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Abstract: This paper addresses the gas path component and sensor fault diagnosis and isolation（FDI） for the
auxiliary power unit（APU）. A nonlinear dynamic model and a distributed state estimator are combined for the
distributed control system. The distributed extended Kalman filter（DEKF） is served as a state estimator，which is
utilized to estimate the gas path components’flow capacity. The DEKF includes one main filter and five sub-filter
groups related to five sensors of APU and each sub-filter yields local state flow capacity. The main filter collects and
fuses the local state information，and then the state estimations are feedback to the sub-filters. The packet loss model
is introduced in the DEKF algorithm in the APU distributed control architecture. FDI strategy with a performance
index named weight sum of squared residuals（WSSR） is designed and used to identify the APU sensor fault by
removing one sub-filter each time. The very sensor fault occurs as its performance index WSSR is different from the
remaining sub-filter combinations. And the estimated value of the soft redundancy replaces the fault sensor
measurement to isolate the fault measurement. It is worth noting that the proposed approach serves for not only the
sensor failure but also the hybrid fault issue of APU gas path components and sensors. The simulation and comparison
are systematically carried out by using the APU test data，and the superiority of the proposed methodology is verified.
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0 Introduction

It is well known that the auxiliary power unit
（APU），an important subsystem of the aircraft，is
a miniature gas turbine engine that is self-contained
and requires no external energy［1］. APU provides
power，gas，and hydraulic energy for the aircraft
during the flight and restarts the engine in the event
of an in-flight shutdown［2］. The operating condition
should be supervised in real-time，and it guarantees
the APU reliability and stability［3］. Sensor measure⁃
ments are the primary sources of APU status infor⁃
mation，and the accuracy of measurements is critical

for APU control，performance monitoring，and di⁃
agnostics. Due to the harsh working environments
and variable operating conditions of the aircraft，the
sensors are fault-prone parts［4］. Various failures of
the APU control system result from inaccurate read⁃
ings. Hard redundancy and soft redundancy are two
primary ways to improve the sensor reliability of the
APU control system. The additional devices are
usually installed by hard redundancy，leading to a
weight increase. Hence，this paper mainly focuses
on soft redundancy. The estimated measurements
from the mathematical model are drawn and re⁃
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placed with the fault sensor measurements in APU
as the hard redundancy fails［5］.

The Kalman filter（KF）is a widely used meth⁃
od to realize engine soft redundancy and it reduces
the computational burden under the distributed con⁃
trol system. Significant advances in distributed fil⁃
ters research have been made since the early 1970s.
The structure of distributed filters with multiproces⁃
sors has been proposed. Each computing unit related
to the node sensor was used to process the informa⁃
tion obtained at all nodes，and each node got the
overall results［6］. Furthermore，the architecture of a
global filter with multiple sub-filters was developed
and sub-filters were independent of each other. That
the global filter completes the fusion of local results
reduces the communication burden between sub-fil⁃
ters［7］. To realize the diminution of the network
communication burden，Ribeiro derived a recursive
algorithm named sign of innovations-Kalman filter
（SOI-KF） for distributed state estimation based on
residual markers［8］. Safari et al. developed a novel
sensor fusion method for multi-rate sensor network
systems via a neural network approach to estimate
state vectors［9］. Chen et al. proposed a finite time do⁃
main federated Kalman filter algorithm to reduce the
computation burden of filter and improve the sensor
fault tolerance of multi-sensor network systems［10］.
In the situation of a bias fault，Qiu et al. designed an
intelligent covariance online sequence extreme learn⁃
ing machine（COSELM） algorithm to tackle the
signal reconfiguration problem of the sensor［2］.

GAO proposed a distributed extended Kalman
filter（DEKF） algorithm with one main filter and
five sub-filters to estimate health parameters［11］.
Each sub-filter was designed independently and com⁃
puted in parallel［12-13］. The pre-obtained local results
were transmitted to the main filter for information
fusion to get a global posterior estimation. The main
filter assigned information to the sub-filters and state
estimation fed back to sub-filters based on the global
estimation［14］. A packet loss model was introduced
to reflect the random occurrence of packet loss in
measurements transmission from local sensors to
the main filter［11，15］. The likelihood of packet loss for
each sensor was considered to be the same and con⁃

stant at all times［11］. A state receiving matrix was
constructed according to the measurement transmis⁃
sion conditions after the packet loss probability was
set. An improved DEKF algorithm with a packet
loss model was presented by taking the state receiv⁃
ing matrix into account.

The estimated value of the sensor was calculat⁃
ed by the DEKF algorithm，and a performance in⁃
dex named weight sum of squared residuals
（WSSR） was used to identify the APU sensor
fault［16-18］. The sensor was faulty as its WSSR was
different from the remaining sub-filter combina⁃
tions，and the estimated value of the sensor at a
fault-free time was used to replace the fault value.
Then， compared with the original WSSR val⁃
ues［19-21］，all the WSSR values after isolation were
less than the threshold，and the isolation was regard⁃
ed as successful.

In this paper，due to the extreme sensor work⁃
ing environments such as high temperature， five
sensors are measurable and employed to estimate
two flow capacity coefficients that are not obtained
directly. The measurements are rotation speed sen⁃
sor，compressor outlet temperature sensor，com⁃
pressor outlet pressure sensor，turbine outlet tem⁃
perature sensor，and turbine outlet pressure sensor.
While the two flow capacity coefficients are com⁃
pressor flow coefficient and turbine flow coefficient.
Different from the research mentioned above，the in⁃
novation of this paper lies in a new application of the
DEKF algorithm with random packet loss on the
APU. The DEKF algorithm estimates the air path
flow capacity coefficients not only in normal condi⁃
tions，but also in the situation of sensor failures. Sin⁃
gle and dual sensor faults are considered in the esti⁃
mation process as two typical failure modes. The
simulation results show that the isolation module
eliminates sensor faults in a timely and effective
manner in both types of sensor failures and ensure
that the estimation of flow capacity coefficients re⁃
mains correct and unaffected from the faulty sensors.

The roadmap of this paper is as follows. In Sec⁃
tion 1，the nonlinear dynamic model of APU is in⁃
troduced. Two flow capacity coefficients are em⁃
ployed to characterize the gas path flow characteris⁃
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tics of APU components and the structure of adap⁃
tive model with Kalman filter bank is introduced
briefly. Section 2 presents the DEKF algorithm with
a packet loss model. Sensor fault isolation logic in
the situation of single sensor fault or dual sensor
fault is introduced in Section 3. Structure of APU
sensor fault detection and isolation system and work⁃
flow of fault isolation mechanism are presented. In
Section 4，gas path fault，sensor fault and hybrid
fault are simulated and discussed respectively to ver⁃
ify the feasibility of diagnosis and isolation. Finally，
some conclusions are summarized in Section 5.

1 APU Model and Problem Setup

This paper focuses on a single-spool APU. Gas
path components of the APU include inlet，com⁃
pressor，combustor，turbine，and nozzle. The APU
nonlinear dynamic model is written by TMATS and
works in SIMULINK. And it is established on the
basis of component level engine modeling theories.
Firstly，the mathematical model of each component
is built according to the characteristics of APU com⁃
ponents and design point parameters. Then，the co⁃
operative working equations of components are es⁃
tablished based on the principles of power balance
and rotor dynamics. Finally，the numerical value it⁃
eration algorithm is employed to solve the equations
to obtain the parameters of each working section.
The flight condition parameters of the established
model are flight altitude H，Mach number Ma，and
inlet temperature. The nonlinear dynamic model of
the APU is presented as

ì
í
î

x k+ 1 = f ( x k,uk )+w k

y k= g ( x k,uk )+ v k
(1)

where k is the time index，and x k，uk and y k denote
the state variables，input variables and sensor mea⁃
surements at time k，respectively. The model input
variable is combustion chamber fuel flow W f. The
state variables of the model include rotation speed n
and flow capacity coefficients h，x=[ n，hT ]T. w k

and v k represent uncorrelated system noise and mea⁃
surement noise respectively，meeting w k~N ( 0，Q 2 )，
v k~N ( 0，R2 ). Here Q and R are the noise covariance
matrices of system noise and measurement noise，

respectively. f（·）and g（·）are the state transition
function and measurement function of the APU
model，respectively. The output parameters include
rotation speed n， compressor outlet temperature
T 3，compressor outlet pressure P 3，turbine outlet
temperature T 5 and turbine outlet pressure P 5.

Due to the limitation of the number of sensors
and the internal structure of the established APU
model，only the flow capacity coefficients are cho⁃
sen to be estimated accurately. Two flow capacity
coefficients characterize the gas path flow character⁃
istics of APU components completely. Considering
that the performance of gas path components will in⁃
evitably change during the actual operation of the
APU，the flow capacity coefficients are introduced
to characterize the flow capacity degradation caused
by individual performance differences or operation
time of the APU. The flow capacity coefficients of
gas path components h are presented as h=
[ CW，TW ]T，which are defined as

CW= A 1

A *
1
, TW= A 2

A *
2

(2)

where A is the actual flow of components and A* the
ideal value. The subscript 1 represents the compres⁃
sor and subscript 2 the turbine. The parameters CW
and TW are the flow capacity coefficients of com⁃
pressor and turbine，respectively. By expanding the
state variables x=[ n，hT ]T， the corresponding
APU model in Eq.（1）is the expanded model.

APU may have gas path faults or sensor faults，
or both. It is very important to judge whether the
changes in sensor measurements are caused by gas
path faults or sensor faults. Firstly，in the situation
of gas path faults，this paper will verify the estima⁃
tion accuracy of flow capacity coefficients without
adding sensor faults. Then，gas path faults and sen⁃
sor faults are added at the same time. All sensor
faults are eliminated as long as the threshold is set
appropriately，and the injected gas path fault is still
estimated correctly. The centralized Kalman filter
（CKF） processes all the sensor measurements in
one Kalman filter，so the sensor fault tolerance is
poor. When a sensor fails and outputs error measure⁃
ments，the CKF needs to be terminated and rede⁃
signed to select the correct sensors，so the continu⁃
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ous operation of the filtering algorithm is difficult. In
comparison，the sensor fault tolerance of DEKF is
higher. When a sensor fails，the DEKF only needs
to take measures to isolate the faulty sub-filter，and
the filtering algorithm is carried out continuously.
Fig.1 shows the structure of an adaptive model with
Kalman filter bank，where y are the sensor measure⁃
ments，g ( x，u ) outputs of APU model，and Δy the
difference of y and g ( x，u ).

Fig.1 presents an adaptive model with the Kal⁃
man filter bank which contains six Kalman filters
and each one uses the DEKF algorithm. In every
Kalman filter，each sub-filter only corresponds to
one sensor，and this simplifies the data transmission
and is not easy to make mistakes. The transmission
structure is miniaturized and the weight of hardware
equipment is reduced. A single sensor also minimiz⁃
es the impact of noise interference. Compared with
the traditional CKF，distributed filters adopt a paral⁃
lel processing structure and share the computational
burden of the main filter.

2 DEKF Algorithm with Packet
Loss Model

2. 1 DEKF algorithm

For a multi-sensors system such as the APU
model，sensors are grouped to divide into different
subsystems. Each sensor corresponds to a sub-fil⁃
ter，which is designed independently and calculated
in parallel. The results obtained from sub-filters are
transmitted to the main filter for information fusion
and global posteriori estimation is obtained. The
main filter will allocate information to sub-filters ac⁃

cording to the global posteriori estimation and reset
the sub-filters’state. Denote the total number of
sub-filters as M，the calculation process of DEKF is
written as follows.

（1）Posteriori estimation results x0|0 and P 0|0 are
initialized.

（2）Main filter information distribution is given
by

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

Q i= Q/βi

P i
k|k= P k|k/βi ∑

i= 1

M

βi= 1

x ik|k= x k|k

（3）

（3）Sub-filters calculate the local filtering re⁃
sults.

Time update
ì
í
î

x ik|( k- 1)= f ( x i( k- 1)|( k- 1),uk- 1 )
P i
k|( k- 1)= AP i

( k- 1)|( k- 1)AT + Q i
（4）

Measurement update
ì
í

î

ïïïï

ïïïï

K i
k= P i

k|( k- 1)C iT (C i P i
k|( k- 1)C iT + R i )-1

x ik|k= x ik|( k- 1)+ K i
k [ y ik- g ( x ik|( k- 1),uk- 1 ) ]

P i
k|k=( I- K i

kC i ) P i
k|( k- 1)

（5）

The calculation process of Jacobian matrices A
and C is as follows

A= ∂f ( x k,uk )
∂x k

, C= ∂g ( x k,uk )
∂x k

（6）

where i is the sub-filter number，K i
k，C i，y ik，and R i

denote the Kalman gain，the Jacobian matrix，out⁃
put variables and noise variance matrix related to the
sub-filter i，respectively. The sub-filter is designed
according to the above DEKF algorithm.

（4）Main filter information fusion is given by
ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

P-1k|k =∑
i= 1

M

( P i
k|k )-1

x k|k= P k|k∑
i= 1

M

( ( P i
k|k )-1 x ik|k )

（7）

（5）Let k= k+ 1，and repeat from step（2）
until the filtering process is completed.

Here x ik|k，P i
k|k and Q i represent the local posteri⁃

ori estimation，local posteriori variance matrix and
noise variance matrix of the sub-filter i，respective⁃
ly. βi is the information distribution coefficient and
meets the information conservation，which is usual⁃
ly taken as βi= 1/M. In the APU model，the sen⁃
sor number is five and the sensors are divided into

Fig.1 Adaptive model structure based on Kalman filter
bank
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five groups（M= 5，βi= 0.2）.

2. 2 Packet loss model

In the process of data transmission，the prob⁃
lem of flow capacity coefficients estimation in the sit⁃
uation of partial data loss is considered. For packet
loss in data transmission，it is modeled by an inde⁃
pendent identically distributed variable γck，which
satisfies the 0-1 distribution. The probability distri⁃
bution is written as

ì
í
î

Pr ( γck= 0 )= p

Pr ( γck= 1 )= 1- p
(8)

where p is the probability of packet loss，c the APU
sensor number，γck= 0 means that the measurement
y ck of sensor c at time k is not received by the filter，
and γck= 1 indicates that y ck is received on time at
time k. Then，the measurements at time k are ex⁃
pressed as y k=( γ1k y1k，γ2k y2k，⋯，γNk yNk )T，where N is
the total number of sensors. The system measure⁃
ment equation is expressed as

y k= Λ k [ g ( x k,uk )+ v k ]= g͂ ( x k,uk )+ v͂ k (9)
where Λ k= diag ( γ1k，γ2k，⋯，γNk ) is the status re⁃
ceiving matrix，and γck the diagonal element of ma⁃

trix Λ k. The variance matrix R͂ k=diag ( r͂ 1k，r͂ 2k，⋯，r͂ Nk )
of noise v͂ k has the following property

r͂ ck=
ì
í
î

r c γck= 1
δ 2 I γck= 0

(10)

when γck= 0，γck is not received，δ→∞. In DEKF
algorithm，the nonlinear measurement equation of
the system is rewritten as follows

y k= g͂ ( x k,uk )+ v͂ k=
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(11)

where g i ( x k，uk ) is the nonlinear subsystem corre⁃
sponding to the sub-filter i，and Λ i

k and v͂ ik are the
subsystem state receiving matrix and the measured
noise vector respectively. Eq.（5）is modified as
ì

í

î

ï
ïï
ï

ï
ïï
ï

K i
k= P i

k|( k- 1)C iT Λ iT
k ( Λ i

kC i P i
k|( k- 1)C iT Λ iT

k + R͂ i )-1

x ik|k= x ik|( k- 1)+ K i
k Λ i

k [ y ik- g ( x ik|( k- 1),uk- 1 ) ]
P i
k|k= P i

k|( k- 1)- K i
k Λ i

kC i P i
k|( k- 1)

(12)
The structure of DEKF algorithm with packet

loss model used in the APU model is shown in Fig.2.

3 Sensor Fault Diagnosis and Isola⁃
tion Logic

To alleviate the influence of faulty sensors，a
sensor fault diagnosis and isolation system based on
the Kalman filter bank is established，and the design

principle is discussed. The APU sensor fault diagno⁃
sis and isolation system is mainly composed of an
APU model，a measurements input module，a Kal⁃
man filter bank module，a fault diagnosis and isola⁃
tion mechanism module，and a fault sensor reconfig⁃
uration module. The system is shown in Fig.3.

Fig.2 Structure diagram of DEKF algorithm with packet loss model
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In Fig.3，y is the APU sensors measurements，
u the input control value，g ( x，u ) the outputs of
APU model，g1 ( x 1，u ) the estimated values of mea⁃
surements in Kalman filter 1，and g5 ( x 5，u ) the esti⁃
mated values of measurements in Kalman filter 5.
WSSR1 is the WSSR generated by Kalman filter 1，
dWSSR1 is the dWSSR generated by Kalman filter
1，and others are the same. In the Kalman filter
bank，the structure of Kalman filter 0 is the same as
the one in Fig.2. Kalman filter 0 employs all 5 sen⁃
sors to generate the WSSR which contains all the
sensor fault information. Kalman filter 1 is the one
without sub-filter 1，and its input sensor measure⁃
ments named subset 1 of measurements include four
sensors except for the rotation speed sensor. As a re⁃
sult，the WSSR generated by Kalman filter 1 con⁃
tains sensor fault information of four sensors except
for the rotation speed sensor. The same is true for
other Kalman filters. The workflow of the fault diag⁃
nosis and isolation mechanism is shown in Fig.4.

When an APU sensor fails，the sensor mea⁃
surement and the Kalman estimated value must not
be consistent and these filter residuals containing the
information of sensor fault will also change. The fil⁃
ter residuals are normalized by the filter weight sum
of squared residuals e iT ( Σ i )-1e i，which are named

as the fault indication signal WSSR. Here Σ i=
[ diag ( σ i ) ]2，σ i is the standard deviation of the ith
sensor subset，and e i the difference between the sen⁃
sor measurement and the estimated value.

Since the measurement noise of the sensor is
Gaussian white noise with zero mean value，e i has
the same property as the measurement noise. The
fault isolation principle is that each Kalman filter is
used to monitor a specific sensor and is designed
based on fault-tolerant technology. When a sensor
fails，the Kalman filter monitoring this faulty sensor
only uses the measurements of other fault-free sen⁃
sors，and the corresponding WSSR remains small.
On the other hand，the others are Kalman filters in
which the used subsets of measurements contain
faulty information，and the related WSSR will in⁃
crease and eventually exceed the preset threshold.
Therefore，the faulty sensor is detected by setting a
reasonable threshold and analyzing WSSR.

As shown in Fig.4，different subsets of the
measurements are used as the input to the related
Kalman filter. The estimated values of the corre⁃
sponding sensors and WSSR are obtained by the
Kalman filter bank. Through the analysis of
WSSR，the fault isolation mechanism makes a judg⁃
ment. The measurement is directly sent to the APU

Fig.3 APU sensor fault diagnosis and isolation system
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control system while the sensor is fault-free，so the
APU continues to operate safely and reliably. In the
situation of sensor fault， the fault reconfiguration
module is informed of the diagnosis result obtained
by the fault isolation mechanism，and it reconstructs
the corresponding fault sensor measurement.

A dual sensor fault refers to two sensors failing
simultaneously. For the reason that more than one
sensor has failed，the original fault diagnosis and iso⁃
lation logic designed for a single sensor fault are no
longer applicable. When a dual-sensor fault occurs，
the five WSSR related to the five Kalman filters
which sequentially remove one sensor will all ex⁃
ceed the threshold. It is easy to find that a dual-sen⁃
sor fault has occurred by the analysis of WSSR，but
it is impossible to tell which sensors have failed. For
this reason，the diagnosis and isolation logic em⁃

ployed for dual-sensor fault is redesigned. Because
the WSSR is the sum of residuals of the measured
and estimated values of different sensors，it is cumu⁃
lative naturally. The WSSR value of a dual-sensor
fault should be higher than that of a single sensor
fault，so an additional filter that does not remove
any of the sensors is employed to record all the
faulty sensor information by related WSSR. The
WSSR output from this additional filter is named
WSSR0. Eq.（13）is given by

dWSSRi=WSSR0-WSSRi (13)
where dWSSRi is the difference between WSSR0
and WSSRi.

That the corresponding dWSSRi will signifi⁃
cantly exceed the threshold is the same in the situa⁃
tion that the ith sensor fails or a dual-sensor fault oc⁃
curs，and the location of the faulty sensors is deter⁃

Fig.4 Workflow of APU fault diagnosis and isolation mechanism
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mined. When it is detected that all five WSSR are
higher than the threshold，the saved APU sensor da⁃
ta is simulated again after the current simulation to
isolate the dual-sensor fault. The schematic diagram
of dual-sensor fault diagnosis is shown in Fig.3.

4 Simulation and Discussion

4. 1 Gas path fault diagnosis

In this paper，n，P3，T3，P5 and T5 are selected
as the measurements to be monitored by the APU.
The appropriate noise whose corresponding covari⁃
ance is R=[ 0.001 52，0.001 52，0.001 52，0.001 52，
0.001 52 ]［2］ is added into the model.

The degradation is simulated in 60 s. The sam⁃
pling time of the examined APU is set to 0.015 s
and the total number of sampling steps is 4 000. A
packet loss model with the packet loss probability of
10% is employed to reflect the data packet loss phe⁃
nomenon. At the design point（Ma=0，H=0 km），

the APU starts from the nominal condition，and
flow capacity coefficients magnitudes at this condi⁃
tion are 1. Two anomaly modes simulation of APU
gas path are carried out as follows.

（1） Abrupt degradation mode of gas path：
Flow capacity coefficients deviate from their normal
value suddenly. In the APU model，the situation
that two flow capacity coefficients shift from their
nominal values is presented as follows：-2% on
CW，+1% on TW［11］，and the occurring time of 1 s.

（2） Gradual degradation mode of gas path：
Two flow capacity coefficients synchronously and
linearly move to their terminal magnitudes from
their nominal values in 60 s at the design point as fol⁃
lows：-2% on CW，and +1% on TW［22］.

After testing，the flow capacity coefficients of
the APU model are estimated in the range of about
0.98 to 1.02 due to the limitation of APU model
structure. The results of flow capacity coefficients
estimation at two typical modes are shown in Figs.5
and 6，where the red and black lines represent the
true and estimated values，respectively.

From Figs.5 and 6，the gas path performance
degradation is quickly tracked and accurately esti⁃
mated at two typical modes in 60 s，and the DEKF

combined with a packet loss model is tested to be ef⁃
fective in the case of abrupt or gradual degradation.

Fig.5 Abrupt degradation simulation of gas path compo⁃
nents

Fig.6 Gradual degradation simulation of gas path compo⁃
nents
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4. 2 Sensor fault diagnosis

4. 2. 1 Single sensor fault diagnosis

The total simulation time is 60 s. It is assumed
that n（Sensor 1） fails from 2.02 s to 4.02 s，P3
（Sensor 2）from 12.02 s to 14.02 s and from 17 s to
17.07 s，T3（Sensor 3）from 24.02 s to 26.02 s，P5
（Sensor 4）from 36.02 s to 38.02 s，and T5（Sensor
5）from 48.02 s to 50.02 s. The sensor failure types
are intermittent bias failures，and the fault ampli⁃
tude is 2%.

The reasonable threshold is the key to the
whole sensor fault isolation system. On one hand，
too large thresholds would lead to missed diagnosis
and many faults are not detected. On the other
hand，setting a too small threshold is easy to mis⁃
take the normal disturbance of some measurements
as a fault. At the design point，the detection thresh⁃
old is taken as 25 in the situation that sensors are no
fault. The simulation results are shown in Fig.7.

It is worth noting that in Fig.7，except that the
WSSR related to the fault sensor in the correspond⁃
ing fault time still maintains a small value， the
WSSR related to other sensors begin to increase in
the above fault time and exceed the set detection
threshold. Therefore，the fault isolation mechanism

detects the occurrence of the bias fault and find
which sensor has failed timely and accurately.

To avoid the usage of the wrong measure⁃
ment，the sensor fault detection and isolation sys⁃
tem combined with the Kalman filter bank replaces
the faulty measurement with the estimated value of
sensor measurement output from the Kalman filter
which does not use the faulty sensor. Kalman filter 0
has all of five sensors and presents all the sensor
fault information. WSSR0 related to Kalman filter 0
before and after isolation are shown in Fig.8.

From Fig. 8，WSSR0 is all smaller than the
threshold in 60 s after isolation and the reconstruct⁃
ed value effectively avoids the Kalman filter bank
from using the wrong measurement at the beginning
of the fault.

Fig.7 WSSR in the case of single sensor fault simulation
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The fault amplitude has a great impact on the
isolation accuracy. Generally speaking， the larger
the amplitude is，the easier the fault is detected.
The smaller the amplitude is，the easier the fault
mixes with the measurement noise. In the situation
that the amplitude is too small，likely the fault will
not exceed the threshold at the beginning，so the
fault isolation mechanism will still bring in the
wrong value. Fig. 9 shows the state of sensor fault
isolation failure when each sensor tested is just at
the lower limit of fault amplitude of isolation failure.

From Fig.9，except for P3 sensor，the other
sensors fail in isolation，but their lower limits of iso⁃
lation failure are different. Table 1 shows the lower

limit of isolation failure for each sensor and the isola⁃
tion accuracy when the fault occurs.

4. 2. 2 Dual sensor fault diagnosis

In the case of dual-sensor fault，the total simu⁃
lation time is set to 60 s. n（Sensor 1） fails from
12.02 s to 50.02 s，P3（Sensor 2） from 19.02 s to
50.02 s，so a dual-sensor failure occurs from 19.02 s
to 50.02 s. All fault types are bias faults and have an
amplitude of 2%. The simulation results of the
WSSR are shown in Fig.10.

From Fig.10，the five WSSR from WSSR1 to

Fig.9 WSSR0 in the case of single sensor fault isolation
failure

Table 1 Amplitude lower limit and accuracy of each sen⁃
sor isolation

Sensor
Amplitude/%
Accuracy/%

n
0.8
93.28

P3
None
100

T3
0.8
35.07

P5
1.0
67.16

T5
1.0
44.03

Fig.8 WSSR0 before and after isolation in the case of sin⁃
gle sensor fault simulation
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WSSR5 all exceed the threshold value 25 from
19.02 s to 50.02 s when the dual sensor fault oc⁃
curs，so it is impossible to tell which sensor is actu⁃
ally faulty. The WSSR0 from 19.02 s to 50.02 s is
obviously larger than that of a single sensor fault oc⁃
curring from 12.02 s to 19.02 s，so it is possible to
use the cumulative nature of the WSSR. The WSS⁃
Ri is subtracted from WSSR0 containing all fault in⁃
formation to obtain the corresponding dWSSRi.
dWSSR simulation results are shown in Fig.11.

The threshold for dual-sensor fault is set to
100. Only the values of dWSSR1 and dWSSR2 ex⁃
ceed the threshold at the corresponding time of fault
occurrence，and the rest of the dWSSR are less
than the threshold. Both n and P3 sensors fault con⁃

Fig.10 WSSR in the case of 2% bias faults of n and P3 sen⁃
sor simulation

Fig.11 dWSSR in the case of 2% bias faults of n and P3
sensor simulation
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ditions are diagnosed from 19.02 s to 50.02 s after
the onset of dual sensor fault. After isolation，the
WSSR0 simulation result is shown in Fig.12.

It is easy to find that the reconstructed WSSR0
is less than the threshold in 60 s and the dual-sensor
fault is successfully diagnosed and isolated.

4. 3 Hybrid fault diagnosis

Sensor fault diagnosis simulation has been car⁃
ried out to verify the feasibility of the Kalman filter
bank on it. Then，sensor faults and gas path degra⁃
dation are added simultaneously into the APU to
more intuitively reflect the effect of sensor isolation，
and the flow capacity coefficients tracking results
are drawn before and after isolation.
4. 3. 1 Single sensor and component fault

In addition to the above sensor faults added in
the single sensor fault situation，gas path abrupt deg⁃
radation mode and gas path gradual degradation
mode are employed to the APU respectively. The
flow capacity coefficients estimation results of two
anomaly modes before and after isolation are shown
in Fig.13 and Fig.14，respectively.

From Figs. 13 and 14，during the period in

which sensor fault occurs，the estimated values of
flow capacity coefficients before isolation have
abrupt changes，so the flow capacity coefficients are
not estimated correctly. After isolation，the recon⁃

Fig.13 Flow capacity coefficient estimation in the case of
single sensor fault with abrupt degradation of gas path

Fig.12 WSSR0 after isolation in the case of 2% bias faults
of n and P3 sensor simulation
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structed sensor value replaces the wrong one，so the
estimated values of flow capacity coefficients are the
same as those without sensor fault. The isolation
distinguishes gas path degradation from sensor
fault，and the isolation effect is good.
4. 3. 2 Dual sensor and component fault

In addition to the above sensor faults added in a
dual-sensor fault situation，the gradual degradation
mode of gas path is employed to the APU. The
flow capacity coefficients estimation results before
and after isolation are shown in Fig.15.

In the case of dual sensor fault，the estimated

values of flow capacity coefficients before isolation
have abrupt changes during the period in which the
sensor fault occurs，so the flow capacity coefficients
are not estimated correctly. After isolation，the flow

Fig.14 Flow capacity coefficient estimation in the case of
single sensor fault with gradual degradation of gas
path

Fig.15 Flow capacity coefficient estimation in the case of
dual sensor fault with gradual degradation of gas
path
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capacity coefficients satisfy the linear variation law.

5 Conclusions

This paper has proposed an application of the
DEKF algorithm combined with a packet loss mod⁃
el on APU. The algorithm successfully estimates
the flow capacity coefficients for gas path abrupt
degradation and gas path gradual degradation in the
situation of sensor faults.

In the steady condition，the fault detection and
isolation of the five sensors are successfully realized
under the distributed architecture by using the
DEKF algorithm in single and dual-sensor fault con⁃
ditions. When the gas path fault and sensor fault oc⁃
cur simultaneously，the sensor isolation module ac⁃
curately distinguishes gas path degradation from sen⁃
sor fault. The sensor faults are eliminated timely
and effectively，so the estimation of flow capacity
coefficients is still accurate and not affected by the
faulty sensors.
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分布式控制系统下APU部件和传感器的混合故障诊断与隔离

鲁 峰 1，殷梓晗 1，周 鑫 1，张宇飞 2，王 琴 2，黄金泉 1

（1.南京航空航天大学航空动力系统江苏省重点实验室，南京 210016 ，中国；2.中国航空发动机集团有限公司控

制系统研究所，无锡 214063，中国）

摘要：研究了分布式控制系统下辅助动力装置（Auxiliary power unit，APU）的气路部件和传感器的故障诊断与隔

离（Fault diagnosis and isolation，FDI），并在分布式控制系统中将非线性动态模型和分布式状态估计器结合起来

进行了研究。分布式扩展卡尔曼滤波器（Distributed extended Kalman filter，DEKF）起到状态估计器的作用，用

于估计气路部件的流动能力。DEKF拥有一个主滤波器和 5组与APU的 5个传感器一一对应的子滤波器，每个

子滤波器产生局部状态的流动能力估计。主滤波器收集并融合局部状态信息，然后将状态估计反馈给子滤波

器。在 APU分布式控制结构的 DEKF算法中引入了丢包模型。设计了具有残差加权平方和（Weight sum of
squared residuals，WSSR）性能指标的 FDI策略，并通过一次移除一个子滤波器来识别 APU传感器故障。当前

子滤波器的性能指标WSSR不同于剩余的子滤波器组合时，说明发生了传感器故障，并且解析余度的估计值会

取代故障传感器的测量值。值得注意的是，该方法不仅适用于传感器故障，而且可以解决APU气路部件和传感

器之间的混合故障问题。利用APU测试数据进行了系统性的仿真和比较，验证了该方法的优越性。

关键词：辅助动力装置；气路故障；传感器故障诊断与隔离；丢包模型；卡尔曼滤波器
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