where for any real number ξ

sgn ( ξ )=
ì

í

î

ïïïï

ïïïï

1 ξ> 0
0 ξ= 0
-1 ξ< 0

1 Problem Formulation

In this paper，the leader satellite is in an ellipti‑
cal orbit，and orbits without any extra control. The
control scheme is aimed at the follower satellite.

Our model uses ROE to construct dynamical
equations. The model has clear geometrical mean‑
ings，unifies the expression of both the elliptical or‑
bit and the circular orbit without singularities，and
achieves high precision［14］.

1. 1 Relative orbit elements

The traditional AOE is the right ascension of
ascending node（RAAN） Ω，argument of perigee
ω，orbit inclination i，semi-major axis a，the eccen‑
tricity of the orbit e，and initial mean anomaly M 0.

Six ROEs are the relative average drift rate D，

relative eccentricity vector Δe=[Δex Δey ] T，rela‑
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tive inclination vector Δi=[Δix Δiy ] T，and differ‑
ence of mean argument of latitude ΔM '［31］. Δi de‑
scribes the orientation of the follower satellite orbit
plane. Δe describes the shape of the orbit plane. D
describes the size of the orbit and ΔM ' describes the
position of the orbit.

In Fig.1，O is the center of Earth，P l and P f
are perigees of the leader and the follower satellite
orbits；B l and B f are ascending nodes of the leader
and the follower satellite orbits；e l and e f are eccen‑
tricity vectors of the leader and the follower satellite
the orbits，and Δe is relative eccentricity vector；i l
and i f are inclination of the leader and the follower
satellite orbits；P 'f and e 'f are projections of P f and e f
in the leader satellite orbit plane.

A strict equivalence relation between AOE and
ROE is presented in Ref.［31］. However，in satel‑
lite rendezvous situation，two satellites are close to
each other. That is Δr a l ≪ 1，where Δr is the dis‑

tance between two satellites，and a l is the semi-ma‑
jor axis of the leader satellite. Then the relationship
between ROEs by AOE can be expressed as［31］

ì

í

î

ï

ï

ï
ïï
ï
ï

ï

ï

ï

ï

ï

ï
ïï
ï
ï

ï

ï

ï

D= n̄ f - n̄ l
Δex= e f cos ω f - e l cos ω l
Δey= e f sin ω f - e l sin ω l
Δix= ( )Ω f - Ω l sin i f
Δiy= i l - i f

ΔM '= ( )ω f - ω l + ( )M 0f -M 0l + ( )Ω f - Ω l cos i l

(1)
where subscript l represents the leader satellite，and

subscript f the follower satellite；n̄= μ a3 is the

average angular speed，and μ the Earth gravitational
constant.

1. 2 Relative dynamical equations

In the local vertical local horizontal（LVLH）
frame L‑XYZ with the leader satellite centroid as
the origin，as shown in Fig.2，where X is along the
radial direction of the leader satellite，Y is normal to
the orbital plane of the leader satellite，and Z com‑
pletes the right-handed Cartesian frame.

The relative dynamical equations of two close
satellites are as follows［31］

ì

í

î

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

x= ( )1+ r
a
⋅ 1
1- e2

a ( )Δex sin u-Δey cos u +

1- e2 ( )ar aΔM '( )t + Δ 1

y= ( )ra a ( )Δix cos u+Δiy sin u

z= a ( )Δex cos u+Δey sin u + ( )ra a
2D
3n̄ + Δ 2

(2)

where

Δ 1 = a (Δey cos ω-Δex sin ω) ( ra ) ⋅
é

ë

ê
ê
êê
ê
ê( 1- 1- e2

e
- e) ( ar ) 2 - e

1- e2
ù

û

ú
úú
ú
ú
ú

Δ 2 =-
a sin θ
1- e2

é
ë
êêêêeΔM '+ ( )1- e2 - 1 ⋅

]( )Δey cos ω-Δex sin ω

and r= a ( )1- e2 ( )1+ e cos θ is the distance be‑

Fig.1 Geometric description of ROE

Fig.2 Schematic diagram of LVLH frame
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tween the leader satellite and the Earth；u= θ+ ω
is the argument of the latitude of leader satellite；θ
is the true anomaly of the leader satellite；Δ 1 is an
additional translation term along X direction；and Δ 2
is a pendulum term of Δ 1 on the basis of satellite’s
elliptical orbit.

Assumption 1［31］ Relative average drift rate D
and difference of mean argument of latitude ΔM ' are
bounded. The first and the second derivatives of D
and ΔM ' are bounded.

Remark 1 Since two satellites are close to
each other，the differences of their RAANs Ω and
orbit inclinations i can be considered small. It is ra‑
tional to suppose that the differences between their
orbit sizes and orbit positions are small，which are
described by relative average drift rate D and the dif‑
ference of mean argument of latitude ΔM '.

Assumption 2［31］ Additional terms Δ 1 and Δ 2
are bounded. The first and the second derivatives of
the additional terms are bounded.

Remark 2 Except in some special cases
where orbit eccentricity e is close to 1，the numeri‑
cal magnitudes of Δ 1 and Δ 2 are small.

Denote σ1( t )= 1- e2 ( a r ) aΔM '( t )+ Δ 1

and σ2( t )= ( r a ) a ( 2D 3n̄ )+ Δ 2. Based on As‑
sumptions 1 and 2，σ1，σ2 and their first and the sec‑
ond derivatives are bounded. Then Eq.（2）turns into
ì

í

î

ï

ï
ïïï
ï

ï

ï

ï

ï
ïïï
ï

ï

ï

x= ( )1+ r
a
⋅ 1
1- e2

a ( )Δex sin u-Δey cos u + σ1

y= ( )ra a ( )Δix cos u+Δiy sin u

z= a ( )Δex cos u+Δey sin u + σ2

(3)

The variables with respect to time in Eq.（3）
are argument of latitude u= θ+ ω and distance be‑
tween the leader satellite and the Earth r. Their de‑
rivatives with respect to time are

ì

í

î

ï

ï

ï
ïï
ï
ï

ï

ï

ï

ï

ï

ï
ïï
ï
ï

ï

ï

ï

du
dt =

dθ
dt = n̄ 1- e2 ( )ar

2

d
dt ( )ra = n̄

e sin θ
1- e2

d
dt ( )ar =- n̄ ( )ar

2
e sin θ
1- e2

Taking the derivate of Eq.（3）with respect to
time leads to
ì

í

î
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dx
dt = an̄ 1- e2 ( )ar

2( )1+ r
a
⋅ 1
1- e2

⋅

( )Δex cos u+Δey sin u +
an̄
1- e2

⋅

e sin θ
1- e2

( )Δex sin u-Δey cos u +
dσ1
dt

dy
dt = an̄ 1- e2 ( )ar ( )-Δix sin u+Δiy cos u +

an̄
e sin θ
1- e2

( )Δix cos u+Δiy sin u

dz
dt = an̄ 1- e2 ( )ar

2

⋅

( )-Δex sin u+Δey cos u +
dσ2
dt

(4)
According to Eqs.（3，4），the state space equa‑

tions can be obtained as follows
ì
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î

ï

ï
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ï

ï

ï

ï

d2 x
dt 2
=- n̄2 ( )1+ e cos θ 5 + ( )1+ e cos θ 3

( )1- e2
3( )2+ e cos θ

x-

2n̄ ( )1+ e cos θ 3
e sin θ

( )1- e2
3 z+ d2σ1

dt 2

d2 y
dt 2
=- n̄2 ( )1+ e cos θ 3

( )1- e2
3 y

d2 z
dt 2
=- n̄2 ( )1+ e cos θ 4

( )1- e2
3 z-

2n̄ ( )1+ e cos θ e sin θ
( 1- e2 )3

dz
dt +

d2σ2
dt 2

(5)

Eq.（5）is a state space expression in Cartesian
coordinate system，which is suitable for control de‑
sign， and the adaptability and high precision of
ROE are still preserved.

1. 3 Transformation

The true anomaly θ presents the angular dis‑
tance of a satellite past the point of periapsis mea‑
sured in degrees，and increases monotonically with
time. Then the state variables changing in time can
be transformed，and the true anomaly θ is chosen as
an independent variable. It is more convenient for
the control design process.
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Variable x is taken as example［32］. The relation‑
ship between the derivative with respect to time
dx dt= ẋ and the derivative with respect to true
anomaly dx dθ= x' can be expressed as

ẋ= dx
dθ
dθ
dt = nx'

ẍ= d
dt ( ẋ )=

d
dt ( nx')=

d
dθ ( nx')

dθ
dt =

( n'x'+ nx″) n= nn'x'+ n2 x″

where n is the orbit angular velocity of the leader sat‑
ellite，and

n= μ

( )a ( )1- e2
3 ( 1+ e cos θ ) 2

n'=-2
μ

( )a ( )1- e2
3 ( 1+ e cos θ ) ( e sin θ )

Then Eq.（5） can be transformed into state
space equations with true anomaly θ as independent
variable

ì
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ï

ï
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ï
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x″=- n̄2
( )1+ e cos θ 5 + ( )1+ e cos θ 3

n2( )1- e2
3( )2+ e cos θ

x-

2n̄ ( )1+ e cos θ 3
e sin θ

n2( )1- e2
3 z- n'

n
x'+

nn'σ '1 + n2σ ″1

y″=- n̄2
( )1+ e cos θ 3

n2( )1- e2
3 y- n'

n
y '

z″=- n̄2
( )1+ e cos θ 4

n2( )1- e2
3 z-

n'- 2n̄ ( )1+ e cos θ e sin θ 1- e2
3

n
z'+

nn'σ '2 + n2σ ″2

(6)

Eq.（6）can be rewritten as
é

ë

ê

ê
êêê
ê

ê

ê ù

û

ú

ú
úú
ú

úx″
y″
z″

= F 1 ( x,y,z,θ)+ σ ( θ ) (7)

where

F 1 =

é

ë

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê
êê
ê

ê

ê

ê

ê

ê

ê

ê

ê
ù

û

ú

ú

ú

ú

ú

ú

ú

ú

ú
úú
ú

ú

ú

ú

ú

ú

ú- n̄2 ( )1+ e cos θ 5 + ( )1+ e cos θ 3

n2( )1- e2
3( )2+ e cos θ

x- ( )1+ e cos θ 3
e sin θ

n2( )1- e2
3 ⋅ 2n̄z- n'

n
x'

- n̄2 ( )1+ e cos θ 3

n2( )1- e2
3 y- n'

n
y '

-
n'- 2n̄ ( )1+ e cos θ e sin θ 1- e2

3

n
z'-

( )1+ e cos θ 4

n2( )1- e2
3 ⋅ n̄

2 z

and

σ=
é

ë

ê

ê
êêê
ê ù

û

ú

ú
úú
ú

únn'σ '1 + n2σ ″1
0

nn'σ '2 + n2σ ″2

As the satellite orbits are in the outer space，
they are confronted with various perturbations and
disturbances. It is impossible to establish a perfect
model. Perturbations lead to measuring errors and
modeling inaccuracy， and are presented by
ΔA ( x，y，z，θ)∈ R 3. External disturbances are pre‑

sented by d 0( θ ) ∈ R 3.

Define x p1 = [ x y z ] T and x p2 =

[ vx vy vz ] T as the relative position and relative
velocity of the follower satellite， respectively.
Based on Eq.（7），the satellite rendezvous model is
expressed as

ì
í
î

x 'p1 = x p2 + ΔA
x 'p2 = F 1 + u+ d ( )t (8)

where d= d 0 + σ∈ R 3，and u∈ R 3 is the control
force.

Assumption 3 The unknown disturbances d
and the derivatives d ' are bounded， i. e. | di |≤
d̄ 1 ( i= x，y，z) and | d 'i |≤ d̄ 2( i= x，y，z)，where d̄ 1
and d̄ 2 are known constants.

1. 4 Control objective

In our research，the main difficulties in design‑
ing a satellite rendezvous controller are as follows：

（1）Though ROE has specific geometric mean‑
ing and high precision，it is necessary to make some
assumptions and simplifications to obtain a succinct
rendezvous model described by ROE［11‑12］. When it
is transformed into the Cartesian form，the precision
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has to be assured.

（2） After employing the improved repetitive

controller，with the existence of ESO，it is difficult
to provide the theoretic proof of the stability of the

augmented system［31］. Subsequent control schemes

are required to handle the increased uncertainties.

（3）The key purpose of our study is to design a

control scheme to achieve high-precision satellite

rendezvous. Our study outperforms other stud‑

ies［23-29］with an accuracy level of 5× 10-4 m.

Based on the relative motion model described

in Eq.（8），our study aims at designing an improved

repetitive control（IRC） scheme，making relative

position x p1 and relative velocity x p2 track given sig‑

nals x p1d = [ xd yd zd ] T and x p2d =

[ vxd vyd vzd ] T precisely，even with the existence
of model uncertainties and unknown disturbances，

and the ultimate thrust the engine can generate is

prescribed. The relative position error x p1 - x p1d is
bounded，and the relative speed error x p2 - x p2d con‑
verges to zero in finite time.

2 Control Design

First，as shown in Fig.3，a repetitive control‑
ler is designed to track expected position and veloci‑
ty signals precisely. An NLSEF is used to improve
the dynamic performance of the repetitive controller.

Second，as shown in Fig.4，the original rendez‑
vous model and the repetitive controller are regard‑
ed as an augmented system. An adaptive sliding
mode controller is designed for the augmented sys‑
tem，and ensures the system has good stability and
convergence property with disturbances. RBF neu‑
ral networks are designed to approximate the model
uncertainties，and sliding mode surface is designed
as nonsingular terminal sliding mode （NSTSM）

surface.

Fig.3 Configuration of repetitive controller

Fig.4 Configuration of repetitive controller and adaptive sliding mode controller
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2. 1 Repetitive controller

Essentially，the repetitive controller is a high-

precision feedback control system， implanting the
dynamic model of the external signal in the control‑
ler. The repetitive controller can track period signal
with no steady state error.

A proper feedback loop can improve the dy‑
namic performance of the repetitive controller.

NLSEF is robust and adaptable，and does not
rely on a specific model. This avoids the derivation
of the repetitive controller. In NLSEF structure，an
extended state observer is utilized to achieve state
feedback and model compensation.

As shown in Fig.4，the repetitive controller in‑
cludes a delay element e- sT and dynamic model of
the external signal q ( s )，where T is the delay con‑
stant. ε c ∈ R 6 is the output of the repetitive control‑
ler，and u t ∈ R 3 is the output of the repetitive con‑
troller with NLSEF.

According to Lemma 1 in Ref.［33］（see the
Appendix），to track the states of the rendezvous
model controlled by the repetitive controller，the ob‑
server in NLSEF is designed as

ì

í

î

ï
ïï
ï

ï
ïï
ï

ż1 = z2 - g1 ( )z1 - x p1

ż2 = z3 - g2( )z1 - x p1 + u t

ż3 =-g3 ( )z1 - x p1

(9)

where z1 ∈ R 3，z2 ∈ R 3 and z3 ∈ R 3 are state vari‑
ables of the observer. The functions g1( ·)，g2( ·) and
g3( ·) in Eq.（9）are chosen as［31］

g1 ( z1 - x p1)= b01 fal ( z1 - x p1,α1,δ1)
g2( z1 - x p1)= b02 fal ( z1 - x p1,α1,δ1)
g3 ( z1 - x p1)= b03 fal ( z1 - x p1,α1,δ1)

where b0i ( i= 1，2，3)，α1 and δ1 are adjustable pa‑
rameters，and function

fal ( ε,α,δ )=
ì
í
î

ïï

ïï

|| ε α sgn ( )ε  ε > δ

ε δ 1- α  ε ≤ δ

Especially，denote ap = z3 ∈ R 3，which com‑
pensates the unknown part of the model，and denote
zp =[ zT1 zT2 ] T ∈ R 6，which tracks the state vari‑
ables of the model controlled by the repetitive con‑
troller.

Denote the output of the repetitive controller

ε c =[ εTc1 εTc2 ] T，where ε c1 ∈ R 3 and ε c2 ∈ R 3. The
NLSEF control law u0 ∈ R 3 is expressed as

u0i= b1 fal (εc1i,α,δ)+ b2 fal (εc2i,α,δ)
i= x,y,z (10)

where b1，b2，α and δ are adjustable parameters.
The satellite rendezvous model and the repeti‑

tive controller with NLSEF are regarded as an aug‑
mented system. Based on the rendezvous model de‑
scribed in Eq.（8），observer described in Eq.（9），

and control law described in Eq.（10），the augment‑
ed system can be described as

ì
í
î

ïï
ïï

x 'p1 = x p2 + ΔA
x 'p2 = F 2( )x p1,x p2,z1,ε c,θ + u+ d

(11)

where F 2 = F 1 + u0 - ap.
Although the augmented system described in

Eq.（11） is able to track expected relative position
and velocity precisely without additional control
force u，it is poor at dealing with unknown distur‑
bances. An adaptive sliding mode controller is de‑
signed to address this problem.

2. 2 Sliding mode controller

Sliding mode control belongs to variable struc‑
ture control. The design process is independent
from system structure and external disturbances，
which makes the sliding mode controller robust.

RBF neural networks are feedforward net‑
works. Theoretically，the output of the neural net‑
works can approximate any function with any accu‑
racy. The networks can be divided into three parts：
Input layer，hidden layer，and output layer.

The hidden layer contains some nodes，which
are also known as neural cells. The number of hid‑
den layer nodes are N. h=[ hx h y h z ] ∈ RN× 3 is
the RBF. Variable x is taken as an example. The
output of the jth neural node is chosen as a Gaussian
function

hxj= exp ( x- cxj
2

2b2xj )
and hx= [hx1 hx2 … hxj … hxN ] T ∈ RN，where
j= 1，2，…，N presents the serial number of the
node；cxj is the central vector of each node，and bxj
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is the breadth of Gaussian function of each node.
The ideal output is

ΔA=

é

ë

ê

ê

ê
ê
êê
ê

ê

ê

ê ù

û

ú

ú

ú
úú
ú

ú

úW *
x
Thx( )x

W *
y
Th y( )y

W *
z
Th z( )z

+
é

ë

ê

ê
êê
ê
ê ù

û

ú

úú
ú
ú

úεxn
εyn
εzn

(12)

where W i
* ∈ RN ( i= x，y，z) are the ideal weights，

and εin ( i= x，y，z) are bonded approximate errors，
i.e. | εin |≤ ε̄n ( i= x，y，z)，where ε̄n is a constant［34］.

The estimated output is

ΔÂ=

é

ë

ê

ê

ê

ê
êê
ê
ê

ê

ê ù

û

ú

ú

ú
úú
ú

ú

úŴ T
x hx( )x

Ŵ T
y h y( )y

Ŵ T
z h z( )z

(13)

where Ŵ i∈ RN ( i= x，y，z) are estimated weights.
The estimated weight vector is defined as Ŵ=

[ Ŵ x Ŵ y Ŵ z ]∈ RN× 3.

The estimated weight errors of each axis
W͂ i∈ RN ( i= x，y，z) are

W͂ i= Ŵ i-W *
i (14)

and the estimated weight error vector is defined as
W͂= [ W͂ x W͂ y W͂ z ]∈ RN× 3.

A backstepping algorithm［35］ is used to design
the sliding mode control law. The backstepping al‑
gorithm is divided into two steps.

Step 1 Define the relative position error as
δ 1 = x p1 - x 1d ∈ R 3. Taking derivative of δ 1 leads to

δ '1 = x 'p1 - x '1d (15)
The estimated weights Ŵ i( i= x，y，z) are up‑

dated by
Ŵ 'i= Γiδ1ih i- σiŴ i (16)

where Γi and σi are adjustable parameters.
Define the virtual control variable as r2d ∈ R 3

and design the virtual control as
r2d =-kδ 1 - Ŵ Th+ x 'p1d (17)

where k= diag (kx，ky，kz)∈ R 3× 3 is an adjustable pa‑
rameter.

Step 2 Define relative speed error as δ 2 =
x p2 - r2d ∈ R 3. Taking derivative of δ 2 leads to

δ '2 = x 'p2 - r '2d (18)
Usually，the sliding mode surface is designed

linear. To obtain a more robust performance，and
make the satellite come and stay at the designated
position in limited time， this paper employs
NSTSM surface s∈ R 3 as［34］

s= δ 2 + βδ '2 γ (19)
where β and γ are adjustable parameters，and γ is a
quotient of two odd numbers，satisfying 1< γ< 2.

The sliding mode control variable u f ∈ R 3 is de‑
signed as

u f = u f1 + u f2 (20)
where

u f1 =-F 2 + r '2d

u f2=-∫
0

θ
é
ë(1 γ ) (1 β ) ⋅δ '2 2- γ+ p1 sgn ( s )+ p2 sùû dτ

where p1 and p2 are adjustable parameters.

3 Analysis of Convergence and
Boundedness

The satellite rendezvous model described in Eq.
（8） is established in Section 1. In Section 2.1，the
model is augmented by a repetitive controller with
NLSEF to gain precise tracking ability，described in
Eq.（11）. And in Section 2.2，an adaptive sliding
mode controller is used to assure the stability and ro‑
bustness of the augmented system with unknown
disturbances and model uncertainties.

This section uses Lyapunov-like composite en‑
ergy functions（CEF） to analyze the convergence
and boundedness of the system［36］.

Theorem 1 Based on Assumptions 1，2 and
3，for dynamic system described in Eq.（11），the
adaptive law is designed as Eq.（16），the NSTSM
surface is employed as Eq.（19），and the controller
is adopted as Eq.（20），then relative position error
δ 1 is bounded，the relative speed error δ 2 converges
to zero in finite time，and the relative stations of fol‑
lower satellite x p1 and x p2 are able to converge to
designate rendezvous states.

Proof
（1）Convergence of relative speed error δ 2
Define a Lyapunov function as

V 1 =
1
2 s

T s (21)

209



Vol. 39Transactions of Nanjing University of Aeronautics and Astronautics

Taking derivative with respect to the true
anomaly θ of Eq.（21）leads to

V '1 = sT s' (22)
Taking derivation of Eq.（19）leads to

s'= δ '2 + βγ ( δ '2 T )( γ- 1)δ″2 (23)
According to Eq.（23），Eq.（22）is written as

V '1 = sT (δ '2 + βγ ( δ '2 T )( γ- 1)δ″2) (24)

According to Eqs.（18，10，20），we have
δ '2 = x 'p2 - r '2d =

F 2 + u f + d- r '2d =
F 2 + u f1 + u f2 + d- r '2d =
u f2 + d (25)

Taking derivative of Eq.（25）leads to
δ″2 = u 'f2 + d ' (26)

Substituting Eqs.（26，20）into Eq.（24）leads to
V '1= sT[δ '2+ βγ ( δ '2 T )( γ-1)( u 'f2+d ') ]=

sT[δ '2+ βγ ( δ '2 T )( γ-1) ⋅
ù

û

ú
úú
ú( )-1

γ
⋅ 1
β
⋅δ '2 ( 2- γ )- p1 sgn ( )s - p2 s+d ' =

sTδ '2+ βγsT ( δ '2 T )( γ-1) ⋅

(- 1γ ⋅ 1β ⋅δ '2 ( 2- γ )- p1 sgn ( s )- p2 s+d ') (27)

Expand Eq.（27）into the form of addition of tri‑
axial components
V '1 = sT[δ '2 + βγ ( δ '2 T )( γ- 1)( u 'f2 + d ') ]=
sT[δ '2 + βγ ( δ '2 T )( γ- 1) ⋅

ù

û

ú
úú
ú( )- 1

γ
⋅ 1
β
⋅ δ '2 ( 2- γ ) )-p1 sgn ( )s - p2 s+ d ' =

sTδ '2 + βγsT ( δ '2 T )( γ- 1) ⋅

( - 1
γ
⋅ 1
β
⋅ δ '2 ( 2- γ ) - p1 sgn ( s )- p2 s+ d ') (28)

Based on Assumption 3 that | d 'i |≤ d̄ 2( i=
x，y，z)，it is possible to design a positive control
law parameter p2，and get

V '1 ≤∑
i= x

z

βγδ '2i ( γ- 1)( )-p1 || si + || d 'i || si ≤

∑
i= x

z

βγδ '2i ( γ- 1)( )-p1 || si + d̄ 2 || si

According to the limitation of the parameters
that β> 0 and 1< γ< 2，then βγδ '2 ( γ- 1)≥ 0. If pa‑

rameter p1 > d̄ 2 and s≠ 0，then V '1 ≤ 0 is prom‑
ised，and equality only holds when δ '2 = 0. The spe‑
cific situation when δ '2 = 0 and s≠ 0 is discussed be‑
low.

Taking derivative of Eq.（18）leads to
δ″2 = x ″p2 - r ″2d (29)

Substituting Eqs.（10，20）into Eq.（29）leads to
δ″2 = F '2 + u 'f + d '- r ″2d =

F '2 - F '2 + r ″2d -
1
γ
⋅ 1
β
⋅ δ '2 ( 2- γ ) -

p1 sgn ( s )- p2 s+ d '- r ″2d =

- 1
γ
⋅ 1
β
⋅ δ '2 ( 2- γ ) - p1 sgn ( s )- p2 s+ d ' (30)

Since δ '2 = 0 and p1 > d̄ 2，Eq.（30）turns into
δ″2 =-p1 sgn ( s )- p2 s+ d '

It can be observed that when s> 0，δ″2 < 0，δ '2
decreases；when s< 0，δ″2 > 0，δ '2 increases. That
means δ '2 = 0 and δ 2 ≠ 0 is not a stable state，so is
the state V '1 = 0. Therefore，the system states will
tend towards sliding mode surface s= 0 and the rela‑
tive speed error δ 2 will converge as well［37］.

（2）Boundedness of relative position error δ 1
and estimated weight error vector W͂

Define a Lyapunov function as

V 2 =
1
2 δ

T
1 δ1 +∑

i= x

z 1
2 W͂

T
i Γ-1

i W͂ i (31)

Taking derivative of Eq.（31）leads to

V '2 = δT1 δ '1 +∑
i= x

z

Γ-1
i W͂ T

i Ŵ 'i (32)

Substituting Eqs.（15，10）into Eq.（32）leads to

V '2 = δT1 ( x 'p1 - x 'p1d)+∑
i= x

z

Γ-1
i W͂ T

i Ŵ 'i=

δT1 ( x p2 + ΔA- x 'p1d)+∑
i= x

z

Γ-1
i W͂ T

i Ŵ 'i (33)

According to Eq.（12），Eq.（33）turns into
V '2 = δT1 ( x p2 +W *Th+ εn - x 'p1d)+
∑
i= x

z

Γi
-1W͂ T

i Ŵ 'i=

δT1 (δ2 + r2d +W *Th+ εn - x 'p1d)+
∑
i= x

z

Γi
-1W͂ T

i Ŵ 'i (34)

Substituting Eqs.（17，14）into Eq.（34）leads to
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V '2 = δT1 (δ2 - kδ 1 - Ŵ Th+ x 'p1d +W *Th+ εn - x 'p1d)+
∑
i= x

z

Γ-1
i W͂ T

i Ŵ 'i= δT1 (δ2 - kδ 1 - W͂ Th+ εn)+∑
i= x

z

Γ-1
i W͂ T

i Ŵ 'i (35)

Expanding Eq.（35）leads to
V '2 = δT1 δ2 - δT1 kδ 1 + δT1 εn +

∑
i= x

z

Γ-1
i W͂ T

i ( )-Γiδ1ih i+ Ŵ 'i (36)

Substituting the adaptive law described in
Eq.（16）into Eq.（36）leads to

V '2=δT1 δ2-δT1 kδ 1+δT1 εn-∑
i=x

z

σiΓ-1
i W͂ T

i Ŵ i=

∑
i=x

z

δ1i δ2i- ki δ1i δ1i+ δ1iε in- σiΓ-1
i W͂ T

i Ŵ i (37)

With 2ab≤ a2 + b2， the following inequality
holds

δ1i ε in ≤
1
4 δ1i δ1i+ ε2in

Based on | εin |≤ ε̄n ( i= x，y，z)， inequality
turns into

δ1i ε in ≤
1
4 δ1i δ1i+ ε̄2n

It is proved that δ 2 converges within a finite
time in subsection（1），Eq.（37）turns into

V '2 ≤∑
i= x

z ( - ki+
1
4 ) δ1i δ1i+ ε̄2n - σiΓ-1

i W͂ T
i Ŵ i (38)

According to Eq.（14），Eq.（38）turns into

V '2 ≤∑
i= x

z ( - ki+
1
4 ) δ1i δ1i+ ε̄2n -

σi
2 Γ

-1
i W͂ T

i W͂ i (39)

Eq.（39）can be rewritten as
V '2 ≤-μV 2 + η (40)

where η= 3ε̄2n is a positive constant，and

μ= min
i= x,y,z

2{ki- 1
4,
σi
2 }

As long as parameters k and σ are designed
properly，μ> 0 can be satisfied，and a conclusion
can be drawn that the relative position error δ 1 is sta‑
ble.

Furthermore，multiplying both sides of Eq.（40）
by eμθ leads to

d
dθ (V 2eμθ)≤ eμθ η (41)

Integrating Eq.（41）leads to

V 2 ≤
η
μ
+ é

ë
ê
êê
êV 2( 0 )-

η
μ
ù

û
úúúú e-μθ≤

η
μ
+ V 2( 0 ) (42)

According to Eq.（31），there is

 δ1
2
≤ 2 é

ë
ê
êê
êV 2( 0 )-

η
μ
ù

û
úúúú e-μθ+

2η
μ

∑
i= x

z

 W͂ i

2
≤ 2 min

i= x,y,z
(Γi) (éëêêêêV 2( 0 )-

η
μ
ù

û
úúúú e-μθ+

η
μ )

For ∀θ≥ 0， the following result can be ob‑
tained

lim
θ→∞

 δ1 = 2η μ

lim
θ→∞
∑
i= x

z

 W͂ i = 2 min
i= x,y,z

( )Γi η μ

Then the Lyapunov function described in
Eq.（31）can be written as

V 2 = ET( )θ Σ-1E ( )θ 2
where

E ( θ )= [W͂ x,W͂ y,W͂ z,δ 1 ] T

Σ= diag{diag{Γi},1}
There holds the following inequality

2λmin( Σ ) E ( )θ 2
≤ V 2 ≤ 2λmax( Σ ) E ( )θ 2

(43)
According to Eq.（42），Eq.（43）can be trans‑

formed into
a≤ V 2 ≤ p

where
a= [3+ λmin (Γi) ] η μ

and a compact set is defined as

Ξ={a≤ p and 2λmin( Σ ) E ( )θ 2
< p}

According to Lemma 2（see the Appendix），

the relative position error δ 1 and estimate weight er‑
ror vector W͂ are bounded in finite time.

（3）Finiteness of convergence time of δ 2
There are two convergence processes. Suppose

that the system state reaches the sliding mode sur‑
face at a time θ1. Afterwards，δ 2 and δ '2 converge at
a time θ2. Then the convergence time of the system
is θs= θ1 + θ2.

When the sliding mode surface converges to ze‑
ro，i.e. s= δ 2 + βδ '2 γ= 0，then

δ '2 =-β
- 1
γ δ

1
γ
2 (44)

Define a Lyapunov function as

211



Vol. 39Transactions of Nanjing University of Aeronautics and Astronautics

V 3 =
1
2 δ

T
2 δ2 (45)

Taking derivative of Eq.（45）leads to
V '3 = δT2 δ '2 (46)

Substitute Eq.（44） into Eq.（46） and rewrite
Eq.（46） in the form of addition of triaxial compo‑
nents

V '3 =∑
i= x

z

δ2i δ '2i=

-∑
i= x

z

δ2i β
- 1
γ δ

1
γ
2i=

-∑
i= x

z

β
- 1
γ δ

1+ 1
γ

2i (47)

Eq.（47）can also be rewritten as

V '3 =-∑
i= x

z

β
- 1
γ

i δ
1
γ
+ 1

2i ≤-αV p
3

where α=minβ-1 γi ，p= ( )1+ γ 2γ.

According to Lemma 3（see the Appendix），

the settling time of each axis can be expressed as

θ2i= βγ
γ

γ- 1 | δ2i( t1) |
( γ- 1) γ

where i= x，y，z. Then θ2 ≤ max
i= x，y，z

θ2i. The relative

speed error δ 2 converges within finite time θs= θ1 +
θ2.

4 Simulation

In this section， to validate that the control
scheme designed is effective，the application of the
proposed control scheme to a satellite rendezvous is
demonstrated［35］.

The AOE of the leader satellite is shown in Ta‑
ble 1. Suppose a satellite weighting 50 kg can pro‑
vide maximum output of 2 N using a chemical accel‑
eration module，and is equipped with electric propul‑
sion offering a thrust of 10—100 mN［38-40］. Suppose
the initial relative position of two satellites is
x p1 (θ0)=[-800 600 500 ] Tm， the initial rela‑

tive velocity is x p2(θ0)=[ 2 3 2 ] T m/s. The ex‑
pected relative position of two satellites is x p1d =

[-20 20 20 ] T m，and the expected relative ve‑

locity is x p2d =[ 0 0 0 ] T m/s.
The satellite orbit is affected by various pertur‑

bations and disturbances in outer space，leading to
model uncertainties. Major perturbations include
nonspherical perturbations，the third body attraction
perturbations， sunlight pressure perturbations and
so on. The numerical values of these perturbations
are small compared to Earth gravity. Nevertheless，
their long term influences cannot be ignored.

ΔA presents model uncertainties，which are re‑
lated to system states and true anomaly，and the ex‑
ternal disturbances d are only related to true anoma‑
ly. ΔA and d are considered as

ΔA= 0.1×
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ú5+ 3.5sin ( )π
100 θ - 1.5tanh ( )π

100 θ

4- 2.5sin ( )π
100 θ + tanh ( )π

100 θ

-5+ 2.5sin ( )π
100 θ + 0.5tanh ( )π

100 θ

（1）Case 1：Repetitive control scheme without
disturbances

By implanting a dynamic model of the tracking
signal into the controller，the repetitive controller
can track any periodic signal with no steady state er‑
ror. An ideal situation is set，where no disturbances
exist，and the position tracking ability of repetitive
control is analyzed. Fig.5 shows the position track‑
ing results by the repetitive controller. Fig.5 indi‑
cates that repetitive control can make position states
track the expected signals precisely after the true
anomaly of 10 rad.

The steady state error is illustrated in Fig.6. It
can be observed that the position tracking error e is
bounded and converges to zero domain. The preci‑
sion of relative position tracking is within 2 m.

Table 1 Initial orbit elements of the leader satellite

a/km
10 000

e
0.2

i/( ° )
20

Ω/( ° )
60

w/( ° )
0

M/( ° )
0
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NLSEF is able to improve the dynamic perfor‑
mance of the repetitive controller. Parameters b1
and b2 of NLSEF control law u0 contribut the most
to the regulating process. It can be observed from
Fig.7 that the NLSEF helps repetitive controller
gain less overshoot and faster respond speed.

（2）Case 2：Repetitive control scheme with dis‑
turbances

In reality，various disturbances in outer space
are inevitable. In this case，the model uncertainties
ΔA and unknown disturbances d are considered in
the simulation，and the system is still controlled by
a repetitive control scheme only. In Fig.8，the posi‑
tion tracking errors are demonstrated and compared
with that in Case 1.

From Fig. 8，it is obvious that if the system is
controlled by the repetitive control scheme only，the

position tracking errors tend to diverge with the im ‑
pact of disturbances. The results prove that the re‑
petitive control does little work dealing with the dis‑
turbances，and improvement is necessary for satel‑
lite rendezvous.

（3）Case 3：IRC scheme with disturbances
Given unknown disturbances and model uncer‑

tainties，the response curves of the relative position
maintained by the IRC scheme designed in our
study are shown in Fig. 9，and the response curves
of the relative velocity are shown in Fig.10.

In Figs.9，10，relative position and velocity re‑
sponse curves converge after 5 rad. The results
prove that the controller is stable and convergent de‑
spite the disturbances.

Note that the velocities peak at first 0.05 rad.
According to Fig.11，the maximum control forces

Fig.5 Position tracking by repetitive controller

Fig.6 Relative position error by repetitive controller

Fig.7 Regulating process by NLSEF

Fig.8 Precision comparison in two situations
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needed are less than 2 N and meet the requirement.
Figs.12，13 demonstrate the performance of the

IRC scheme at a steady state，emphasizing the peri‑
od of 16 rad to 25 rad，where the follower satellite
keeps hovering against the leader satellite.

When the satellites come to a steady state，the
precision of the relative position is better than 5×
10-4 m，and the control force is less than 100 mN.
The accuracy achieves millimeter level， and the
maintenance forces can be afforded by an electric
propulsion［39］. Moreover， the output curves are
quite smooth without obvious buffeting.

To demonstrate the advantages of the IRC
scheme，the contribution of the repetitive controller
is eliminated in Fig.14.

Apparently，the precision of the system deteri‑
orates when the contribution of the repetitive con‑

Fig.9 Position tracking by IRC

Fig.10 Velocity tracking by IRC

Fig.11 Control variable by IRC in transferring state

Fig.12 Relative position error by IRC

Fig.13 Control variable by IRC in steady state
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troller is eliminated. The results prove that the IRC
scheme improves the accuracy of the sliding mode
controller by more than one order of magnitude.

Further，to demonstrate that the IRC scheme
designed in this paper has the advantage of converg‑
ing in finite time，a comparative simulation is shown
in Fig.15，comparing IRC with the traditional back‑
stepping control scheme.

As analyzed in Section 3， and according to
Lemma 3，the IRC ensures that after the system
states reach the sliding mode surface，the relative
position error δ 1 converges to a small neighborhood

of the origin [ - 2η μ， 2η μ ] within finite time
θ2i= βγ ⋅ γ ( )γ- 1 ⋅| δ2i( t1) | ( γ- 1) γ.

In Case 3，we can find in Fig.15 that IRC
makes the system states reach the neighborhood
[ - 0.077，0.077] m within θs= 5.23 rad，while the
traditional backstepping control is unable to con‑
verge to neighborhood in time.

Fig.15 proves that the IRC converges in finite
time. Nevertheless，the rapidity of the IRC is not
satisfying，and worth further investigation.

5 Conclusions

Our study aims at high-precision satellite ren‑
dezvous control，and proposes an improved repeti‑
tive control（IRC） scheme. The controlled model
described by ROE in the form of state space equa‑
tions has both advantages of high accuracy and great
adaptability. The repetitive controller makes the fol‑
lower satellite track the expected signals precisely，
while the siding mode controller solves the diver‑
gence problem caused by the aperiodic disturbances
and makes the repetitive controller robust. More‑
over，NLSEF is effective to improve the dynamic
performance of the controller.

The rapidity of the controller is not studied in
this paper，and could be further improved in future
work. Also， it is worth considering the situation
when the rendezvous object is uncooperative in the
future.

Appendix
Lemmal 1［41］Consider a dynamic system

ì

í

î

ï
ïï
ï

ï
ïï
ï

ẋ1 = x2

ẋ2 = f ( )x1,x2 + u

y= x1

(A1)

An extended state observer is constructed instead of
identifying the unknown function f ( x1，x2) in the system

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

ż1 = z2 - g1( )y- z1

ż2 = a+ u- g2( )y- z1

ȧ=-g3( )y- z1

(A2)

The state variables of the observer z1 and z2 track the
state variables of the system described in Eq.（A1）x1 and x2.
Especially，a ( t ) estimates f ( x1，x2) in real time.

Lemma 2［42］ Let D⊂ R n denote a domain containing
the origin，there is a continuously differentiable and positive

Fig.14 Precision comparison between two control schemes

Fig.15 Convergence comparison between two control
schemes
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definite function L ( t，x ) ∈[ 0，∞)× D，which satisfies the
following conditions

W 1( x )≤ L ( t,x )≤W 2( x )
L̇ ( t,x )≤-μW 3( x )+ ϕ

where ϕ is a positive real number；and for ∀t≥ 0，∀x∈ D，

it is promised that W 1( x )，W 2( x ) and W 3( x ) are all contin‑
uous and positive definite functions on D，and there is a posi‑
tive constant c，so that Ξ={W 1( x )≤ c andW 2( x )< c} is a
compact subset of D. Then the function L ( t，x ) is able to
converge within a bounded compact set in finite time.

Lemma 3［43］Consider a system of differential equations
ẋ= f ( x ( t ) ), x ( 0 )= x0 (A3)

where x= [ x1，x2，…，xn ]T ∈ R n，f ( x )：R n→ R n is continu‑

ous on R n and f ( 0 )= 0.
For the system described in Eq.（A2），if there exists a

continuous positive definite function V ( x )：R n→ R，and so
does the continuous first-order partial derivative with respect
to any x，such that there exist real numbers α and p∈( 0，1)，
and they satisfy that

V̇ ( x )+ α (V ( x ) ) p≤ 0, x∈ R n\ { 0 }
Then the origin is a globally finite time stable equilibri‑

um of Eq.（A2）. That means the system can converge to the
neighborhood of designate point within time T. The upper
bound of the settling time is

T ( x0)≤ 1
α ( )1- p

V ( x0) ( )1- p
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航天器高精度悬停的改进型重复控制

张 翼， 齐瑞云
（南京航空航天大学自动化学院，南京 211106，中国)

摘要：研究了以高精度为目的的航天器悬停系统控制设计。采用相对轨道要素描述目标航天器和跟踪航天器之

间的相对运动模型，具有清晰的几何意义和较高的精度。为了实现高精度的相对位置和相对速度跟踪，提出了

一种改进型重复控制方案，该方案利用重复控制能够精确跟踪目标信号的优点，并通过加入非奇异终端滑模控

制器克服了传统重复控制器易受非周期干扰影响的缺点。此外，利用非线性状态误差反馈改善了重复控制器的

动态性能，并利用径向基函数神经网络逼近悬停模型的未知非线性项。通过严格的李雅普诺夫稳定性分析，保

证了整个闭环控制系统的稳定性。最后，通过数值仿真验证了所提控制方案的有效性和优越性。

关键词：航天器悬停；相对轨道要素；重复控制；滑模控制；径向基函数神经网络
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