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Abstract: A graphics processing unit (GPU)-accelerated discontinuous Galerkin (DG) method is presented for
solving two-dimensional laminar flows. The DG method is ported from central processing unit to GPU in a way of
achieving GPU speedup through programming under the compute unified device architecture (CUDA) model. The
CUDA kernel subroutines are designed to meet with the requirement of high order computing of DG method. The
corresponding data structures are constructed in component-wised manners and the thread hierarchy is manipulated in
cell-wised or edge-wised manners associated with related integrals involved in solving laminar Navier-Stokes
equations, in which the inviscid and viscous flux terms are computed by the local lax-Friedrichs scheme and the
second scheme of Bassi & Rebay, respectively. A strong stability preserving Runge-Kutta scheme is then used for
time marching of numerical solutions. The resulting GPU-accelerated DG method is first validated by the traditional
Couette flow problems with different mesh sizes associated with different orders of approximation, which shows that
the orders of convergence, as expected, can be achieved. The numerical simulations of the typical flows over a
circular cylinder or a NACA 0012 airfoil are then carried out, and the results are further compared with the analytical
solutions or available experimental and numerical values reported in the literature, as well as with a performance
analysis of the developed code in terms of GPU speedups. This shows that the costs of computing time of the
presented test cases are significantly reduced without losing accuracy, while impressive speedups up to 69.7 times are
achieved by the present method in comparison to its CPU counterpart.
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0 Introduction

Discontinuous Galerkin (DG) method, pro-

posed in the early 1970s""

, has become a popular
high order method in recent years due to attractive
features including stability, conservation and conver-

120 Various achievements can be noted in

gence etc
many research fields like computational fluid dynam-
ics (CFD) """, computational acoustics”' and com-
putational magneto-hydrodynamics®'. It is reported

that the computational consuming time grows rapid-

*Corresponding author, E-mail address: hqchenam(@nuaa.edu.cn.

ly with the order of approximation of the high order
DG method in comparison to low order methods,
such as traditional the finite volume method (FVM)
and the finite element method (FEM) , which re-
strains the further application of the DG method in
engineering'’'. Therefore, many research activities
have focused on improving the efficiency of the DG
method through modification and parallelization. In
view of modification, some influential schemes,
like the implicit time marching scheme *', the multi-

grid scheme'*' etc., were successfully implemented
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in the DG method. Speedups of the DG method
through parallelization can also be noted in many lit-
eratures. Generally, most speedups are achieved on
the central processing unit (CPU) with multiple

2,7-8]

processors >, few on the modern graphics pro-

cessing unit (GPU) architecture”®'’, and hence
GPU acceleration of the DG method is worthwhile
to investigate in view of modern computers
equipped mostly with multi-GPUs.

Modern GPUs have hundreds of processing
cores for specialized graphics rending in parallel,
which leads to orders of magnitude higher in memo-
ry bandwidth and faster in float-point operations in
comparison to those of traditional CPUs. As illus-
trated in Fig.1, the peak values of NVIDIA GPU
performance are tens of times faster than those of
the contemporaneous Intel CPU, and the gap be-
tween the NVIDIA GPU and the Intel CPU in peak
performance, measured in floating point operations
per second (FLOP/s) , has increased over the last
ten years. The fact that hardware of GPU outper-
forms CPU indicates the methods with GPU imple-

mentation have the potentiality to achieve high effi-

ciency.
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Fig.1 Floating point operations per second for CPU and GPU

However, in early years, parallel computing
on GPU was a complicated exercise and mainly de-
pended on low-level graphics programming. Recent-
ly, researchers have been allowed to use high-level
programming languages with the development of
unified programming models, including OpenCL.,
OpenACC and the compute unified device architec-
ture (CUDA ). Among them, CUDA has been rec-

ognized as the most popular programming model by

many research communities. In CFD community,
many low order CFD methods like the finite differ-
ence method (FDM)'"#, FVYM!"* | FEM'"* and the
meshless method'"” have been ported from CPU to
GPU under the CUDA model to achieve speedups
of dozens of times.

Research activities can also be noted for GPU
implementations of the high order DG method. For
instance, Kloeckner et al.'" developed a 3D un-
structured linear nodal DG code to solve the Max-
well equations. Siebenborn et al."”'”’ developed an
explicit modal DG code to solve 3D Euler equa-
tions. It was later modified by Karakus et al.""" for
solving incompressible laminar flows. It can be not-
ed that the developed DG codes are in two types,
nodal and modal. In general, a nodal DG scheme is
often adopted together with an integral-free ap-
proach, which perfectly fits into the GPU program-
ming model. However, the integral-free approach is
not sufficient for nonlinear partial differential equa-
tions (PDEs). Therefore, one has to resort to the
modal type of the DG scheme for solving nonlinear
PDEs like problems to be solved in this paper. How-
ever, the computations of the modal DG solver are
usually complicated in comparison to the nodal coun-
terpart due to extra numerical integrations at each
time step, which often results in the waste of partial
GPU threads. Therefore, in order to achieve GPU
speedups efficiently, the thread hierarchy with relat-
ed data structure to be appropriately designed for dif-
ferent DG schemes with different approximate or-
ders is still one of the major research problems.

In this paper, efforts are made to develop a
modal type of GPU-accelerated DG method for
solving two-dimensional laminar flows. Following

the work of Fuhry et al.'""

, which is developed for
solving two-dimensional Euler equations, the pro-
gramming models of thread-per-—cell and thread-per-
edge are applied for solving two-dimensional Navier-
Stokes equations, in which the inviscid and viscous
flux terms are computed by the local lax-Friedrichs
(LLF) scheme'™ and the second scheme of Bassi
&. Rebay (BR2)'*"' respectively. A strong stabili-
ty preserving (SSP) Runge-Kutta scheme'” is then
used for time marching of numerical solutions.

Thus, the thread hierarchy with related data struc-
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ture can be conveniently managed, which gives the
great flexibility for accommodating different DG
schemes with different approximate orders. The
most important is that the DG scheme can be imple-
mented in a unified manner without varying with
change of approximation orders. The orders of con-
vergence of the resulting GPU-accelerated DG
method are first validated by the traditional Couette
flow problems with different mesh sizes associated
with different orders of approximation. The numeri-
cal simulations of the typical flows over a circular
cylinder or a NACA 0012 airfoil are then carried
out, and the obtained results are compared with ana-
lytical solutions or available experimental and nu-
merical values reported in the literature, as well as
with a performance analysis of the developed code

in terms of GPU speedups.

1 Numerical Method

Before implementing the DG method on GPU,
we provide a brief description of the traditional DG

method "’ for laminar flow simulations.
1.1 Governing equations

In this study, laminar flows are governed by

the two-dimensional Navier-Stokes equations,

which can be written in differential form as

%+v.(p,.<u)—a(u,vw)=0 (1)

where U =(p, pu, pv, pE )" is the vector of con-
served variables; and F(U ), F,(U,VU) are the in-

viscid and viscous flux terms, respectively, with

ou 0
ou’+p ovu
F(U)=|  puv ov' +p
pu<E+p) p'v(E-i—p)
P P
0 0
F(U,VU)= o o
Tf)’ T}‘}'
ut,, +vr,—q, ut,tvr,—q,

(2)
where o is the fluid density; u, v are the velocity
components along x and y axes, respectively; E is
the total energy per unit mass and p the pressure.

Assume that the fluid is perfect gas, and the equa-

1 1
£+*(u2+ v'+ w?) is satisfied,
y—1lp 2

where y indicates the ratio of specific heat coeffi-

tion E =

cient, for air, y = 1.4. In the viscous flux term, the
components of shear stress and heat conduction are

defined as

du;  Jdu 2 duy
o cp o) 2 e
G #(81'1. 81',») 37 0x,

_#G 0T
Pr ox,

(3)

q;—

where the subscripts ¢ and j indicate x and y direc-
tions, respectively; Pr is the Prandtl number and
taken as 0.72 for laminar flows; C, the specific heat
capacity at a constant pressure. The viscosity coeffi-
cient p is calculated by the Sutherland formulation
Y T 2 T,+S
wo (T) T+S
T,= 288.15K, p,=1.716 X 10 ° kg/ms,
S=110.4 K for air.

(4)

where

1.2 Discontinuous Galerkin method

The DG method used in this paper is the well-
known BR2 S To apply the BR2
scheme, Eq.(1) needs to be reformulated by replac-

scheme'

ing the gradient of the solution VU with an addition-
al independent unknown @. Thus, Eq.(1) can then
be reshaped as

00— VU=0 (5)

J
7(;+V-F,»(U)* V-FAU.@)—0 (6

Then the traditional DG approach is applied to
Egs.(5) and (6), resulting in Eq.(7) and (8) for
cell 2,

Edge integral O

J 'Uk@},d;Q(*J‘ 'UkU/,’n d5+J V‘UVU,,d.Q(,:O
0, 0, 0,

(7)

wu,
j o 240+
0, at

Edge integral @

[ 0r)ndo— | Vo, F(U)a—
0, Q,

Convective part

Edge integral @

J‘an kaI,(Uh,@)'nd0+Jn VU&'FU(U},,@)dQ:O

Diffusion part

(8)
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where U, is approximated to the numerical solution

U,; p the approximate order. U, can be written as
Np
thzc&(t)w(x) 9)
=1

where v,(x), the so-—called basis or test functions,
is a base of the polynomial space P* and N,=(p +
1)(p+2)/2 the total number of these functions.
The Tayler basis functions™™ are chosen in present
article for their simplicity.

As there is no global continuity requirement for
U, in the DG method, numerical fluxes H,.., H,, H,
in edge integrals @, @ and 3 need to be defined to

handle this discontinuity

J ka,,-nda:J v, H,.. (U U )ends (10)
0, 0,
Jm v, F, (U, )-ndo’:Jm v, H(U ", U )ends (11)

Ln v, F,(U, )-ndGZJm v, H,(U ,0 ,U ,0 )endo
(12)

where the (+)" and (+)” are notated to indicate the trac-
es from the exterior and the interior of the cell, re-
spectively. The inviscid numerical flux H, is taken
as the widely used LLF" scheme in this paper for
its stability and simplicity. The auxiliary and viscous
numerical fluxes, H,, and H,, proposed by Bassi

and Rebay in their BR2 scheme are written as

1(U‘—I—U) (13)

Haux -
2

1
H,=——
2

After inserting the centered flux H,, and inte-

(FU',0 )+ FU ,0)) (14)

grating by parts for integrals O, Eq.(7) can then be

transformed as

J‘ ‘U;\.@/,dny —
0,

| wvuian | o(H, U )nds  (5)
0, 20,

It can be noted that the auxiliary variable @ is a
sum of the solution gradient VU and a global lifting
operator R, ® = VU + R, where R = E r*and r°

ecan,

are local lifting operators only related to the edge e
J U,Crkdﬂ(,:J v,(H,, — U )endo (16)

A stable factor » is also introduced in the local
lifting operator and usually taken as the number of
edges in each cell. Thus, Eq.(8) can then be writ-

ten as

U,
J "Uki/dﬂ(‘kj v, H (U, U )endoc —
Q, at 20,

Jn(Vvk-Fi(Uh)dQ— zjkv,?Hl, (U, VU +

€00,

pr., U ,NU ™ + ygr. )endo +
Jﬂ V“UVFY,(U/,,VU,,JFR)dQ:O (17)

After several mathematical conversions, the fi-
nal formulation of the semi-discrete of the DG meth-
od can be written as

U,
dt

ZMl( —Jm v, H (U, U )endo+

JﬂV?’;A.F,.((jh)dQ+ ZJ

e€0n,

v H, (U, VU +

UTj,U,VUJfrjr(,)-nda

| VooF.(U.vU -+ R)Q) 18)
where M is the mass matrix with elements M, ;=
J v,v,d0..

o,

To simplify the calculations, all integrals are
solved using the Gaussian quadrature rules and com-
puted in canonical cells'””" by establishing map func-
tions between arbitrary cells in the mesh and the ca-
nonical triangle ' ={—1<<r,s<<1,r +s<<—1}or
canonical quadrangle I'={—1<<r<<], — 1<<s<<
1} on which the Gaussian quadrature rules are
known. These map functions ¥,: ,—I" are creat
ed to connect the physical coordinates x=(x,y)
and the ones in the canonical cell r={(r,s) for each
cell 2,. Thus, integrations for any functions in the

physical space (2, are evaluated as

[ reao=[._, . rw)g(w,) 1der(Dw AT 19)

where DWPZ( 1s a Jacobi num-

r.)

r-"); J=|Dv,
Sy

S,
ber and stays positive when edges of the cell are
counterclockwise. This method 1s suitable for cells
with straight edges, but for cells with curved edges,
special treatment is usually needed. A strategy for
curved cells appeared in the work of Liibon et al."™"
is adopted for treating curved triangle and quadran-
gle cells involved in the present work.

The time integration of the semi discrete sys-
tem in Eq.(18) is accomplished by the SSP Runge-

Kutta scheme!®', which is stable for a Courant num-
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ber less or equal to 1/(2p+1). In the present
work, this scheme is adopted and Courant number

is fixed to be 1/(2p + 1) for all the test cases.

2 GPU Implementation of DG

Method

Among the available unified programming mod-
els, CUDA is recognized as the most popular one
since it provides researchers with a high-level pro-
gramming language for GPU computing. In the pres-
ent work, the CUDA C programming model is used
in GPU implementation of the DG method. Some
techniques involved in GPU implementation, in-
cluding CUDA subroutine,

thread hierarchy, will be discussed in this section af-

data structure and

ter a brief introduction of the CUDA C program-

ming model.
2.1 CUDA C programming model

In the present work, a NVIDIA GTX TITAN
GPU together with the CUDA C programming

1" is employed for developing the GPU

mode
codes. The GTX TITAN GPU is based on the Ke-
pler architecture, which contains a total of 14
streaming multiprocessors (SM) and each SM has
192 CUDA cores. In the CUDA programming mod-
el, when a parallel task (usually a kernel function)
is executed on GPU, a double-layer-based thread hi-
erarchy is created: All threads are organized into a
set of thread blocks, and all of these thread blocks
are then gathered into a thread grid, as shown in
Fig.2. For a specified grid, each block has the same
number of threads, which will be sent to different
cores in the same SM and be executed in parallel.
The efficiency of GPU parallelization is related
to the usage of available memories existed on the
GPU architecture. The global memory, the register
and constant memory are required to be used in a
way of careful management due to different access
speeds. The slow-access global memory located out-
side of the chip has the capacity to store major data
and may introduce large latencies. Therefore, the
management of global memory is realized by mini-

mizing access times to the memory. In specific,

Block | | Block || Block
0,0 11,0 || 2,0

|l

Block | | Block || Block
== onllanllen

|l

Block | | Block || Block
©0,2) [|(1,2) || 2,2

|l
£l

Thread | |Thread Thread | |Thread
(0, 0) ©, 1) 0,2) ,3)

Thread | |Thread Thread | |Thread
— | 1,0 11 1,2 (1,3)

Block
(1,2)

Thread | |Thread Thread | |Thread
2,0 2,1 2,2) (2,3)

Fig.2 Description of thread hierarchy

global transactions are coalesced by instructing the
nearby threads to access the same blocks of memo-
ry. Each thread has its own private registers located
in the fast-access GPU chips as shown in Fig.3. Al-
though registers available in each thread are limited,
their capacities are used as much as possible thanks
to their fast-access features. As usual, the low ca-
pacity constant memory, which is reported to be al-
most as fast as registers when all threads in a warp

[23]

access the same location'™', is used to store a small

number of constant data accessed frequently.

GPU
Multiprocessor
Multiprocessor

Multiprocessor

registers
shared memory

=

Fig.3 Types of memories and their locations

2.2 CUDA C-based GPU implementation

As mentioned above, GPU is ideally suited for
computations that can be run on numerous data si-
multaneously in parallel, and performs poorly when

dealing with logical judgements and branch struc-
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tures. Therefore, the computing tasks to be execut-
ed on GPU should be carefully selected. For the
DG method described in Section 1.2, the comput-
ing tasks associated with the Runge-Kutta time-
marching procedure are the most time-consuming
part, and hence are ported to GPU with the use of
CUDA C; while the other parts related to pre- or
post-processing are still kept on CPU. As shown in
Fig. 4, according to the Runge-Kutta scheme and
the specific DG discretization in space, the time-
marching procedure of the DG method has been
split into a set of sub-procedures, which could be
calculated by kernel subroutines in GPU implemen-
tation. In specific, the subroutine, namely DT, is
assigned to update the value of time step; the sub-
routine ConVars is designed to compute the con-
served variables appeared in Eq.(9) ; the subrou-
tine Grad is developed to compute the gradients of
conservative variables based on the BR2 scheme;
the subroutine Flux is assigned to compute the nu-
merical fluxes, including the LLF flux and viscous
numerical flux appeared in Eq.(14) ; the subroutine
RHS is designed to compute the righthand side part
in Eq.(18) ; the subroutine UP is programmed to
update the solution based on the Runge-Kutta
scheme; and the subroutine Res is used to evaluate

the computational residuals.

End

Start |
1
- i | Main loop over time
| Pre-processing I !
Y i Update time step (DT)
Transfer necessary data | ! Loop over Runge-Kutta stages
from CPU to GPU i {
] i 1.Compute ConVars (ConVars)
Run time marching  |_! | 2.Compute Grad (Grad)
iterations on GPU ! 3.Compute Flux (Flux)
H 4.Compute RHS (RHS)
v
Copy results from i 5.Update Solution (UP)
GPU to CPU vl .
i ompute L2 residual (Res
! ! Compute L2 residual (Res)
| Post-processing I i If (convergent) exit loop
1
1
1
1
1

Fig.4 A general procedure of GPU-based DG solver

As discussed in Section 2.1, registers are lim-
ited in each thread block, thus, the subroutines
mentioned are further split to low level kernels.
Corresponding cell-based and edge-based kernels

are then designed to compute the quantities related

to cells and edges. For instance, the subroutine
RHS consists of three kernels, Vol Rhs_Kernel,
Surf_Rhs_Kernel and MulMtx_Rhs_Kernel. Specifi-
cally, Vol _Rhs_Kernel is cell-based and used to
compute the cell integrals appeared in Eq. (18) ;
Surf_Rhs_Kernel is edge-based and developed to
evaluate edge integrals in Eq. (18). The cell and
edge integrals are then combined and multiplied by
the inverse of mass matrix M in a cell-based kernel
MulMtx_Rhs_Kernel. Listing 1 gives the corre-
sponding code snippet of subroutine RHS.

cti,j, m=|c;, Crf-{C

Czl,l""

Cui

C[{z|ciz|...c‘

N2

1
Crn

2
C? |

Fig.5 Resulting storage pattern of array C

Listing 1  Code snippet of subroutine RHS
(1) void RHS (+++)

(3) Vol Rhs Kernel <<<{<{>>>> ()
(4) Surf Rhs Kernel <<<{<{>>>> ()

(5) MulMtx Rhs Kernel <<{<>>>
(=)

(6) -

(7)

The kernels are also developed in remaining
subroutines like ConVars mentioned above. In order
to make it clear, the main subroutine of the Runge -

Kutta time-marching procedure is given in Listing 2.

Listing 2 Code snippet of subroutine
SSP_RKDG

(1) void SSP_RKDG (+++)

(2) {

(3) ! evaluate the time step

(4) DT(-);

(5)

(6) ! loop over SSP Runge-Kutta itera-

tion

(7) while (j7<{nRK)

(8) %

(9) ConVars(-++);

(10) Grad(:++);

(11) Flux(:++);

(12) RHS(-+);

(13) UP(-+);

(14) %
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(15) 2.2.2 Key kernels
(16) Res(-++); In order to have a deep understanding of ker-
(17) if (isConvergent) break; nels constructed in the Section 2.2, three representa-
(18) | tive key kernels are described in details. Locations

It can be noted that the whole procedure of the
program mainly depends on the clear modules of
these computational subroutines, which results in
great flexibility for possible extensions associated
with schemes updating in view of modules replace-
ment.

2.2.1 Data structure and memory management

As mentioned above, the coalesced memory
access 1s helpful for reducing access times to the
global memory. In order to maximize coalesced
memory access, data structures are designed in com-
ponent-wise manners. Thus, data related to the
same component can be stored continuously. For ex-
ample, the coefficients with the same order, which
are required to be fetched simultaneously, can now
be placed side by side in the solution coefficient ar-
ray C (Eq.(9)), as shown in Fig.5. The element
C; of array C denotes the coefficient of cell 7, corre-
sponding to the basis function v; of the mth conserva-
tive variables. Therefore, the nearby threads can ac-

cess nearby addresses, as illustrated in Fig.6.

qi’j’ m] =

1
Cl.l

1
CZ, 1

1
. CN.I

L1
T

1st Loop 2nd Loop

1
Cl,Z

1
CZ, 2

C,l,

1
..CMN

2
C],l

-C,i

M
..CMN

2

L

o -

J

Iy

V-

ty |

Iy

Thread ID | 1
L

Fig.6 Thread access pattern of array C

Besides, constant data that are used {requently
are stored in the constant memory to improve mem-
ory throughput. In specific, the Tayler basis func-
tions v, and their gradients Vv, together with the co-
efficients corresponding to the Gaussian quadrature
rules in canonical cells are such kind constant data in
the present GPU implementation, and they are all
stored in constant memory. With the data structure
developed and memory management mentioned,
the related quantities like numerical fluxes and resid-
uals are computed by specific GPU kernels, as list-
ed in Listing 1, which will be addressed in next sec-

tion.

of related variables in different memories are listed
in Table 1.

Table 1 Notations of variables

Notation Description

A Superscript g: Variables located in global memory
Superscript t: Variables located in thread private
memory
Superscript ¢: Variables located in constant mem-

ory

The first kernel, namely Flux_Kernel, is edge-
based and used to calculate the numerical fluxes at
the edge integral points. As shown in Algorithm 1,
the thread index, id, is calculated in line 2, the up-
per bound is checked in line 3 to avoid possible mis-
takes caused by computations beyond the bound. Af-
ter that, the loop is carried out over each integral
point into four steps. In Step 1, necessary data in
the global memory are fetched and assigned to the
thread private registers. The boundary conditions
are enforced in Step 2. Notice that branch structures
are existed with different boundary treatments. In or-
der to reduce low-efficient branches among neigh-
boring threads from the same thread warp (strictly
executing the same instructions synchronously, as
the technique details in Ref.[ 23] describes) , a sim-
ple sorting of edges is performed during the pre-pro-
cessing to gather the same type of boundary edges
together, which reduces the amount of low-efficient

branches to no more than N,.. N, is the number of

ype
boundary types in the computational domain. In
Step 3, the inviscid and viscous numerical fluxes are
then calculated by the specific schemes. Finally, the
obtained values are sent to the global memory in
Step 4.
Algorithm 1 __global__ void FluxKernel()
Input Global memory: Conserved variables
at the edge integral points W
Gradients of conserved variables at the

edge integral points de W, dyW



No. 4 GAO Huangin, et al. A GPU-Accelerated Discontinuous Galerkin Method for Solving Two-Dimensional-- 457

Connectivity matrices L, R, L i, R poins;
Norm vectors n,,n,.
Output
(1)
(2)id=threadldx.x+blockldz.xXblockDim.x
(3)if id<<NL then
(4) cl=L[id]
(5) cr=Rl[id]
(6) for each edge integral point i do
(7)
(8) Stepl
(9) ‘'m,~*n,,'n,~*n,
(10) ‘W, <*W,,
'dyW, < tdyW,
(11) if cr>>0 then

Flux at the edge integral points.

Load data from global memory

‘da W, <¢dxW,,

(12) "Wi<*W,, ‘daWe<tdaW,,
dyWe=<*tdyW,

(13) else

(14) "Wr<'W,

(15)

(16) Step 2 Enforce boundary condition if

cr<<0

(17) if cr==WALL then

(18)  WallBoundary (‘W)

(19) else if cr==FAR then

(20)  FarBoundary('W,)

(21) elseif cr==SYM then

(22)  SymBoundary('W,)

(23)

(24) Step 3 Calculate flux at ecah intergral

point

(25) if cr>>0 then

(26) flux = LLFflux('"W,, 'Wg, ‘n,, 'n,)
“flux += Numerical Visflux ("W,
We, 'dxW, ' de Wy, 'dyW,, 'dyW,
‘n., 'n,)

(27) else

(28)  lux=LLFflux('W,, 'Wg, 'n,, 'n,)
'flux += Numerical Visflux( 'W,,
W, 'daW,, 'daW,, 'dyW,,
‘dyw,, ‘n,, ‘n,)

(29)

(30) Step4 Send data to global memory

(31)  #flux < "flux

The second kernel, namely Vol_Rhs_Kernel,

is cell-based and used to calculate the cell integral
contributions to the right-hand side of Eq.(18). As
shown in Algorithm 2, the calculations are accom-
plished in three steps. In Step 1, a private array
‘RHS, is assigned in each thread. Thus, access
times to the global memory can be benefited from
this private array. It means that the access times
mentioned can be greatly reduced, and hence it is
possible for achieving high speedups. Then in Step
2, the calculation loop of the array is performed
over each integral point in two sub-steps. In specif-
ic, for each integral point within the loop men-
tioned, the related data, which are previously in the
global memory, are transferred to the registers of
the thread as written in Step 2.1. With the available
data of the point, the calculations associated with
the array are then carried out in Step 2.2. After
that, the obtained values of array are finally stored
in the global memory in Step 3.

Algorithm 2 __global__ void Vol_Rhs_Ker-
nel()

Input Global memory: Conserved variables
at the cell integral points W ;
Gradients of conserved variables at the
cell integral points dx W, dyW; ge-
ometry factors at the cell integral
points: r,,7,,5,,5,,J .
Constant memory: Basis functions v at
the cell integral points and their gradi-
ents v,,v,; weighted coefficient w at
the cell integral points
Output
(1)
(2)id=threadIldz.x+ blockldx.aXblockDim.x
(3)if id<<NC then
(4) Step 1 Allocate array ‘RHS,
(5) 'RHS,[ j, £ ]<0
(6)
(7) Step 2 Calculate contribution to 'RHS,

Cell integral contribution

(8) for each volume integral point ¢ do

(9) Step 2.1 Load data from global memory

(10) W, *W,,  'deW, < *dzW,,
dyW < fdy W,

(11) ‘ro=%r,, 'ry<fr,, 's,<%s,, 's,< ¥,
J.o<2J,
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(12)

(13) Step 2.2 Calculate contribution of the
point to '‘RHS,

(14) Flux('F, 'G, 'W,, ‘dzW,, 'dyW,)

(15) 'RHS,[ j, k] < ("F[£](“v.[4,5]

o+ oldg] s+

(16) 'GlklCvlij] 'r,+ vlijl's,))

“wli] 'J,

(17)

(18) Step 3 Send data to global memory

(19) *RHS[id.j. ] < RHS,[ j. £]

The last kernel, Surf Rhs Kernel, which is
edge-based, is designed to compute the edge inte-
gral contributions to the right-hand side of Eq.(18).
As shown in Algorithm 3, two thread private ar-
rays, 'RHS, and 'RHS, are allocated in Step 1, as
shown in Algorithm 3. Then in Step 2 a loop is per-
formed to compute the values of these arrays over
each integral point, which is carried out in two sub-
steps similar to the ones as the lines 9 to 16 in Algo-
rithm 2. Finally, the obtained values of the arrays
are sent to the global memory. Notice that race con-
dition'*’ may occur in Step 3. Therefore, an atomic
operator® atomicAdd is used in this kernel to by-

pass this problem.

Algorithm 3 __global__ void Surf_Rhs_Ker-
nel()

Input Global memory: Flux at the edge inte-
gral points; geometry factors: J;;
Connectivity matrices L, R, L s R poim-
Constant memory: Basis functions v at
the edge integral points; weighted coef-
ficient w at the edge integral points

Output Edge integral contribution

(1)

(2)id=threadIdx.x+ blockldz.xXblockDim.x

(3)if id<<NL then

(4) Step 1 Allocate array ‘RHS, ,'RHS

(5) 'RHS, [ j, k] <0, RHSk[ j k] <0

(6) cl=L[id], cr=R1[id]

(7)

(8) Step 2 Calculate contribution to 'RHS,,
'RHS,

(9) for each edge integral point 7 do

(10)  Step 2.1
memory

(11)  idl <=5 L g, idr <% R 5,

(12)  flux [ j ] < flux, J,<*J,

(13)

(14) Step 2
point to 'RHS,,'RHS,

(15) 'RHS.[j, £] <57 "flux[£] “vlidl,
Jlcwli]

(16) if cr>>0 then

(17)  'RHSg[ j, ] W‘ﬂux[/e] “y [idr,

1wl

Load data from global

Calculate contribution of the

(18)
(19) Step 3 Send data to global memory
(20) *RHS[clj, k] <

atomicAdd( *RHS [cl,j, 2], —'RHS, [ j, #])
(21) if cr>>0 then
(22)  *RHS[crjik]) <

atomicAdd( *RHS [cr,j, £ ], 'RHSg[ j, £ ])

3 Numerical Results and Perfor-
mance Analyse

The CPU or GPU codes developed in the
double-precision mode with methods described have
been verified through simulating a set of typical flow
problems, including Couette flows and flows over a
circular cylinder or an aerodynamic airfoil. All simu-
lations are performed on a Windows desktop plat-
form equipped with a NVIDIA GTX TITAN GPU
and an Intel core 15-3450 CPU (See Table 2 for
their specifications). The performances of the devel-
oped codes will be analyzed after presenting numeri-

cal results.

Table 2 Specifications of Intel core i5-3450 CPU and
NVIDIA GTX TITAN GPU

Intel core NVIDIA GTX
Component .
15-3450 TITAN
Processing units 4 2688
Frequency/GHz 3.1 837
Peak double-precision/
99.2 1300
(GFLOPss )
Memory/GB 16 6
Memory bandwidth 25.6 288
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3.1 Numerical results

3.1.1 Couette flows

In order to have a view of the accuracy and con-
vergence orders of the developed DG codes, Cou-
ette flow between two parallel plates where the up-
per plate moves at a constant velocity U and the bot-
tom plate 1s fixed, is firstly selected and simulated
with arbitrary grids. Assume that the viscosity coef-
ficient y is a constant, the exact solution of this Cou-

ette flow can be expressed as

uZ%U,‘UZO,p:pT,

P
T:TOJFL(Tl*To)‘F fl l.Oy)
H 2C, H H

_ L
RT

where H is the distance between two plates and y

14

the distance between the field point and the bottom
fixed plate. Following the work in Ref.[24], the oth-
er parameters are taken as: The temperature of the
bottom plate T} is set to be 0.80 and the temperature
of the upper plate T, is taken as 0.85. The Mach
number of the upper wall Ma..= 0.1 and the Reyn-
olds number Re.. = 100. The computational domain
(0<<x<{2H,0<<y<{H, H=2) is discretized with
unstructured grids and structured grids. As shown in
Fig. 7, three successive refinement are carried out
for flow simulations with approximate order p from 1
to 3. The differences between the computed density
and the exact density is used to measure the order of
convergence with the L* errors, which are computed
and listed in Table 3. The ( p+ 1)th order of con-
vergence of the present DG codes of approximate or-

der p can be achieved as expected.

2.0 2.0 2.0 ss VAVX%W“;‘
1.5 1.5 L5 o s
) oy
~ 1.0 ~ 1.0 ~ 10 BE
5 S SRR
0.5 0.5 0.5 BKL PRt KL
. i i E': Avavav, '%'ﬁ%‘
B VAAAVAVAVAV‘A%ﬁgﬁ
0 0 0 0 0 0 PV vava AVAVAVATAVAVAVATAVAVAVAAVAVAVAAVAVAVAY:
"70.00.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 "70.00.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 "0.00.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x X x
(a) Mesh A (b) Mesh B (c) Mesh C
2.0 2.0 2.0
1.5 1.5 L5
~ 1.0 ~1.0 ~ 1.0
0.5 0.5 0.5
0.0 0.0 0.0

0.00.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x

(d) Mesh D

0.00.51.0 1.5 2.0 2.5 3.0 3.5 4.0
X

(e) Mesh E

0.00.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x
(f) Mesh F

Fig.7 Successively refined meshes (Unstructured meshes:A to C; structured meshes:D to F)

Table 3 L* error and convergence order of Couette flow

on unstructured and structured meshes

Approximate Unstructured Structured
order Mesh L*error order Mesh L%error order

A  1.30E—5 D 1.66E—5
p=1 B 298E—6 2.12 E 3.62E—6 2.19
C 7.09E—7 2.07 F 9.30E—7 1.96

A 7.46E—8 D 1.28E—7
p=2 B 1.0l1E—8 288 E 1.61E—8 2.99
C 1.10E—9 3.19 F 2.02E—9 2.99

A 247E—10 D 4.78E—10
p=3 B 1.95E—11 3.66 E 3.09E—11 3.95
C 1.46E—12 3.73 F 2.35E—12 3.71

3.1.2 Viscous flow past a circular cylinder
A compressible viscous flow past a cylin-
der' " Ma..=0.2

Re.. =40 1s then selected and simulated for further

with  conditions of and

validation. As shown in Fig.8, the computational

(a) Global view

(b) Zoom in view

Fig.8 Computational mesh of the circular cylinder
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domain 2 of [—15, 30 ]X[—15, 15 ], which is suffi-
ciently large to eliminate the influence of far field
boundary on the net drag and separation bubble
length s, is discretized with 640 quadrilateral grid
cells and 4 254 triangular ones for simulations. The
contours of Mach number are computed as shown in
Fig.9. The smoothness of the computed contours

can be observed to be notably improved as the ap-

proximate order increases. Besides, the correspond-
ing streamlines of the flow field are also presented in
Fig.9 in order to have a clear view of separated bub-
bles. The computed total drag coefficients C;, and
normalized lengths of separation bubble relative to
the diameter d of the cylinder, s/d , are listed in Ta-

ble 4, which are all in good agreement with estab-

lished results 2,

(@p=1

b)p=2

©p=3

Fig.9 Mach number contours and streamlines with different approximate orders

Table 4 Comparison of computed drag coefficients and
separation lengths for laminar flows over a cir-

cular cylinder

Approach Method C, s/d
BR2-P1 1.563 2.09

The proposed BR2-P2 1.554 2.32
BR2-P3 1.553 2.32

Vang et oL, DDG-P1 1537 231
DDG-P2 1.537 2.31

Ye etal”” FVM 1.52 2.27
Xiao et al.”” BR2-P2 2.28
Visbal et al. Experiment 1.48 2.1

3.1.3 Viscous flow past NACA0012 airfoil

The last test case presented is a viscous flow
past a NACAOQO12 airfoil. The conditions of the
free-stream are Mach number Ma..= 0.5, the angle

of attack @ = 0" and Re,= 5000, in which subscript

¢ denotes the chord length of the airfoil used as the
reference length of the Reynolds number. The adia-
batic wall boundary condition is considered in this
case. The computational domain is discretized with
170 X 30 quadrilateral cells (Fig.10) for simula-
tions. The computed Mach number contours of the
5th order results (p=4) are presented in Fig.11
along with the streamlines near trailing edge of the
airfoil in order to have a clear view of separated flow
patterns. It can be noted that flow separations occur
near the trailing edge of the airfoil, leading to the
generation of two recirculation bubbles in the wake
region. The corresponding pressure and skin friction
and C;,

Fig.12, which are all in good agreement with the re-

coefficients, C are also presented in

P

sult appeared in the open literature®’. Additionally,

in order to have a view of the effect of different ap-
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(a) Global view
Fig.10 Computational mesh of NACAO0012 airfoil

Fig.11 Mach number contours and streamlines near the

trailing edge with approximate order p=4

proximate order, the drag coefficients due to pres-
sure, namely Cp,, are further computed and listed
in Table 5 together with the drag coefficients due to
viscous stress Cp, and the total drag coefficient Cy,.
In the column Method, postfixes, P1, P2, P3 and
P4, indicate the method approximated by order of
1,2, 3 and 4, respectively. It can be noted that the
computed Cy, increases as the approximate order in-
creases like reference data'®*’ listed. In specific,
the drag coefficients similar to the results of BR1-P3
and DDG-P2 can be obtained by the BR2-P3 and
BR2-P4 schemes presented, and their differences of
Cpy, Cpy, Cp are within 3% ,1% and 2%, respec-
tively.

3.2 Performance analysis

3.2.1 Performance indicators

To have a quantitative comparison of the per-

051
0.0
o) —— The proposed
0.5 - Bassi & Rebay™”
10t
0.2 0.4 0.6 0.8 1.0
xlc
@C,
0151
0.10 —— The proposed
+ Bassi & Rebay™
0.05F
- 0.00r
O
-0.05r
-0.10
-0.15f
00 02 04 06 08 10
xlc
® G

Fig.12 Distributions of pressure and skin friction coeffi-

cients with p=4

Table 5 Comparison of drag coefficients with different

approximate orders

Approach Method Ch, Cpy Cp

BR2-P1 0.016 15 0.037 49 0.053 64

The proposed BR2-P2 0.02177 0.03400 0.05577
BR2-P3  0.02273 0.03323 0.055 96

BR2-P4 0.022 87 0.033 13 0.056 00

BRI1-P1 0.019 63 0.03051 0.050 14

Bassi &Rebay™ BR1-P2  0.01991 0.033 61 0.053 52
BR1-P3  0.022 08 0.03301 0.05509

Yang et al® DDG-P1  0.02246 0.032 20 0.054 67
DDG-P2  0.02252 0.032 90 0.055 42

formances of the developed DG codes, an absolute

indicator-unified time T is firstly defined as

Tiler
T,—oX —

DOF

(20)

where o is a constant for scaling the magnitude of
the unified time index and is taken as 10° in this pa-
per; Ti. the computational time of a single iteration
for the DG solver; Npor the number of degrees of
freedom (DOF), which depends on number of cells
N.a., number of conservative variables N, e and

number of basis functions N,. Thus, Npor = Neais X
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N arianies X N,. As a result, T, can be interpreted as
the time consumed in a single iteration for one mil-
lion DOFs. Then, the performance of the GPU
codes compared with its CPU counterparts can be
quantified by a relative indicator with speedup ratio
(SR)

_ Tew
T

where Tepy 1s the value associated with CPU-based

SR (21)

simulations and Tgpy the value associated with
GPU-based simulations. It is well known that the
key kernel subroutines dominate the whole perfor-
mance of the program. Therefore, the benchmark
tests with related performance analysis will be firstly
carried out for the key kernel subroutines before pre-
senting the performances of the whole program.
3.2.2 Performances of key kernel subroutines
For an intuitive impression of the effect of
GPU parallelization, the tests of key kernel subrou-
tines are carried out by gradually moving the key
procedures of the CPU serial code onto the GPU
with computational kernels. Without loss of general-
ity, the Couette flows presented in Section 3.1.1 are
selected for these tests. The computational domain
is uniformly covered by 768X 256 quadrangle grid
cells, which is much greater than the number of pro-

cessor cores of the GPU used. Thus, the computa-

T,/ ms
0 200 400 600 800 1000 1200
NONE (all CPU) [mmmm” ! T s —
+DT - — —
+ConVars e —
+QGrad |———
+Flux |—
+RHS |=
+Update |u
+Res (all GPU) Ja
uDT ® ConVars © Grad ®MFlux mRHS mUpdate mRes
@p=1
T,/ ms
0 200 400 600 80010001 200140016001 800
NONE (all CPU) [ * ! ! ! T eeee—
F+DT |— I
+ConVars
+Grad |ee————
+Flux |e—
+RHS [m
+Update s
+Res (all GPU) |u

DT ®m ConVars

Grad ®Flux mRHS mUpdate mRes
(©p=3

tions can make full load of the massive parallel GPU
architecture. As illustrated in Fig.13, key kernel
subroutines of seven procedures, namely DT, Con-
Vars, Grad, Flux, RHS, Update, and Res, are
successively analyzed. To test the DG method with
approximate order p=1, the code is first executed
on the CPU (The firstrow ribbon, “all CPU”, in
Fig.13(a) ), and the DT procedure is then moved
onto the GPU using corresponding kernel subrou-
tines, while the other procedures are kept on the
CPU (The second-row ribbon, “+DT”, in Fig.13
(a)). After that, the remaining procedures are incre-
mentally moved one by one onto the GPU using
CUDA C kernels until all the procedures of the
CPU serial code are executed on the GPU (The last
row ribbon in Fig.13(a)). The tests of the DG
method with other approximate orders are also car-
ried out as illustrated in Figs.13(b—d) , respective-
ly. It can be noted that gradual acceleration can be
achieved as more of the procedures are moved onto
the GPU. The detailed time costs, T, , of both
CPU- and GPU-based procedures are listed in Ta-
ble 6, as well as the corresponding speedup ratio
SR. It can also be noted that each procedure can be
significantly accelerated on GPU (Rows T¢py and
Tory) , appeared to be dozens of times of speedup
ratios (Row SR in Table 6).

T,/ ms
0 200 400 600 800 1000 1200 1400
NONE (all CPU) [ ' ' ' : . '
+DT — I
+ConVars I —
+Grad |———
+Flux |e—
+RHS |=
+Update [u
+Res (all GPU) i
uDT ® ConVars " Grad ®Flux mRHS mUpdate mRes
(b)p=2
T,/ ms
0 500 1 000 1500 2 000 2500
NONE (all CPU)) [mm ' ’ L — '
+DT —
+ConVars - —

+Grad | ee——
+Flux | —
+RHS

+Update i

+Res (all GPU) fi
EDT ® ConVars = Grad ®mFlux mRHS mUpdate mRes

(dDp=4

Fig.13  Accelerated progress of key computational kernels, conducted incrementally by adding more GPU to support the serial

CPU implementation
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Table 6 Unified time of key subroutines on CPU and GPU together with corresponding speedup ratios

Order  Parameter DT ConVars Grad Flux RHS Update Res Total
Tepy 32.46 76.24 556.73 180.23 235.25 22.33 4.37 1107.60

p=1 Tepy 0.46 0.63 9.50 4.16 4.03 0.51 0.56 19.86
SR 70.81 120.34 58.59 43.28 58.43 43.89 7.74 55.78
Tepy 21.02 96.24 713.04 128.87 282.51 18.77 5.02 1265.47

p=2 Tery 0.28 0.63 11.89 2.87 4.79 0.54 0.29 21.29
SR 75.52 152.19 59.97 44.95 59.02 34.64 17.34 59.45
Tepy 16.38 146.81 996.12 106.99 366.23 14.70 5.50 1652.73

p=3 Tepy 0.22 0.96 16.39 2.23 6.88 0.45 0.26 27.39
SR 73.80 152.75 60.79 47.90 53.21 32.63 21.46 60.34
Tepy 12.05 223.13 1301.9 86.75 464.97 12.56 5.43 2106.79

p=4 Tepy 0.15 1.42 24.16 1.46 9.64 0.44 0.23 37.49
SR 80.33 157.69 53.89 59.42 48.23 28.55 23.61 56.19

Additionally, a benchmark test of size effect
is also performed by changing the number of
threads in a block. A typical set of numbers, 8,
16, 32, 64, 128 and 256, are selected to config-
ure the sizes of thread blocks. The values of com-
puting-time costs, varying with the size of thread
block, are illustrated in Figs. 14 (a—d) for the
present GPU implementation of DG methods with

o W
=

20 || ] ] _—

T,/ ms
W
(=)

8 16 32 64 128 25
Number of threads per block

mDT = ConVars ®Grad = Flux mRHS mUpdate mRes
(@p=1
120
100
z sor [
< 60
&40 |

20 ] ] ] _—
0% 16 32 6 128 25
Number of threads per block
mDT ®m ConVars mGrad ®Flux mRHS mUpdate mRes

(c)p=3

different approximate orders. In Fig. 14, different
sizes of thread blocks and corresponding unified
times are denoted by columnar ribbons and their
vertical heights, respectively. It can be learned that
an appropriate size of thread block, 128, can be se-
lected due to obvious parabolic distributions
(Fig.14). This number will be fixed in the follow-

ing simulations.

2

30 [ |

2 - - -— -

T,/ ms
o
S

8 16 32 64 128 256
Number of threads per block

EDT = ConVars ™ Grad " Flux mRHS mUpdate mRes
byp=2
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100 .

= 60 | ]

40 - - - —

8 16 32 64 128 256
Number of threads per block

mDT ®m ConVars ®Grad mFlux mRHS mUpdate mRes
(dp=4

Fig.14 Size effect of threadblock

3.2.3 Performances of the proposed approach
The two unstructured and structured cases, re-
spectively outlined in Section 3.1.2 and Section
3.1.3, are used here for testing the performances of
the whole approach. For both cases, successively re-
fined grids are employed for all related CPU and
GPU computations in order to have a view of the ef-
fects of mesh scales. The corresponding unified time

and speedup ratios are listed in Table 7. It can be

seen that dozens of GPU speedups, between 14.68
and 69.70 times, are achieved. It can also be ob-
served that the unified time of the serial CPU imple-
mentations in each test case are kept almost un-
changed (the fourth column in Table 7) with the in-
creasing size of mesh, while the T, of GPU imple-
mentations obviously decrease (the fifth column of
Table 7). Fig.15 presents the computational speed-

up ratios with respect to different mesh scales. It can
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Table 7 Unified time of CPU and GPU implementations

together with corresponding speedup ratio

Problem Order Mesh scale Tepu Tsry SR
64 X 10+ 4254 1055.99 71.89 14.68
128 X 20+ 17230 1153.53 33.81 34.12

256 X 40 +70972 1155.22 24.44 47.27

p=1
’ 512 X 80+ 291372 1169.51 22.30 52.44
1024 X 160 +
1178.81 22.08 53.35
Flows 1182 960
past a 64 X 10+ 4254 1200.45 53.85 22.29
circular 128X 20 + 17230 1216.94 30.95 39.32
cylinder 256 X 40+ 70972 1214.26 24.70 49.15
512 X 80+ 291372 1211.66 23.09 52.67
64 X 10+ 4254 1527.38 55.96 27.30
. 128 X 20+ 17230 1522.23 36.21 42.04
= 256 X 40+ 70972 1516.52 30.72 49.37
512 X 80+ 291372 1511.89 28.14 53.73
170 X 30 1290.85 69.22 18.65
340 X 60 1356.21 32.36 41.91
p=1 680 X 120 1366.42 23.01 59.38
1360 X 240 1354.10 20.51 66.01
2720 X 480 1379.78 19.78 69.70
170 X 30 1486.93 51.80 28.71
Flows
340 X 60 1497.14 30.03 49.85
past p=2
A 680 X 120 1493.57 24.00 62.23
N —
1360 X 240 1476.32 22.85 64.60
CA0012
170 X 30 1872.55 50.06 37.40
airfoil
. 340 X 60 1863.97 33.09 56.33
P 680 X 120 1861.21 29.56 62.96
1360 X 240 1836.78 28.64 64.64
170 X 30 2 568.63 55.59 46.12
p=4 340 X 60 2561.27 42.82 59.81
680 X 120 2571.49 38.954 66.01

be observed that continual increasement of speedup
ratios related to the growing mesh scales can be
achieved until the total computing effort exceeds the
allowed capacity of GPU architecture. The impres-
sive GPU speedups associated with large mesh
scales indicate the potentiality of the GPU-accelerat-

ed DG method for flow problems with large scales.

4 Conclusions

The GPU implementation of the DG method
with different approximate orders has been devel-
oped under the CUDA C programming model and is

successfully applied to solve two-dimensional lami-

Vol. 39
60
50+
401
& 30t
—B—p=

201 ——p=2

——p=3
10+

0 1 1 1 )
10 10° 10° 10
Mesh scale

(a) Flows past a circular cylinder
80
70 -
60
50
& 40+

—a-p=1

301 ——p=2

20+ —w—p=3

—-S-p=4
10+

10* 10° 10° 10’
Mesh scale
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Fig.15 Speedup ratios with respect to different mesh scales

nar flows. The traditional program codes of the DG
method can be easily ported from CPU to GPU
through adopting the thread-per-cell or thread-per-
edge models together with component-wise data
storage. A resultant GPU-accelerated DG solver
has been developed through the use of the designed
CUDA C kernels,

structure and the manipulated thread hierarchy. Nu-

the constructed data storage

merical results of the test cases presented can be in
good agreement with analytical solution, available
experimental data or other computational results re-
ported in literature. It can be seen that the perfor-
mance of GPU-accelerated DG solver is greatly im-
proved with speedup ratios of multiple of 69.70 at
most in comparison with that of CPU counterpart.
The speedups vary increasingly with the approxi-
mate orders until exceeding the allowed capacity of
GPU architecture. Besides, the present GPU imple-
mentation is developed based on modules, and
hence has the flexibility to accommodate any new

schemes in view of module replacement.
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