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Abstract: The dynamic parameter identification of the robot is the basis for the design of the controller based on the 
dynamic model. Currently， the primary method for solving angular velocity and angular acceleration is to filter and 
smooth the position sequence and then form a differential signal. However， if the noise and the original signal overlap 
in the frequency domain， filtering the noise will also filter out the valuable information in the frequency band. This 
paper proposes an excitation trajectory based on Logistic function， which fully uses the information in the original 
signal and can accurately solve the angular velocity and angular acceleration without filtering and smoothing the 
position sequence. The joint angle of the excitation trajectory is mapped to the joint angular velocity and angular 
acceleration one by one so that the joint angular velocity and joint angular acceleration can be obtained directly 
according to the position. The genetic algorithm is used to optimize the excitation trajectory parameters to minimize 
the observation matrix’s condition number and further improve the identification accuracy. By using the strategy of 
iterative identification， the dynamic parameters identified in each iteration are substituted into the robot controller 
according to the previous position sequence until the tracking trajectory approaches the desired trajectory， and the 
actual joint angular velocity and angular acceleration converge to the expected value. The simulation results show that 
using the step-by-step strategy， the joint angular velocity and joint angular acceleration of the tracking trajectory 
quickly converge to the expected value， and the identification error of inertia parameters is less than 0.01 in three 
iterations. With the increase of the number of iterations， the identification error of inertial parameters can be further 
reduced.
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0 Introduction 

The development and production of the new 
generation of aerospace products put forward higher 
new requirements for manufacturing accuracy and 
processing quality. Intelligent manufacturing tech⁃
nology and equipment with the robot as the core is 
an effective way to solve this problem［1-4］. Current⁃
ly， most robots use proportional integral differential 
control （PID）， which leads to low trajectory track⁃

ing accuracy in the case of high speed and heavy 
load， so it could not be well applied in the aero⁃
space field. The design of the motion controller 
based on the robot dynamics model is an effective 
way to realize high-speed and high-precision motion 
control.

The robot is a nonlinear system with strong 
coupling and multivariable， and the dynamic param ⁃
eters are difficult to be measured accurately. In or⁃
der to establish an accurate dynamic model of the ro⁃
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bot， it is necessary to identify its parameters［5-6］.
Robot dynamic parameter identification gener⁃

ally includes the following steps： dynamic model⁃
ing， excitation trajectory design， data sampling and 
processing， solution of angular velocity and angular 
acceleration， parameter identification， and model 
verification. The accuracy of angular velocity and an⁃
gular acceleration determines the accuracy of param ⁃
eter identification. If the method of numerical differ⁃
entiation of the joint angle is adopted， high-frequen⁃
cy noise will be introduced， and the angular velocity 
and angular acceleration signals cannot be used for 
parameter estimation. Atkeson et al.［7］ used finite 
polynomial series as the excitation trajectory and 
proposed to estimate the joint angular velocity and 
angular acceleration by filtering the position signal. 
However， there is a certain phase delay in the fil⁃
tered joint angular velocity and joint angular acceler⁃
ation signal. Kinsheel et al.［8］ made a high-precision 
central finite difference for the position sequence to 
obtain a more accurate joint angular velocity. How⁃
ever， the estimation of the joint angular acceleration 
is still affected by noise. On the other hand， Sw⁃
evers et al.［9］ used the finite term Fourier series as 
the excitation trajectory and proposed two methods 
to obtain the joint angular velocity and joint angular 
acceleration： （1） The measured position could be 
approximated by a finite Fourier series containing 
the same limited set of frequencies as the desired po⁃
sition. （2） Due to the periodicity of the measure⁃
ments， the velocity and acceleration could be calcu⁃
lated in the frequency domain after Fourier trans⁃
form. There is a certain leakage error in these two 
methods because the finite Fourier series is used to 
fit the actual trajectory. Xu et al.［10］ smoothed the 
joint acceleration and torque after calculating the 
joint velocity and acceleration through the central 
difference algorithm in the experiment. Zhang et al.
［11］ modeled the robot with harmonic reducers and 
identified the parameters of the model， five spot tri⁃
ple smoothing method was applied to the torque sig⁃
nal， and low-pass filtering was applied to solve the 
angular velocity and angular acceleration obtained 
from the difference. Feng et al.［12］ proposed an iden⁃
tification method based on the iterative reweighted 

least square algorithm. The weight coefficient ma⁃
trix is formed by adding measurement torque noise， 
and the reciprocal of torque noise is used as the 
weight coefficient to improve the identification accu⁃
racy. In terms of the solution of angular velocity and 
angular acceleration， the angular velocity is ob⁃
tained by filtering， and the angular velocity is fitted 
into Fourier series form. The joint angular accelera⁃
tion is obtained by differentiating the Fourier series 
of the joint angular velocity.

From the above research， it can be concluded 
that the current mainstream methods for solving an⁃
gular velocity and angular acceleration are still filter⁃
ing， smoothing， fitting， central difference， or a 
combination of these methods. These methods will 
filter out the original signal in the same frequency 
band as the noise while eliminating the noise and 
may also cause the phase delay and waveform distor⁃
tion of the original signal. This paper proposes an 
excitation trajectory based on Logistic function， 
which fully uses of the information in the original 
signal and can accurately calculate the joint velocity 
and acceleration without denoising. The trajectory 
maps the joint angle of the excitation trajectory to 
the joint angular velocity and joint angular accelera⁃
tion one by one， so that the robot excitation trajecto⁃
ry satisfies the flexible start and stop conditions， at 
the same time， the joint angular velocity and angu⁃
lar acceleration can be directly obtained by the ex⁃
pression with joint angle variables. On the other 
hand， in the existing identification methods， the ro⁃
bot only runs the excitation trajectory once. The dy⁃
namic model of the robot is unknown before the run⁃
ning trajectory， so the tracking error of the excita⁃
tion trajectory is significant， and there will be a 
large rounding error when fitting the actual trajecto⁃
ry with the analytical formula of the expected excita⁃
tion trajectory. The iterative identification method is 
adopted in this paper. After identifying a group of 
parameters， the identified parameters are substitut⁃
ed into the controller to make the robot joint track 
the trajectory more accurately， and the more accu⁃
rate tracking trajectory can identify more accurate 
parameters. The parameters continue to be substitut⁃
ed into the controller to perform the above steps iter⁃
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atively. Finally， the angular velocity and angular ac⁃
celeration of the actual tracking trajectory converge 
to the expected value， and the parameter identifica⁃
tion accuracy is further improved.

1 Dynamic Modeling of Robot 

For the robot with n degrees of freedom， the 
dynamic equation is obtained by the Newton Euler 
method or Lagrange method

τ r =M ( q ) q̈+ C ( q，q̇ )+ G ( q )+ τ f （1） 
where q∈ R n，q̇∈ R n，q̈∈ R n are the robot joint posi⁃
tion vector， the joint velocity vector， and the joint ac⁃
celeration vector， respectively. M ( q )∈ R n × n is the n×

n mass matrix， C ( q，q̇ )∈ R n the centrifugal force and 
gothic force vector， G ( q )∈ R n a gravity term， τ r ∈ R n 
the input moment vector for the joint， and τ f ∈ R n the 
joint friction torque vector. The inertia parameter vec⁃
tor of connecting rod i can be expressed as p i =
[ mi，mi rxi，mi ryi，mi rzi，Ixxi，Ixyi，Ixzi，Iyyi，Iyzi，Izzi ]T，here 
mi is the mass of the rod i and r ci =[ rix，riy，riz ] the ex⁃
pression of the center of mass of the rod i in the coordi⁃
nate system｛i｝； Ixxi、Ixyi、Ixzi、Iyyi、Iyzi、Izzi are the items 
in the inertia tensor. Eq.（1） can be converted into the 
linear form of inertial parameters［13］.

τ r = κ ( q，q̇，q̈ ) P+ τ f （2）
where P=[ pT

1，pT
2，pT

3，…，pT
n ]T ∈ R 10n × 1 is the iner⁃

tia parameter of n joints of the robot.
κ ( q，q̇，q̈ )∈ R n × 10n is the corresponding regression 
matrix， and each item in the matrix is a function of 
joint angle， angular velocity， and angular accelera⁃
tion. Some elements in vector P are redundant to 
the dynamic model （the corresponding coefficient is 
zero）， and these elements cannot be identified. 
Some elements need to be identified by linear combi⁃
nation as a whole. By eliminating or reorganizing 
these elements， the minimum set of identifiable pa⁃
rameters can be obtained， which is usually called 
the minimum inertia parameter. Kawasaki et al.［14］ 
gave a recursive formula for completely determining 
a set of inertia parameters of the robot by using the 
modified DH parameters. On this basis， Huo et al.［15］ 
gave a set of simpler recursive formulas， so the dy⁃
namic model of the robot can be expressed as a lin⁃
ear form of the minimum inertia parameter set. The 

joint friction torque vector τ f can be described by the 
C-V model［16］ or stribeck model［17-18］， the parame⁃
ters in the model can be identified in advance. In this 
paper， it is assumed that the joint friction model is 
known and the joint friction torque vector τ f can be 
obtained. Let τ= τ r - τ f，τ can be given by

τ=Φ ( q,q̇,q̈ )θ (3)
where Φ ( q，q̇，q̈ )∈ R n × m is an observation matrix 
and θ∈ Rm × 1( m < 10n ) the minimum inertia param ⁃
eter vector.

In this paper， the two-degree-of-freedom（2-

DOF） robot in the vertical plane is taken as the ob⁃
ject to study the iterative identification of the dynam ⁃
ic parameters， and this kind of robot can be used for 
handling and assembling. In addition， the research 
on the 2-DOF robot will pave the way for the re⁃
search on robots with more degrees of freedom. The 
D-H model of the robot is shown in Fig.1， and the 
modified D-H parameters of the robot are shown in 
Table 1.

In Table 1， αi - 1 is the （i-1）th rod torsion an⁃
gle，ai - 1 the length of rod i-1， di the offset of rod 
i， and qi the ith joint angle. According to the recur⁃
sive formula in Ref.［15］， the minimum inertia pa⁃
rameters are shown in Table 2.

For the 2-DOF robot， the Lagrangian dynamic 
equation is listed as follows

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

d
t ( )∂T

dq̇1
- ∂T

dq1
+ ∂V

dq1
= τ1

d
t ( )∂T

dq̇2
- ∂T

dq2
+ ∂V

dq2
= τ2

(4)

Fig.1　Modified D-H model of the robot

Table 1　Modified D⁃H parameters of the robot

i
1
2

αi - 1

0
0

ai - 1

0
m

di

0
0

qi

q1（0）
q2（0）
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where T is the sum of the kinetic energy of each rod 
and V the sum of the gravitational potential energy 
of two rods. The expressions of T and V are listed 
as follows
ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïïï
ï

T = 1
2 I1zz ( q̇1 )2 + 1

2 I2zz ( q̇1 + q̇2 )2 + 1
2 m 2 ( a1 q̇1 )2 +

m 2 r2 a1 ( q̇1 + q̇2 ) q̇1 cos ( β2 + q2 )
V = m 2 g [ a1 sin q1 + r2 sin ( β2 + q1 + q2 ) ]+

m 1 gr1 sin ( β1 + q1 )

(5)

where βi = arctan ( rix /riy )， ri = r 2
ix + r 2

iy ，

[ rix，riy，riz ] is the coordinate of the centroid of the 
rod i in the ith joint coordinate system. Substituting 
Eq.（5） into Eq.（4） yields
τ1 = ( I1zz + m 2 a2

1 ) q̈1 + I2zz ( q̈1 + q̈2 )+
         m 2 r2x [ a1 ( 2q̈1 + q̈2 ) cos q2 - a1 ( 2q̇1 +
         q̇2 ) q̇2 sin q2 + g cos ( q1 + q2 ) ]+ m 2 r2y [-
         a1 ( 2q̈1 + q̈2 ) sin q2 - d 1 ( 2q̇1 + q̇2 ) q̇2 cos q2 -
         g sin ( q1 + q2 ) ]+( m 1 r1x + m 2 a1 ) g cos q1 -
         m 1 r1y g sin q1 τ2 = m 2 r2y [-a1 q̈1 sin q2 +
         a1 q̇2

1 cos q2 - gsin ( q1 + q2 ) ]+
         m 2 r2x [ a1 q̈1 cos q2 + a1 q̇2

1 sin q2 + gcos ( q1 +
         q2 ) ]+ + I2zz ( q̈1 + q̈2 ) (6)

The observation matrix can be obtained by ex⁃
tracting the minimum inertia parameter set in Table 
2 from Eq.（6） in the form of Eq.（3） and the expres⁃
sion of the observation matrix is as follows

Φ=
é

ë

ê
êê
ê ù

û

ú
úú
úφ 11 φ 12 φ 13 φ 14 φ 15 φ 16

φ 21 φ 22 φ 23 φ 24 φ 25 φ 26

where φ 11 = q̈1，φ 12 = gc1，φ 13 = -gs1，φ 14 = q̈1 + q̈2，

φ 15 = a1 ( 2q̈1 + q̈2 ) c2 - a1 ( 2q̇1 + q̇2 ) q̇2 s2 + gc12 ，

φ 16 = -a1 ( 2q̈1 + q̈2 ) s2 - a1 ( 2q̇1 + q̇2 ) q̇2 c2 - gs12，

φ 21 = 0， φ 22 = 0， φ 23 = 0， φ 24 = q̈1 + q̈2， φ 25 =

a1 q̈1 c2 + a1 q̇2
1 s2 + gc12， φ 26 = -a1 q̈1 s2 + a1 q̇2

1 c2 -
gs12. Among them，s1 = sin q1，c1 = cos q1，s2 = sin q2，

c2 = cos q2，s12 = sin ( q1 + q2 )，c12 = cos ( q1 + q2 )，g 
is the acceleration constant of gravity.

Let M=[ φ 11 φ 12 φ 13 ]，N=[ φ 14 φ 15 φ 16 ]，Q=
[ φ 24 φ 25 φ 26 ]， the observation matrix Φ can be ex⁃
pressed as

Φ= é
ë
êêêê

ù
û
úúúú

M N
0 Q

(7)

Eq.（3） can be written as
ì
í
î

ïï

ïï

M [ ]θ1 θ2 θ3
T + N [ ]θ4 θ5 θ6

T = τ1

Q [ ]θ4 θ5 θ6
T = τ2

(8)

The identification process can be divided into 
the following two steps：

Step 1 By making joint 1 rest and joint 2 
move， and taking K samples of joint angle and 
torque at time t1，t2，…，tK， the following equation 
can be obtained

é

ë

ê

ê

ê

ê

ê
êê
ê
ê

ê

ê

ê ù

û

ú

ú

ú

ú
úú
ú

ú

ú

úQ ( q ( t1 ),q̇ ( t1 ),q̈ ( t1 ) )
Q ( q ( t2 ),q̇ ( t2 ),q̈ ( t2 ) )

⋮
Q ( q ( tK ),q̇ ( tK ),q̈ ( tK ) )

é

ë

ê

ê
êê
ê
ê ù

û

ú

úú
ú
ú

úθ4

θ5

θ6

=

é

ë

ê

ê

ê

ê
ê
êê
ê

ê

ê

ê

ê ù

û

ú

ú

ú

ú
úú
ú

ú

ú

úτ2 ( t1 )
τ2 ( t2 )

⋮
τ2 ( tK )

(9)

where Q ( q ( tK )，q̇ ( tK )，q̈ ( tK ) ) is the observed value 
of matrix Q at time tK and τ2 ( tK ) the driving mo⁃
ment value of joint 2（excluding friction torque） at 
time tK. θ4，θ5，and θ6 can be obtained by the least 
square method.

Step 2 After θ4，θ5，θ6 have been identified， 
by making joint 2 rest and joint 1 move， and taking 
K samples of joint angle and torque at time 
t1，t2，…，tK， the following equations can be ob⁃
tained

é

ë

ê

ê

ê

ê

ê
êê
ê
ê

ê

ê

ê ù

û
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ú

ú

ú
úú
ú

ú

ú

úM ( q ( t1 ),q̇ ( t1 ),q̈ ( t1 ) )
M ( q ( t2 ),q̇ ( t2 ),q̈ ( t2 ) )

⋮
M ( q ( tK ),q̇ ( tK ),q̈ ( tK ) )

é

ë

ê

ê
êê
ê
ê ù

û

ú

úú
ú
ú

úθ1

θ2

θ3

=

é

ë

ê

ê

ê

ê
ê
êê
ê

ê

ê

ê

ê ù

û

ú

ú

ú

ú
úú
ú

ú

ú

úτ1 ( t1 )
τ1 ( t2 )

⋮
τ1 ( tK )

-

é

ë

ê

ê

ê

ê

ê
êê
ê
ê

ê

ê

ê ù

û

ú

ú

ú

ú
úú
ú

ú

ú

úN ( q ( t1 ),q̇ ( t1 ),q̈ ( t1 ) )
N ( q ( t2 ),q̇ ( t2 ),q̈ ( t2 ) )

⋮
N ( q ( tK ),q̇ ( tK ),q̈ ( tK ) )

é

ë

ê

ê
êê
ê
ê ù

û

ú

úú
ú
ú

úθ4

θ5

θ6

(10)

where M ( q ( tK )，  q̇ ( tK )，  q̈ ( tK ) )， N ( q ( tK )， q̇ ( tK )，

Table 2　Minimum inertia parameter set of 2⁃DOF robot
kg⋅m2

Parameter
θ1

θ2

θ3

θ4

θ5

θ6

Expression
I1zz + m 2 a2

1

m 1 r1x + m 2 a1

m 1 r1y

I2zz

m 2 r2x

m 2 r2y
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q̈ ( tK ) ) are the observed values of matrix M and ma⁃
trix N at time tK， respectively， τ1 ( tK ) is the driving 
moment value of joint 1 （excluding friction torque） 
at time tK. In the same way，θ1，θ2，and θ3 can be ob⁃
tained by the least square method.

2 Design of Excitation Trajectory 

2. 1 Excitation trajectory based on Logistic 
function　

In order to calculate the observation matrix， the 
angular velocity and angular acceleration information 
need to be estimated by the joint angle sequence. if 
the method of numerical differentiation of joint angle 
is used， high-frequency noise will be introduced. 
The angular velocity and angular acceleration signals 
cannot be used for parameter identification. There⁃
fore， a kind of trajectory can be used， in which the 
joint angle is mapped to the joint angular velocity 
and joint angular acceleration one by one. Under the 
condition of accurate trajectory tracking， the angular 
velocity and angular acceleration can be obtained by 
bringing the angle directly into the analytical formu⁃
la. As a result， the interference of the high-frequen⁃
cy noise is avoided and the identification accuracy is 
improved.

On the other hand， the excitation trajectory 
needs to meet flexible start-stop conditions. At the 
beginning and end of the test， sudden changes in 
velocity and acceleration may lead to robot flut⁃
ter， which makes it difficult to track the trajectory 
accurately and reduce the accuracy of parameter 
identification. The flexible start-stop condition of 
the excitation trajectory can be expressed as fol⁃
lows

ì

í

î

ïïïï

ïïïï

q ( 0 )= q init,q ( tf )= q init

q̇ ( 0 )= 0,q̇ ( tf )= 0

q̈ ( 0 )= 0,q̈ ( tf )= 0

(11)

where q init is the initial joint angle vector of the ro⁃
bot and tf a cycle of movement. At the end of one 
motion cycle， the robot returns to its initial posi⁃
tion and continues the next cycle of movement. In 
order to meet the above conditions， the Logistic 
function is used here， and its expression is as fol⁃

lows

f ( t )= 1
1 + e- t

(12)

For the Logistic function， the following two 
equations hold：f ' ( t )= f ( t ) [ 1 - f ( t ) ]， f '' ( t )=
f ( t ) [ 1 - f ( t ) ] [ 1 - 2f ( t ) ]. The function image 
with domain （-10，10） is shown in Fig.2.

When the function is spliced into the trajec⁃
tory of the robot joint shown in Fig. 3 ， at the 
beginning ： | q̇ ( 0 ) | = | f ' (- 10 ) | < 10- 4 ， || q̈ ( 0 ) =

| f '' (-10 ) |< 10-4， at the end of the period： || q̇ ( tf ) =

| - f ' ( 10 ) |< 10-4， | q̈ ( tf ) |= | - f '' ( 10 ) |< 10-4，

and at the splicing of the trajectory： || q̇- ( 20 ) ， 

| q̇+ ( 20 ) |，| q̈- ( 20 ) |，| q̈+ ( 20 ) |< 10-4， which means 
the angular velocity and angular acceleration of the 
trajectory at the beginning， end， and splicing are al⁃
most zero， so it can be considered that the flexible 
start-stop condition is satisfied.

Add the adjustable parameters A，w，φ，h to 
the Logistic function to change it to the form f*( t )=
Af ( wt + φ )+ h，f*( t ) can be expressed as

Fig.2　Logistic function

Fig.3　Spliced Logistic function
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f*( t )= A
1 + e-( wt + φ )

+ h (13)

The function f*( t ) is spliced into the excitation 
trajectory with T as the period， and the expression 
of the excitation trajectory after splicing is as follows
qi ( t )=

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

A i

1 + e-( wi × rem ( t,Ti )- w iTi/4 )
+ hi  rem ( t,Ti ) < Ti

2
A i

1 + e( wi × rem ( t,Ti )- 3w iTi/4 )
+ hi  rem ( t,Ti )> Ti

2
(14)

where qi ( t ) is the excitation trajectory of the joint i 
of the robot and rem the function operation； 
A i，w i，hi，Ti are the motion amplitude， the motion 
frequency in the period， the motion offset， and the 
whole motion period of joint i， respectively. The 
corresponding images of different w are shown in 
Fig. 4， and the corresponding images of different T 
are shown in Fig.5.

The angular velocity q̇ i ( t ) and angular accelera⁃
tion q̈ i ( t ) of robot joints can be expressed by joint 
angle qi ( t )

q̇ i ( t )=

ì

í

î

ï

ï

ï

ï
ïï
ï
ï

ï

ï

ï

ï

ï

ï
ïïï
ï

ï

ï

w i

A i
[ ]qi ( t )- hi [ ]A i - qi ( t )+ hi

rem ( t,Ti ) < Ti

2

- w i

A i
[ ]qi ( t )- hi [ ]A i - qi ( t )+ hi

rem ( t,Ti )> Ti

2

(15)

q̈ i ( t )= w 2
i

A 2
i
[ qi ( t )- hi ][A i - qi ( t )+

hi ][A i - 2qi ( t )+ 2hi ] (16)

2. 2 Optimization of excitation trajectory　

In order to improve the identification accuracy， 
it is necessary to select the appropriate index func⁃
tion to optimize the excitation trajectory. The condi⁃
tion number of the observation matrix reflects the 
convergence rate of the parameter estimation of the 
anti-noise ability of the identification method［7］. Not 
all sampling points participate in the identification. 
The selected sampling points should minimize the 
number of conditions. First， find the midpoints of 
the start and end positions of the excitation trajecto⁃
ry， and mark the coordinates of these points as

M k( )tmk，
qi ( t )max + qi ( t )min

2 ，k = 1，2，…，n

where tmk is the Abscissa of the kth midpoint and n 
the total number of midpoints. The part involved in 
the identification is the neighborhood of these 
points， that is， the solid part in Fig.6. The range of 
the Abscissa of this part is t ∈ ( tmk - δ，tmk + δ )，k =
1，2，…，n， where δ is the radius of the neighbor⁃
hood centered on tmk and needs to be further opti⁃
mized.

The optimization problem of excitation trajecto⁃
ry based on the condition number criterion can be de⁃

Fig.6　Areas involved in the identification

Fig.4　Function image corresponding to different w at T=
80

Fig.5　Function image corresponding to different T at w=
0.6
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scribed as
ì

í

î

ï

ï

ï

ï
ï
ïï
ï

ï

ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

minA 1,A 2,w 1,w 2,δ1,δ2 cond( M )+ cond(Q )
{ }s ( q ( t ) ) ⊂ S

q ( 0 )= qinit, || q̇ ( 0 ) < 10-4, || q̈ ( 0 ) < 10-4

q ( tf )= qinit, || q̇ ( tf ) < 10-4, || q̈ ( tf ) < 10-4

qmin < q ( t ) < qmax

q̇min < q̇ ( t ) < q̇max

q̈min < q̈ ( t ) < q̈max

(17)

where cond( M )，cond(Q ) are the condition num ⁃
bers of matrix M  and Q，respectively， and { s ( q ( t ) )} 
is the set of terminal positions when the robot tracks 
the excitation trajectory， which can be calculated by 
forward kinematics. s is the workspace of the robot， 
and qmin，qmax，q̇min，q̇max，q̈min，q̈max are the constraint 
value of the joint angle， angular velocity， and angu⁃
lar acceleration. Eq.（17） is a nonlinear constraint 
problem， which can be optimized by genetic algo⁃
rithm. Taking the 2-DOF series robot as an exam ⁃
ple， assuming that the set of the terminal position of 
the end of the robot is above the ground， the angu⁃
lar velocity of each joint does not exceed 
π/6( rad/s )， the angular acceleration of each joint 
does not exceed π/15( rad/s2 )， and the starting posi⁃
tion of each joint is 0， then there are the following 
constraints

0 < q1,q2 < π,- π
6 < q̇1,q̇2 < π

6 ,- π
15 < q̈1,q̈2 < π

15
(18)

Genetic algorithm is used to solve the above op⁃
timization problems， and the fitness function is tak⁃
en as follows

H = cond( M )+ cond(Q )+ ε (19)
where ε is the value of reward and punishment， and 
if the constraint condition is satisfied， ε = 0； if the 
constraint condition is not met， ε = 1 000. The ob⁃
jective of optimization is to minimize H， so the prob⁃
ability of each gene being selected is 1/H. The indi⁃
viduals in the genetic algorithm are encoded in bina⁃
ry， the binary digits are 20， and the variable dimen⁃
sion is 6. Since the dimension of the variable to be 
solved is not high and it is not easy to fall into the lo⁃
cal optimal solution， the initial population number 
can be set to 40. In genetic algorithm， the range of 
crossover probability is usually 0.1 ─ 0.5， and the 

range of mutation probability is 0.001 ─ 0.05. It is 
found that when the crossover probability is 0.5 and 
the mutation probability is 0.01， the convergence 
speed of genetic algorithm is faster and the solution 
result is better. After 500 generations， the optimal 
solution is no longer updated and the model converg⁃
es， so the optimization algebra is taken as 500. The 
detailed steps of genetic algorithm can be found in 
Ref.［19］， the fitness function curve of the optimiza⁃
tion process is shown in Fig.7， and the optimized 
trajectory parameters are shown in Table 3.

3 Iterative Identification and Simu⁃
lation 

In the case of accurate trajectory tracking， be⁃
cause the joint angular velocity and angular accelera⁃
tion are obtained by the angle sequence directly into 
the analytical formula， the interference of high-fre⁃
quency noise is avoided and the identification accura⁃
cy is improved. If the trajectory tracking is not accu⁃
rate， a group of parameters can be identified first. 
The identified parameters are substituted into the 
controller to enable the robot joint to track the trajec⁃
tory more accurately， and the more accurate track⁃
ing trajectory can identify more accurate parame⁃
ters. The parameters continue to be iterated into the 
controller to carry out the above steps， so that each 
tracking trajectory is closer to the desired trajecto⁃
ry， and the actual joint angular velocity and joint an⁃

Fig.7　Optimization process

Table 3　Optimized trajectory parameters

Parameter
A 1

w 1

δ1

Value
2.313
1.523
367

Parameter
A 2

w 2

δ2

Value
2.094
0.996
246
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gular acceleration converge to the expected value. 
In this paper， the iterative identification simulation 
of a 2-DOF robot is carried out， assuming that the 

rod length is a1 = 1， and the inertia parameter is 
θ= [ ]2，2，0，1，1，0 T. The process is shown in 
Fig.8.

The identification error in Fig.8 is the absolute 
value of the difference between the identified value 
of the inertia parameter and the given value of the in⁃
ertia parameter in the simulation，namely

Δik = | θik - θid | (20)
where Δik is the kth identification error of the ith iner⁃
tial parameter， θik the kth identification value of the 
ith inertial parameter， and θid the given value of the 
ith inertial parameter in the simulation.

The controller needs to use the control algo⁃
rithm based on robot dynamics， and the robust H ∞ 
finite time algorithm［20］ is adopted here. Robust H ∞ 
control is a kind of controller with fixed structure 
and parameters， which has the ability to deal with 
disturbances， fast-changing parameters and final 
modeling dynamics. It can make the designed con⁃
troller meet the design requirements even when the 
uncertainty is the most serious damage to the quality 
of the system. Define Sig (⋅)α ∈ R n，shown as

Sig ( ξ )α = é
ë| ξ1 |

α
sgn ( ξ1 )α,…,| ξn |

α
sgn ( ξn )αù

û

T

(21)

where ξ= [ ξ1，ξ2，…，ξn ] T
∈ R n，0 < α < 1，sgn (⋅) is 

a symbolic function， defined as follows

sgn ( ξ )=
ì

í

î

ïïïï

ïïïï

1
0

-1

ξ > 0
ξ = 0
ξ < 0

(22)

Robust H ∞ finite time control （RHFTC） can 
be described as
τ=M ( q ) [ q̈d - K p Sig ( e )α1 - K d Sig ( ė )α2 ]+

C ( q,q̇ ) q̇+ G ( q ) (23)
where qd is the second-order derivable desired trajec⁃
tory， and q̇d and q̈d are its first derivative and sec⁃
ond derivative， respectively. q is the actual trajecto⁃
ry， e is the trajectory tracking error，e= qd - q，ė=
q̇d - q̇，and α2 = 2α1 /α1 + 1. The parameters of 
joint 1 are set to Kp1 = 2，Kd1 = 20， and the parame⁃
ters of joint 2 are set to Kp2 = 4，Kd2 = 4. α1 =
0.7，α2 = 0.82.

Using the step-by-step identification strategy， 
first let joint 1 rest and joint 2 moves， and the actual 
trajectory of joint 2 in the first three times is shown 
in Figs.9─11. At the beginning， the actual trajecto⁃

Fig.8　Parameter identification process

Fig.9　The first tracking trajectory of joint 2
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ry fluctuates up and down near the desired trajecto⁃
ry， and the fluctuation range is large. After one iter⁃
ation， the actual trajectory still fluctuates up and 
down near the expected trajectory， and the fluctua⁃
tion amplitude is significantly reduced compared 
with the first iteration. After another iteration， the 
actual trajectory almost coincides with the expected 
trajectory. The tracking error e of joint 2 in the first 
three times is shown in Fig.12.The maximum track⁃
ing error of the first iteration can reach 0.6 rad. Af⁃
ter one iteration， the maximum tracking error is 
0.15 rad， which is only 25% of the first iteration. 
After another iteration， the tracking error converges 
to 0. The inertia parameter identification values of 

joint 2 in the first three times are shown in Table 4. 
It can be seen that the identification error of the iner⁃
tia parameter θ4 is the largest. At the beginning， the 
identification error can be as large as 0.7. After three 
iterations， the maximum identification error is re⁃
duced to 0.007， which is a relatively small value.

After θ4，θ5，and θ6 have been identified， make 
joint 2 rest and joint 1 move， and the first three 
tracking trajectories of joint 1 are shown in Fig.13. 
The first three tracking errors of joint 1 are shown in 
Fig.14. Similiar to joint 2， after the third iteration， 
the error converges to 0. The first three inertial pa⁃
rameter identification values of joint 1 are shown in 
Table 5. After three iterations， the identification er⁃
ror of the inertia parameter θ1 is the largest， and the 
maximum identification error is only 0.009， which 
is also a relatively small value.

Table 4　Inertial parameter identification values of the 
first three times of joint 2

Parameter
Initial value

The first identification value
The second identification value
The third identification value
The first identification error

The second identification error
The third identification error

θ4

0
0.203
0.698
0.993
0.797
0.302
0.007

θ5

0
1.020
1.012
1.000
0.020
0.012
0.000

θ6

0
0.053
0.006
0.000
0.053
0.006
0.000

Fig.13　Track of joint 1 for the first three times

Fig.14　Tracking error of joint 1 for the first three times

Fig.10　The second tracking trajectory of joint 2

Fig.11　The third tracking trajectory of joint 2

Fig.12　Tracking error of the first three times of joint 2
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The simulation results show that for the 
2⁃DOF series robot， the step-by-step iterative iden⁃
tification strategy has good convergence for both the 
first joint and the second joint， and the identification 
errors of all inertia parameters are less than 0.01 af⁃
ter three iterations. If the number of iterations is in⁃
creased， the progress of identification can be further 
improved. The algorithm is easy to implement and 
has high identification accuracy.

In order to further analyze the accuracy of Lo⁃
gistic iterative identification algorithm， in this pa⁃
per， the dynamic parameters identified by finite Fou⁃
rier series trajectory and Logistic function trajectory 
are substituted into the dynamic model respectively. 
The moment of each joint in the motion process is 
predicted through the position sequence and com ⁃
pared with the actual driving moment of the robot. 
The modern parameter identification generally 
adopts the finite Fourier series， as shown in

qi ( t )= qi,0 + ∑
k = 1

H

ai,k sin ( kw f t )+ ∑
k = 1

H

bi,k cos ( kw f t )

(24)
where qi，0 is the initial position offset of the joint； w f 
the fundamental frequency of Fourier series； H the 
highest order of Fourier series； and k the order of 
Fourier series. ai，k，bi，k are the coefficients of Fourier 
series of the ith joint. The specific steps for the de⁃
sign and optimization of Fourier series trajectories 
can be found in Ref.［9］. The optimized Fourier se⁃
ries trajectories are shown in Fig.15， and the identi⁃
fied parameters are shown in Table 6.

In order to test the generalization ability of the 
model substituted with the identification parame⁃
ters， the original identification trajectory cannot be 
used as the verification trajectory， so this paper se⁃

lects another different trajectory as the verification 
trajectory.

ì
í
î

q1 ( t )= sin t

q2 ( t )= sin (- t )
(25)

where qi ( t ) is the excitation trajectory of joint i of 
the robot. The position sequence and driving torque 
of the robot can be sampled in the simulation pro⁃
cess. The corresponding predicted torque can be ob⁃
tained by substituting the position sequence of the 
verification track and the identified parameters into 
the dynamic model （Eq.（3））. The predicted torque 
and driving torque of joint 1 are shown in Fig.16， 
and the predicted torque and driving torque of joint 2 
are shown in Fig.17.

It can be seen that the deviation between the pre⁃
dicted torque and the actual torque of the robot joint 

Fig.16　Predicted and driving torques of joint 1

Table 5　Inertial parameter identification values of the 
first three times of joint 1

Parameter
Initial value

The first identification value
The second identification value
The third identification value
The first identification error

The second identification error
The third identification error

θ1

0
0.493
1.899
1.991
1.507
0.101
0.009

θ2

0
2.131
2.011
2.000
0.131
0.011
0.000

θ3

0
0.074
0.003
0.002
0.074
0.003
0.002 Fig.15　Optimized Fourier series trajectories

Table 6　Inertia parameters identified by Fourier series

Parameter
Value

θ1

1.98
θ2

2.0
θ3

0.0
θ4

1.007
θ5

1.00
θ6

0.009

Fig.17　Predicted and driving torques of joint 2
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calculated by the two identification algorithms is rela⁃
tively small， which shows the effectiveness of these 
two identification algorithms. In addition， it can be 
seen that the overall torque deviation of the identifica⁃
tion method based on the Logistic function proposed 
in this paper is smaller， especially when the direction 
is changed， the torque deviation is significantly 
smaller than that of the identification method based 
on the Fourier series， and the overall torque curve is 
closer to the actual torque， that is， it has a more accu⁃
rate effect on the dynamics prediction of the robot.

4 Conclusions 

（1） The one-to-one mapping between the joint 
angle of the excitation trajectory and the joint angu⁃
lar velocity and joint angular acceleration is the pre⁃
requisite for iterative identification. The excitation 
trajectory based on Logistic function is proposed， 
which satisfies the flexible start and stop condition 
while mapping joint angle to joint angular velocity 
and joint angular acceleration.

（2） The condition number reflects the sensitivi⁃
ty of the matrix calculation to the error. The genetic 
algorithm is used to optimize the parameters of the 
excitation trajectory to minimize the condition num ⁃
ber of the observation matrix， so as to further im ⁃
prove the identification accuracy.

（3） An iterative identification strategy is pro⁃
posed， in which the joint angular velocity and joint an⁃
gular acceleration are calculated according to the 
mapping relationship in each iteration， and the identi⁃
fied dynamic parameters are substituted into the ro⁃
bot controller so that the next tracking trajectory is 
closer to the desired trajectory. The simulation re⁃
sults show that using the step-by-step strategy， the 
joint angular velocity and joint angular acceleration of 
the tracking trajectory quickly converge to the expect⁃
ed value， and the identification error of inertia param ⁃
eters is less than 0.01 in three iterations. With the in⁃
crease of the number of iterations， the identification 
error of inertial parameters can be further reduced.
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基于 Logistic函数的机器人动力学参数迭代辨识

钱鸿巍 1， 李成刚 1， 杜兆才 2， 李 檬 1， 丁士杰 1， 李鹏飞 1， 李志鹏 1

（1.南京航空航天大学机电学院，南京 210016，中国； 2.中国航空制造技术研究院数字化制造航空科技重点

实验室，北京 100024，中国）

摘要：机器人的动力学参数辨识是基于动力学模型的控制器设计的基础。目前，求解角速度和角加速度的主要

方法是对位置序列进行平滑和滤波，然后形成差分信号。但是，如果噪声和原始信号在频域重叠，过滤噪声也会

滤除同频带内有价值的信息。本文提出了一种基于 Logistic 函数的激励轨迹，它充分利用了原始信号中的信息，

可以精确地求解角速度和角加速度，而无须对位置序列进行平滑和滤波。该激励轨迹的关节角度与关节角速

度、关节角加速度一一映射，可以直接根据位置求得关节角速度和关节角加速度。采用遗传算法优化激励轨迹

参数，使观测矩阵的条件数最小，进一步提高辨识精度。采用迭代辨识的策略，每次迭代依据上一次的位置序

列，将辨识出的动力学参数代入机器人控制器中，直至跟踪轨迹逼近期望轨迹，实际关节角速度、关节角加速度

均收敛于期望值。仿真结果表明，采用分步策略，跟踪轨迹的关节角速度和关节角加速度在 3 次迭代中快速收敛

到期望值，惯性参数辨识误差小于 0.01。随着迭代次数的增加，惯性参数的辨识误差可以进一步减小。

关键词：机器人；动力学参数辨识；Logistic 函数；迭代辨识；激励轨迹
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