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Abstract: When a group of mobile agents track a target，they can locate themselves and the target in a cooperative
manner. To maximize the group advantage，a parallel integration strategy of cooperative target-localization（CTL）
and cooperative self-localization（CSL）is designed. Firstly，a global cost function containing the agents’positions and
the target’s position is established. Secondly，along with the agents’positions being re-estimated during CTL，the U-

transform is employed to propagate the error covariance of the position estimations among the agents. The simulation
results show that，the proposal exploits more information for locating the target and the agents than the cases where
CTL and CSL run separately，and the global optimal position estimations of the agents and the target are obtained.
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0 Introduction

Multi-agent（such as unmanned aerial vehicle，
robot）system has great potential on target monitor‑
ing，disaster rescuing and so on. Multi-agent can co‑
operate for different goals，such as cooperative self-
localization（CSL）［1-4］，cooperative target-localiza‑
tion（CTL），cooperative searching，and coopera‑
tive communication. In this paper，CSL and CTL
are highlighted.

CSL and CTL have different goals. Usually，
CSL and CTL are researched as two topics. CSL
aims at improving the localization accuracy of each
agent by utilizing the relative information among the
agents. Now，the CSL based on Kalman filtering
（KF-CSL） or its extension has been heavily re‑
searched［5-9］. However，CTL aims at improving the
target localization accuracy by fusing the relative in‑
formation between the agents and the target.

Traditionally，CSL and CTL run separately.

CSL can provide each agent’s position estimation
for CTL. When these estimations are used for
CTL，they are usually assumed to be deterministic
and independent with each other. Based on this as‑
sumption，some algorithms have been proposed for
CTL，such as least squares，D-S evidence theory，
and neural networks［10］. In Ref.［11］，the Bayesian
estimation method was proposed to deal with multi-
source uncertainty data． In Ref.［12］，a data aggre‑
gation algorithm based on the convolutional neural
network model was proposed. In Ref.［13］，an im‑
proved data fusion based on the D-S evidence theo‑
ry was proposed.

However，in the KF-CSL，the position estima‑
tions of the agents are mutually referred. As a re‑
sult，the position estimations are non-deterministic
characterized in variance and relevant characterized
in covariance［5-8］. When these estimations are further
used for CTL，the non-deterministic and relevant
characteristics must be considered.
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In this paper，CTL and CSL are together re‑
garded as a global non-classical multi-dimensional
scaling（nMDS）problem，that is，at one moment，
the agents， the target and the distances（contain
noise）among them constitute a snap-shot. For the
nMDS， a distributed nMDS algorithm was pro‑
posed in Ref.［14］，where the majoring function
（MF） is adopted for estimating the static nodes. In
Ref.［15］， the MF-based optimization algorithm
was used for mobile multi-agents.

In the typical studies，the followings are as‑
sumed：（1）The agents’position estimations are in‑
dependent each other.（2）CSL and CTL are respec‑
tively solved. This paper is characterized as follows：

（1）A global cost function including the posi‑
tion variables of the agents and the target is estab‑
lished，where the position uncertainty of each agent
and the position correlation among them are intro‑
duced.

（2）During the optimization iteration of the es‑
tablished cost function， the U-transform is em‑
ployed to propagate the error covariance of the posi‑
tion estimations among the agents.

1 Problem Statement

The symbols used throughout this paper are de‑
fined in Table 1.

Assume that N agents move in a 2-D area to
track a target. A fixed reference frame is set，where
the actual position of the agent i at the time step k is

denoted as x i ( k )=[ xi ( k )，yi ( k ) ]. The outputs of
the KF-CSL，i. e.，the position estimations of the
agents，are expressed as { x̂ i ( k ) }Ni=1，and the corre‑
sponding error covariance is expressed as

P̂ ( k )=
é
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úP̂ 11 ( k ) … P̂ 1N ( k )
⋮ ⋱ ⋮

P̂N1 ( k ) … P̂NN ( k )
∈R 2N×2N

In Fig.1，the agents（numbered in 1，2，…，N）

track the target“o”. The dashed circles denote the
position estimations of the agents through CSL.
The solid circles denote the true positions of the
agents.

Whether one agent can find the target is chang‑
ing for its varying position or view. At the time k，
assume that n ( n≤ N ) agents（constitute a collec‑
tion C） find the target“o”and obtain the relative
measurements to the target. The measurements are
denoted as z io ( k ) ( i∈ C ). Assume that the measure‑
ments are independent each other and
z io∼ N ( 0，σ 2io ). Then，utilizing { x̂ i ( k ) }Ni= 1，P̂ ( k )，
and z io ( k )，we attempt to re-estimate the agents
and the target. In this process，the followings need
to be solved.

（1）Under the case of the KF-CSL，the factors
that affect CTL are the performance of the extero‑
ceptive sensor which measures the relative measure‑
ment，and the agents’positions that are non-deter‑
ministic and relevant.

（2） Since the agents’positions estimated by
the KF-CSL are non- deterministic，they are re-esti‑
mated during CTL. Then the re-estimated results

Table 1 Symbols used in text and derivations

Notation
N
n
C
x i
x̂ i
x

P̂

P̂ ij

xo

z io

σ 2io

Description
The total number of the agents

The number of agents which find the target
The set of agents which find the target

Actual state vector of agent i
Posteriori state vector of agent i

Whole state vector, x= [ x1,⋯,xN ]
Whole error covariance of the state estimates

Error covariance of the state estimates between
agent i and agent j

Actual state vector of the target o
Relative measurement between the agent i and the
target o

Noise variance of the measurement z io

Fig.1 Application demonstration of CSL and CTL
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should include the uncertainty and the correlation to
support the periodic CSL.

2 CTL Based on nMDS

2. 1 KF⁃CSL and CTL

The KF-CSL is a premise of this paper. The
KF-CSL is employed for its excellent recursion
mechanism including the predictive and posteriori
update［16-17］. Using the agent’s linear velocity mea‑
surements and the relative measurements，etc.，the

position estimations and the corresponding error co‑
variance are continually updated. Provide that the
output form of the KF-CSL is unified as the posteri‑
ori estimations. The input/output of the KF-CSL
and CTL is listed in Table 2. It can be found that
the uncertainty and correlation are essential for
CSL. In the traditional serial mode where the posi‑
tion estimations of the agents from CSL are con‑
stant input for CTL，the agents’positions are esti‑
mated in CSL and unchanged during CTL.

In this paper，the operational logic of CSL and
CTL is converted from the serial mode to the inte‑
gration one. The following two facts are considered.
Firstly，all the agents are cooperative while the tar‑
get is not. Hence，the frequency of the data supply‑
ing for CSL is higher than that for CSL. Secondly，
the re-estimated positions of the agents in CTL
need to support CSL smoothly. The relationship be‑
tween CSL and CTL are demonstrated in Fig.2.

2. 2 Object function modeling

When multiple agents find the same static tar‑
get at the same time，the agents，the target and the

relative measurements constitute a snapshot，where
the agents are the anchors with a priori knowledge
（from the KF-CSL），the target is unknown，and
the relative measurements among them are con‑
straint［18］. According to the nMDS，a global loss
function with respect to the position variables of the
agents and the target，is established as①

S= x- x̂
2

P̂
+∑

m ∈ C
 z ( xm,x o )- zmo

2

σmo
(1)

where x=[ x 1，⋯，xN ] represents the position vector
of all agents②，z ( xm，x o )= ( xm- x o )2+( ym- yo )2

the distance function between the agent m and the
target o，and  ⋅ the norm operation. Eq.（1）can be
further rewritten as

S=( x- x̂ )T
é
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ê

ê

ê
êê
ê

ê

ê ù

û
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ú
úú
ú

úP̂ 11 … P̂ 1N

⋮ ⋱ ⋮
P̂N1 … P̂NN

-1

( x- x̂ )+

∑
m ∈ C ( z ( xm,x o )- zmo

|| σmo ) 2 (2)

The correlation and uncertainty of the elements

① Thereafter, the time index k is omitted to simplify the notation.
② For the correlation of all the agents, the states of agent which does not find the target is also changed in the deep integration

mode. So the states of all agents are included.

Table 2 Comparison of input/output between KF⁃CSL and CTL

KF‑CSL

CTL

Input

Predictive
update

Posteriori
update

The positions of agents, the relative measurement between
the agent and the target (distance, azimuth).

The velocity of each agent (linear/ rotational ve‑
locity), the posteriori estimates of agents and
their covariance.
The relative measurements among the agents,
the predictive position estimates of the agents
and their covariance.

Output

Posteriori estimates of the agents and their covariance.

Estimated position of target, position estimate of
agents and its covariance（necessary in the case of the
parallel integration mode）.

Fig.2 Operation relationship between CSL and CTL
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x̂ i ( i= 1，⋯，N ) are introduced to the loss function
S by the block element P̂ ij ( i≠ j ) and P̂ ii.

Let ( P̂ )-1 = A. Each block element A ij∈ R 2× 2

represents the uncertainty of the position estima‑
tion( i= j ) and the correlation among the estima‑
tions( i≠ j ). Then Eq.（1） can be further rewritten
as

S=( x i- x̂ i )TA ii ( x i- x̂ i )+

∑
i= 1

N

∑
j= 1,j≠ i

N

( x i- x̂ i )TA ij ( x j- x̂ j )+

∑
m ∈ C ( z ( xm,x o )- zmo

|| σmo ) 2 (3)

Usually，the optimization method is employed
for Eq.（3）. During optimizing，the agents’position
estimations are iterated，and the corresponding er‑
ror covariance is changing synchronously. To propa‑
gate the covariance，the majorizing function（MF）is
employed，which can provide an analytic representa‑
tion between two-step iterations.

A majorizing function T ( X，Y ) of S ( X ) is a
function that satisfies：（1）∀Y，T ( X，Y )≥ S ( X )，
（2）T ( X，X )= S ( X ).

In the MF，the iteration is described as fol‑
lows：let Y= X 0 and substitute it to T ( X，Y ) as
the initial value. The iteration is repeated until the
convergence condition is satisfied，i.e.

Ss+ 1 - Ss≤ ε (4)
The upper-notationsis the mark of iteration

step. Following Refs.［14-15］，Eq.（3） is rewritten
as

S= η2z+ η2 - 2ρ ( X ) (5)
where
ì

í

î

ï

ï

ï

ï
ïïï
ï

ï

ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

η2z=∑
m ∈ C ( )zmo

|| σmo

2

η2 =∑
i= 1

N

∑
j= 1

N

( x i- x̂ i )TA ij ( x j- x̂ j )+∑
m ∈ C ( )z ( xm,x o )

|| σmo

2

ρ ( X )=∑
m ∈ C

z ( xm,x o ) ⋅ zmo
|| σmo
2

(6)
Define the MF of S ( X ) as T ( X，Y )

T ( X,Y )= η2z+ η2 - 2ρ ( X,Y ) (7)

where ρ ( X，Y )=∑
m ∈ C

zmo

|| σmo
2 ⋅
( xm- x o )T ( ym- yo )

z ( ym，yo )
.

Through the MF，minimizing S ( X ) is now a
task of finding the minimum of T ( X，Y ).

2. 3 Optimizing derivation

The optimal solution can be obtained through
taking the derivative of T ( X，Y )，shown as
ì

í

î

ï

ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï
ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï
ï

ï

ï

ï

ï

ï

ï

ï

∂T ( X,Y )
∂x i

= 2( A ii x i- A ii x̂ i )+

2 ∑
j= 1,j≠ i

N

A ij ( x j- x̂ j )+
2( x i- x o )

σ 2io
-

2 ⋅ z io
σ 2io ⋅ z ( y i,yo )

( y i- yo )= 0 i∈ C

∂T ( X,Y )
∂x i

= 2A ii x i+ 2 ∑
j= 1,j≠ i

N

A ij ( x j-

x̂ j )= 0 i∉ C
∂T ( X,Y )
∂x o

=-∑
m ∈ C

2( xm- x o )
σ 2io

+

2∑
m ∈ C

zmo
σ 2io
⋅ ( ym- yo )
z ( ym,yo )

= 0

(8)

According to the iteration principle，let x j= x sj，

x o= x so，y i= x si，yo= x so，z ( y i，yo )= znio. Then the
iteration models are given as

x s+ 1i = a i ⋅
é

ë

ê
êê
ê
ê
ê∑
j= 1

N

A ij x̂ j+ b si ⋅X s
ù

û

ú
úú
ú (9)

x s+ 1o = ao ⋅ b so ⋅X s (10)
where b si=[ b si1，b si2，⋯，b siN，b sio ]∈R 2× 2( N+ 1) and X s=
[ x s1，x s2，⋯，x sN，x so ]∈R 2( N+ 1)× 1. The iteration coeffi‑
cients are given according to two cases.

（1）If i∈ C，the iteration coefficients are given
as
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a i=( A ii+ I2σ-2io )-1

b sij=-A ij j≠ i,j≠ o

b sij=
z io

σ 2io ⋅ z sio
I2 j= i

b sio=
1
σ 2io ( )1- z io

z sio
I2

(11)

（2）If i∉ C
ì
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a i= A-1
ii

b sij=-A ij j≠ i,j≠ o

b sij= 0 j= i or j= o
(12)

For the target o
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1
n

b soi= 0 i∉ C

b soi= ( )1- z io
z sio

I2 i∈ C

b soo= ( )∑
i∈ C

z io
z sio

I2

(13)

In the case where C= ϕ，it means that no tar‑
get is found and CTL doesn’t run，then Eqs.（11，
13）are not required. At this moment，the proposed
algorithm is degraded into a common CSL.

2. 4 Covariance propagation

When the position estimate x si is iterated to
x s+ 1i ，its covariance also changes from P̂ s to P̂ s+ 1. In
this paper，the U transformation is utilized to propa‑
gate the position estimations and their covariance.
The process is given as：

（1）Calculate（4N+ 1）σ points
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ξ̂ ( 0 )k =x s

ξ̂ ( p )k =x s+( ( 2N+λ ) P̂ s )p p=1,2,⋯,2N

ξ̂ ( p )k =x s-( ( 2N+λ ) P̂ s )p-2N
p=2N+1,2N+2,⋯,4N

(14)

where λ is constant，and ( ( 2N+ λ ) P̂ s )p the p'th

column of the matrix ( 2N+ λ ) P̂ s . The detail can
be seen in Ref.［19］.

（2）Propagate the σ points as
ξ̂ ( p )k+ 1 ( i )= fi ( ξ̂ ( p )k ) p= 0,1,⋯,2n (15)

x s+ 1 =∑
p= 0

2n

ωm
p ξ̄ ( p )k+ 1 (16)

P̂ s+ 1 =∑
p= 0

2n

ωc
p ( ξ̂ ( p )k+ 1 - x k+ 1 ) ( ξ̂ ( p )k+ 1 - x k+ 1 )T (17)

where ωc
p= ωm

p = 0.5/( 2N+ λ ).

2. 5 Performance analysis

The fisher information matrix（FIM）and its de‑
terminant are adopted to evaluate the information
value. FIM is defined as

F= é
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where the Jacobian matrix of the relative measure‑
ment with respect to the whole state X=
[ x 1，⋯，xN，x o ] is

j=

é

ë

ê

ê

ê

ê

ê

ê

ê

ê
êê
ê

ê

ê

ê

ê

ê

ê

ê ù

û

ú

ú

ú

ú

ú

ú
úúú
ú

ú

ú

ú

ú
∂z1o
∂x 1

0 … ∂z1o
∂x o

⋮ ⋮
⋱

∂zno
∂x 1

… ∂zno
∂x o

=[ B 1 B 2 ] (19)

When x 1，⋯，xN are constant
J1 = [ 0,B 2 ] det ( F a )= det ( B 2BT

2 ) (20)
When x 1，⋯，xN are variable

det ( F b )= det ( B 1BT
1 + B 2BT

2 ) (21)
For B1BT

1 and B2BT
2 are the symmetrical ma‑

trix，then
det ( F b )> det ( F a ) (22)

It means that by the proposal，more informa‑
tion is exploited from the relative measurements for
estimating the state X.

3 Simulation and Discussion

The simulation parameters are listed in Table 3.
Additionally，when the distance between the agent
and the target is less than 400 m，the agent finds the
target in a probability of 0.8. When the distance be‑
tween the agent and the target is less than 200 m，

the simulation is stopped.

Three aspects are verified by the simulation.
（1）Whether the proposal is effective.（2）Whether
the proposal has contributed to the self-localization.
（3）Whether the proposal has contributed to the tar‑
get-localization.

3. 1 Validating for effectiveness

In order to verify the effectiveness of the pro‑
posal，the trajectories generated by different algo‑
rithms are contrasted in Fig.3. Assume that four

Table 3 Simulation setting

Item
Simulation time/s
Sample step/s

Linear velocity/(m·s-1)
Noise of linear velocity measuring
Rotational velocity/(rad·s-1)

Noise of rotational velocity measuring
Measurement noise of relative distance

among agent
Measurement noise of relative distance

between agent and target

Value
300
0.5
1

N(0,0.25)
0

N(0,0.002 5)

N(0,25)

N(0,100)
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agents move to the same target. The initial posi‑
tions of four agents are known and marked as A1，
A2，A3 and A4.The black line is the true trajecto‑
ry. The red line is the trajectory from the indepen‑
dent localization（IL） where no relative measure‑
ments are used. The green line is the trajectory
from the proposed CSL-CTL. It can be seen that
the estimated trajectories based on the CSL-CTL
are closer to the real trajectories than that of IL.
The effectiveness of the proposed algorithm is intui‑
tively demonstrated in Fig.3.

In Fig.4，the boundaries determine the 3σ con‑
fidence region of the distance error. They are calcu‑

lated according to the variance of x，y directions.
The red boundaries are from IL. The green boundar‑
ies are from CSL-CTL. The blue line represents the
Euclidean distance error in the case of the CSL-

CTL. In the proposal，for the target acting as the
node，the more constraint information is added. As
a result，the 3σ region determined by the proposed
CSL-CTL is smaller than that of IL，which means
that the localization uncertainty is reduced. Addition‑
ally，it can be found that the distance errors are al‑
ways within the 3σ region. Thus，the proposed algo‑
rithm is effective.

3. 2 Validating for self⁃localization

With the parallel integration or not，the av‑
erage accuracy of the self-localization is contrast‑
ed in Fig.5，where the curves represent the aver‑
age distance error between the estimated position

Fig.4 3σ boundaries and error curves of four agents’posi‑
tion estimates

Fig.5 Comparison of average estimate accuracy of four
agents under CSL and IL

Fig.3 Estimated trajectories of four agents under IL and
CSL-CTL
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and the true position， i. e. Average error=

( x̂ esti ( k )- xi ( k ) )2 +( x̂ esti ( k )- yi ( k ) )2 /4. The
following conclusions are obtained.

（1）In the case of CSL-CTL，the self-localiza‑
tion accuracy is improved， as the green line in
Fig. 5. It can be explained as when multiple agents
obtain the relative measurements to the same tar‑
get，these measurements as the new constraints are
added. Consequently，the error of the position esti‑
mation is reduced.

（2）Without the parallel integration，the local‑

ization accuracy of IL（red line） is inferior to CSL
（blue line） as shown in Fig.5（a）. However， as
Fig.5（b），by integrating with CTL，the localization
accuracy from IL is higher than that from CSL.

3. 3 Validating for target⁃localization

With the parallel integration or not，five sets of
the target estimations are given in Table 4. Each
item is obtained under different noise setting. From
Table 4，it can be found that under the parallel inte‑
gration mode，the target-localization accuracy is im‑
proved.

4 Conclusions

CSL and CTL are two tasks for multi-agent
system. In this paper，two tasks are integrated in
parallel to further improve their accuracy. The fol‑
lowing problems are solved：（1）Use the position
estimations generated from the KF-CSL for CTL.
（2）During CTL，the agents regarded as the vari‑
ables are re-estimated. Then ensure the re-estimated
results support the consecutive KF-CSL.

The CSL-CTL algorithm is proposed. Essen‑
tially， the proposed algorithm utilizes the data
which are respectively prepared for CSL and CTL
at the same time. The proposed algorithm can work
properly even if one type of data is absent. The algo‑
rithm is robustness.

The effectiveness is verified by the simulation.
The results show that the accuracy of two tasks in
the parallel integration mode is higher than the case
where CSL and CTL are executed one by one. It
should be noted that the study is based on the case
of one static target. In the future，the research can
be extended to the case of the dynamic target or mul‑
tiple targets.
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一种协作目标定位与协作自定位的并行集成方法

王雷钢，孔德培，周继航，王建路
（电子信息系统复杂电磁环境效应国家重点实验室，洛阳 471003, 中国）

摘要：当群智能体在进行目标跟踪时，它们可以以协作的方式对自身和目标进行定位。为了最大限度地发挥群

协作的优势，本文设计了一种协作目标定位（Cooperative target‑localization，CTL）和协作自定位（Cooperative
target‑localization，CSL）的并行集成的运行策略。首先，建立一个包含群智能体位置和目标位置的全局代价函

数。其次，在 CTL过程中，随着智能体位置被重新估计，使用U变换推算各智能体位置估计之间的误差协方差。

仿真结果表明，与 CTL和 CSL独立运行的情况相比，该策略利用了更多的信息进行目标和智能体的位置估计，

可以获得全局最优的智能体和目标位置估计结果。

关键词：协作自定位；协作目标定位；非经典多维变换；优势函数
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