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Abstract: We introduce the extended Kalman filter (EKF) method combined with the least square estimation to
identify the unknown load acting on the time-varying structure and realize the tracking of the structural parameters of
the time-varying system. Firstly, we propose the dynamic load identification method when the unknown parameters
are stiffness coefficients. Then, a five-degree-of-freedom slowly-varying-stiffness structure is introduced to verify the

effectiveness and the accuracy of the EKF method. The results show that the EKF method can accurately identify
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unknown loads and structural parameters simultaneously even considering noises in the input data.
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0 Introduction

Various parameters (mass, stiffness and

damping) in different aircraft structures may
change over time, such as changes in the stiffness
of the aircraft during flutter, and changes in the
mass of the rocket during flight. In the field of engi-
neering application technology, it is necessary to
obtain the dynamic loads of these time-varying
structures. It is important to obtain accurate dynam-
ic load data of these time-varying structures. They
will have a great impact on the reliability and safety
of the structure.

Traditional dynamics problems are in the three
of excitation, structural characteristics, and structur-
al response. Both of them must be known and the re-
maining one must be solved. For time-varying struc-
tures, especially slowly-varying structures, the
structure parameters will change slowly, which
means that the parameters of the structure cannot be
known in advance. To identify the load acting on the
slowly changing structure, when only the structural

response is known, the structural parameter chang-
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es and the load must be identified together, because
they are interrelated. Therefore, a dynamic load
identification algorithm that can simultaneously iden-
tify structural parameters and dynamic loads is
meaningful.

The extended Kalman filter (EKF) is im-
proved on the basis of the classic Kalman filter
(KF)'". It substitutes the unknown physical param-
eter vector into the state vector to form the extend-
ed state vector together. In the KF system to identi-
fy the physical parameters of the structure. EKF
was first used'?’ for parameter identification of multi-
degree-of-freedom linear structures. Domestically,
EKF'* is adopted in 1991 and reduced the state vec-
tor to a vector containing only stiffness and damping
coefficients, successfully identifying the stiffness
and damping of the structure and other physical pa-
rameters, reducing the amount of calculation and
ensuring recognition accuracy. KF is a new form of
identifying dynamic loads in the time domain. It
does not need to rely on the impulse response func-

tion of the system, but only according to the mutual
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correction of the state update equation and the mea-
surement update equation to obtain the load. In ad-
dition, KF is also suitable for online load identifica-
tion, and has the characteristics of small memory
occupation and fast calculation speed.

With the improvement of many scholars, the
least square estimation (LLSE) can also be used to
identify the physical parameters of the structure. For
example, the adaptive least square method is used
to identify the changing process of structural parame-
ters'*'; the sequential nonlinear least square method
is proposed in 2006, which can also identify the
changing process of structural parameters and can be
used for nonlinear structures. However, the use of
LSE means that the response of all measuring
points on the structure must be known. Therefore,
if there is a situation where some measuring points
on the structure cannot be measured, LSE cannot

be used.

1 Dynamic Load Identification
Method Combined with EKF and
LSE

For a n-degree-of-freedom system, when some
parameters in the structure (mass, stiffness and
damping) are unknown, combine these unknown
parameters with the state vector x to form an ex-

tended state vector z as follows

p(2)
x(2)
— — . 1
z(1) { " } p(l) (1)
a

where @ is the unknown parameter vector with a
length of m, x(z) the state vector with a length of
2n, p(r) the displacement vector, and p(z) the ac-
celeration vector. Assuming ¢ = 0. The state up-
date equation 2(z) and the measurement update
equation y(r) of z(¢) are nonlinear equations, can
be rewritten as
z(1)=
p(t)
—M 'Kp(t)—M 'Cp(t)+M 'B,f(1)|=
0
S (=), f (1)) (2)

y(t)=HM '(—Kp(t)— Cp(t)+ B, f(t))=

h(z(2),f (1)) (3)
where M, K, C are the mass, stiffness and damp-
ing matrix. B, is the excitation influence matrix and
H, the position matrix.

When the load is unknown, 2(7) and y(7) have
two variables: z(7) and f (7). Using Taylor expan-
sion, omit the high-order terms of Egs.(2) and (3)
retain the first-order polynomial, they can approxi-
mated written as linear equations, shown as

F =) f ()= f (2 nfii)F

Veficro(z(t) =z o)+

Vit (f ) —f) (4)
h(z(2),f ()~ h(zy i fi )+

Vo (2(0)— 2y )+

Vohi ()= fin) (5)

In order to identify the extended state vector
and unknown load of the structure, the extended
Kalman filter can be divided into a state update
step, an excitation recognition step, and a measure-

ment update step. These three steps are as follows

4

zk(ﬁ—1>:Z(k—1)\u¢—1>+J ‘ f[(zu—l)\m—l,’ﬂfl )dz (6)

f= 0y = iz o fe )+ Vb)) (D
=2y v+ Kl ye— h(zy 0o fi)—
Voo (fi—fi )] 8)
1.1 State update step

The recursive relationship of z, can be written as

a=ro | SO 0)
where w is the Gaussian white noise with variance
Q and means 0.

The prior estimate of z, 1s

zk\(k*l):z(k*l)\(k*l)+‘[ f((zu;—n\(/c—mfk 1)dz (10)

t
The prior estimation error 2, ,1s

Zyr—1)— Rk Ryh—1)—

(1+ A2V fi )2 vt
AteN flofiotw (11)
The variance of 2,, 1
Piv y=E (2 (24 1)" )=

Q+[1+20V. i AV, fi ]



18 Transactions of Nanjing University of Aeronautics and Astronautics Vol. 39
[P& D, P 1} (14 A2V £ 12) coefficient.
P Pi (AzW/f;;l )t

1.2 Incentive recognition step

To identify the load, we establish an equation

about the loadﬂ to be demanded and define

5’& }l/ Zpp— 1ﬁ 1)+V/h/f/ 1= V,h/f/+e

(13)
where e =V._ h,*2,, ,,+ v,vis the Gaussian white
noise with variance R and means 0. We choose a
weighting matrix W to make the least square estima-

tion result is the best.
Fi=(Vh) W T (V) Weg, (
W=R, "\ R,=E(éeé) (15
J=[(V,h)" R,V b T (V) R (
=[(V,h)" R, "V, b, ]! (
1.3 Measurement update step

To determine the appropriate Kalman gain ma-
trix K,. We obtain the posterior estimation error g 1s
=z, 2u=(I—K,(I—
ViheJON by )2y 1+ K (T—
Vb JON hyfi+ K (I—N hyJ, ) (18)
The posterior estimation variance 1s
Py =E(2y+(24)") =(1—L,N.h)*Pj, ,+(1—
L\V.h)" +L,*R-L] (19)
where
L,=K,(I—Vh,J,) (20)
To make the posterior estimate be the best esti-
mate, Pj; should be the smallest, so we can get
Py,
K,
K,=Pj, (Vb)) R (22)
Pi=Pj 1~ K(R,—V,h+P[(V,h,)" ) K, (23)
Pi=—Pj, (V. hk) =K V,ho PL(24)

In the state update equation and the measure-

=0 (21)

ment update equation, different types of unknown
parameters in the extended state vector have differ-
ent matrix forms. For example, the mass matrix is
in the form of an inverse matrix, and the stiffness
matrix do not need to be inverted. At this time, if
the unknown parameters seek the partial derivative
of the equation, their partial derivative matrices will
also be different. We give the extended Kalman fil-

ter method when the unknown parameter is stiffness

2 EKF Method with Unknown
Stiffness Coefficient

When the unknown parameter « is the stiffness
coefficient, the measurement update equation and
the state update equation of the system are linear
functions of external excitation f;, and their coeffi-
cient matrices are constant matrices. So Eqs. (2, 3)

can be rewritten as

P 0
f(zufi)=|—M "'Kp,— M 'Cp,|T|M 'B,|*f.
0 0
(25)
y.=h(zyf, ) =HM '(—Cp,— Kp,)+
H,M B, f, (26)

We can see that both the state update equation
and the measurement update equation can be regard-
ed as composed of two parts. One part is a nonlinear
expression about z, and the other part is a linear ex-
pression about f,. Because the mass coefficients of
the structure are not in the extended state vector,
their coefficient matrices are all constant matrices.
These two coefficient matrices are the matrices ob-
tained by calculating the partial derivative of the
state update equation and the measurement update
equation. Then Eqs.(25,26) can be rewritten as

f(zufi) f z2) TV i fi (27)
h(zfi)=h(z,)+ V,h,f, (28)

When the unknown parameter is stiffness coef~

ficient, V, fi" 1,V h, are constant matrices as

0
V,fi.=|M'B, (29)

0
Vh,=H,M 'B, (30)
The measurement update step, load identifica-

tion step can be Simpliﬁed as

Ty = 2y T K,[yl zw 1) thk'ﬁe] (31)
ﬂZJﬁ(y,g*hk(zk‘<k71))) (32)
Then we get the method of dynamic load identi-
fication when the unknown parameter vector does

not contain the structural quality parameter at Ta-
ble 1.
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Table 1 EKF load identification method when unknown

parameter is stiffness coefficient

(1) Given initial conditions
21 and Pg - and f;
(2) Incentive recognition
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3 Numerical Results

We first aim to identify the load applied on a
five-degree-of-freedom slowly-varying-stiffness sys-
tem, and also track its stiffness changes. The sys-

tem is shown in Fig. 1.

Fig.1 Five-degree-of-freedom slowly-varying-stiffness

system

InFig.1, m, = m, = my= m,— m; = 1 kg, by =
ky = ky = k= ks = k;= 200 N/m. Supposing the
damping of this system is proportional damping,
and C=aM + BK, «a=0.05, p=0.02. We make

the stiffness coefficient &, of the structure slowly
drops from 200 N/m to 120 N/m at 1.5 s.

Choose to observe the response of all measure-
ment points as the measurement vector. Assuming
that the estimates of stiffness coefficients 4, and k.
are very accurate, the remaining stiffness coeffi-
cients are used as unknown parameters and substi-
tuted into the extended state vector z. Since the
structure is filtered from static conditions, assuming
that the initial response estimate is correct and the
initial parameter estimates have a certain deviation,
the initial expanded state vector can be set as 2, =
[ zeros(1,10), 120,220,160, 180 ]".

The first degree of freedom is applied a load of
fi=sin(5xz)+ 2sin(2rr), the second degree of
freedom is applied a load of f; = sin (6xz). Add 1%
and 5% white noise to the measurement vector re-
spectively. Then we use the extended Kalman filter
method proposed to track the unknown parameter
(stiffness coefficient £) of the structure, and identify
the unknown load acting on the structure at the same
time. The unknown parameter identification results
are shown in Figs.2—5, the unknown load identifi-
cation results are shown in Figs.6 and 7.

Record the value of the unknown parameter
identified by the method before the parameter
change (/=1.4 s) and after the parameter change
(r=5 s) relatively, and compare with the real val-
ue. The results are shown in Table 2.

The data before and after the parameter chang-
es in Table 2 show that at a noise level of 1%, the
error of the EKF method to identify stiffness param-
eters is under 1.5% ; at a noise level of 5%, the er-

ror of the EKF method to identify stiffness parame-

Table 2 Stiffness parameter identification result error

Before parameter change

After parameter change

Noise Stiffness

Identification Real value/ Error/ % Identification Real value/ Error/ %

fevel parameter value/(Nem ') (Nem 1) v value/(N-m ") (Nem ) o
by 198.8 200 0.6 199.3 200 0.35
1% k, 199.2 200 0.4 118.4 120 1.33
ks 199.6 200 0.2 198.9 200 0.55
ks 199.8 200 0.1 199.2 200 0.40
ky 187.2 200 6.40 194.4 200 2.80
50 ky 191.8 200 4.10 118.8 120 1.00
ks 198.7 200 0.65 197.5 200 1.25
ks 201.0 200 0.50 195.6 200 2.20
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Fig.2 Identification results of stiffness coefficient 4;
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Fig.3 Identification results of stiffness coefficient 4,

ters is controlled within 6.5%. The data show that
the EKF method leads to better identification accura-
cy for the parameter recognition of variable stiffness

structures.
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Fig.4 Identification results of stiffness coefficient 4;
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Fig.5 Identification results of stiffness coefficient 4,
Similarly, the recognition results of the method
on the load under different noise conditions are

shown in Table 3.

Table 3 shows that when the noise level is
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Fig.6 Identification results of load f,
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Fig.7 Identification results of load f,

1%, the relative error of the dynamic load identifica-
tion result is less than 5%, and the correlation coef-
ficient result is better; when the noise level is 5%,

the relative error of the dynamic load identification

Table 3 Force identification results error

Noise Stiffness Relative Correlation
level parameter error/ % coefficient/ %
| 2.64 99.97
1% /
¥E 4.98 99.88
5% f 10.24 99.32
¥E 19.85 98.05

result is less than 20%, the correlation coefficient
result is better. So the algorithm has very good rec-
ognition accuracy when the noise is low, and the
recognition accuracy when the noise is high still
needs to be improved.

Tables 2 and 3 show that the method can accu-
rately identify the unknown load on the slowly vary-
ing stiffness structure under the condition of noise in-
terference, and track the change process of the stiff-

ness parameter at the same time.

4 Conclusions

We propose a dynamic load identification meth-
od combined with the extended Kalman filter of the
least square estimation to identify the unknown load
acting on the time-varying structure and track the
structural parameters of the time-varying system at
the same time. We present the algorithm of dynamic
load identification when the unknown parameter type
is stiffness coefficient at first. Then we use a numeri-
cal example to verify the effectiveness and accuracy
of the EKF method. The numerical results show that
the proposed method can accurately identify un-
known loads and structural parameters even when
considering noise in the input data. The proposed
method can have a wide range of applications in sev-
eral domain such as design optimization, diagnos-

tics, control and monitoring of vibrating structures.

References

[1] KALMAN R E. A new approach to linear filtering and
prediction problems[J]. Journal of Fluids Engineer-
ing, 1959, 82(D): 35-45.

[2] HOSHIYA M, SAITO E. Structural identification by
extended Kalman filter[ J]. Journal of Engineering Me-
chanics, 1984,110(12): 1757-1770.

[3] SHANG J Q. Application of Kalman filtering method
in the estimation of dynamic parameters of structures

[J]. Journal of Earthquake Engineering and Engineer-



22 Transactions of Nanjing University of Aeronautics and Astronautics Vol. 39

ing Vibration, 1991, 11(2):62-72.
[4] SATO T, QI K. Adaptive H_, filter: Its application to

jing University of Aeronautics and Astronautics in 2022. She

joined in AECC Commercial Aircraft Engine Co., Ltd. in
structural identification[ J]. Journal of Engineering Me-
chanics, 1998, 124(11): 1233-1240.

[5] YANG J N, HUANG H, Lin S. Sequential non-lin-

August 2022. Her research is focused on dynamic load identi-

fication.
Author contributions Ms. LI Yilin designed the study,

car least-square estimation for damage identification of complied the models, conducted the analysis, interpreted the

structures[J]. International Journal of Non-Linear Me-
chanics, 2006, 41(1):124-140.

results and wrote the manuscript. Mr. TANG Hongzhi con-
tributed to the discussion and background of the study. Dr.
Acknowledgements

This work was supported in part by JIANG Jinhui guided the work and checked experimental re-

the National Natural Science Foundation of China (No.
51775270) and the Project of Qatar National Research Fund
(No.NPRP11S-1220-170112)

sults. All authors commented on the manuscript draft and ap-

proved the submission.

Competing interests The authors declare no competing in-

Author Ms. LI Yilin received the M.S. degree from Nan- terests.

(Production Editor: CHEN Jun)

ETHRFRERRNERESHBEHETIRH

9
(P B MUK R AL 24 B, B AT 210016, H[5])

i E AT EFT R 2% (Extended Kalman filter, EKF) F %, & & % = f 4 R AERA AT T 24 L
KRBT, EAA R RARLEMARG RN, BARB R AR ERANE R KGR FTRANT K, BB
W —NEAWEEEREEMNG LA R IET SR A A, 5 LS REN, AL BN SE T
B B R WAL R B E A IR A B R B A e M A

KGR T RFIE MR A AT IRA AR A



