Oct. 2022

Transactions of Nanjing University of Aeronautics and Astronautics

Vol. 39 No. S

A Preconditioned Fractional Tikhonov Regularization Method

for Large Discrete Ill-posed Problems

YANG Siyu'*, WANG Zhengsheng"*, LI Wei'*

1. College of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P. R. China;

2. Key Laboratory of Mathematical Modelling and High Performance Computing of Air Vehicles of Ministry of Industry and

Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P. R. China

(Received 10 May 2022; revised 10 July 2022; accepted 15 July 2022)

Abstract: The generalized Tikhonov regularization method is one of the most classical methods for the solution of

linear systems of equations that arise from the discretization of linear ill-posed problems. However, the approximate

solution obtained by the Tikhonov regularization method in general form may lack many details of the exact solution.

Combining the fractional Tikhonov method with the preconditioned technique, and using the discrepancy principle for

determining the regularization parameter, we present a preconditioned projected fractional Tikhonov regularization

method for solving discrete ill-posed problems. Numerical experiments illustrate that the proposed algorithm has

higher accuracy compared with the existing classical regularization methods.
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0 Introduction

This paper aims to solve the linear system of
equations
Ax=10b (1)
where the matrix AE€R""" is severely ill-condi-
tioned, and the right-hand side vector 6 & R" is de-
termined through measurements and is contained by
noise. Thus we have
b=0b .t e
where b, € R" is the ideal output and e denotes the
measurement error. Therefore, we prefer to com-
pute the linear discrete ill-posed problem
AZ i = b (2)
where ... denotes the ideal solution. To solve the
problem (2), we replace the original problem (1)
with the following least squares problem
min| Az — 6| (3)
rER"

denotes the Euclidean norm. Then we

where

would like to seek the solution of Eq.(3) to get an
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approximation of x.... Note that due to the tiny sin-
gular values of matrix A and the noise in &, the mini-
mal Euclidean norm least squares solution of
Eq. (3) is not a meaningful approximated solution
of Teer-

To avoid this deficiency, Tikhonov''™?

replaces
the original problem (1) with the following general-
ized regularized least squares problem

min {| Az — 6| + | Lz ') (4)

where ¢ >> 0 is a regularization parameter to balanc-
es both terms for minimizing. L is a regularization
matrix, and it is usually chosen as the identity ma-
trix I with suitable size or the discrete first-order dif-
ference operator. Especially, when L =1, the prob-

lem (4) turned into standard form

el (5)

min {H Ax— b
reR"

The problem (5) is equivalent to the following
regularized linear system
(A"A+ " Ix=A"b (6)
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with its solution
x,=(ATA+ 1) ATh (7)
But the computed solution obtained by the Tik-
honov method is too smooth and many details of the
accurate solution will be lost. Therefore, in 2011,
Hochstenbach et al."* proposed the fractional Tik-

honov regularization method

min {| Az — b i/+ﬂ2|‘l'H2} 8)
reR"

(a—1)2

where HyHW=<yTWy>I/2, and W=(AA") is

symmetric positive semi-deflinite matrix. For the

semi-norm wo making 0<"a <"1 reduces over-

smoothing. The different parameter « can be select
ed to improve the accuracy of the computed solu-
tion. When =1, it is the Tikhonov regularization
in standard form.

To make the computed solution much closer to
the exact solution, some scholars have applied the
preconditioned technique to the original system for
solving the preconditioned problem'*”. In Ref.[6],
Gazzola constructed a new preconditioner based on
the Arnoldi process, and solved the preconditioned
problem by the Arnoldi-Tikhonov or the Arnoldi-
TSVD
method.

(‘Tensor-singular value decomposition)

The main idea of this paper is to form a new
regularization method by combining the projected
fractional Tikhonov method with the preconditioned
techniques in Ref.[6]. The remainder of this paper
is organized as follows. Section 1 briefly reviews
some of the previous work on preconditioner. Sec-
tion 2 presents the projected fractional Tikhonov
method at first, and then uses it to solve the precon-
ditioned problem, which is the preconditioned pro-
jected fractional Tikhonov method mainly intro-
duced in this paper. Section 3 explains how it can be
used to compute the approximated solution. Numeri~
cal experiments and comparisons with other meth-
ods are given in Section 4, and some conclusions

are given in Section 5.

1 Generation of Preconditioner

The generalized minimal residual (GMRES) is
one of the most popular iterative methods for the so-
lution of the linear discrete ill-posed problems based

on the Arnoldi process, nevertheless, it is not very

effective for solving the large-scale linear discrete ill-
posed problems. In view of this situation, the Ar-
noldi decomposition was used in Refl.[ 6] to put for-
ward the corresponding preconditioned technique to
improve the deficiencies of GMRES'",

The algorithm of Arnoldi process is given as
follows.
Algorithm 1 The Arnoldi process
(D Input: x,=0, AER", bER";
(2)Compute: ro=A — bx,, =] r,
(3)fork=1,2,---,m,
(4)Compute w; = Av;;
(5)fori=1,2,--+,j, do

, 'Ulzro/Hro

)

(6)Compute b, =(w;,v,);

(7)Compute w, = w, — h,;v;

(8)Compute h;. l,j:H w,
(D1 h,. 1, =0,
(10)Set m = j; end
(1DElse v, 1 =w,;/ h; 13
(12)End for

(13)End for

Algorithm 1 generates orthonormal vectors

’

Vi Usy "%y Upy Ui, the first m of which form a basis
for K, (A, b)=span{b, Ab, -+, A" 'b}. Define the
v, ] for jeE{m,m+1}
The scalars h; determined by the algorithm define
H, . ,=

[h; JER" V"™ So, using these matrices, the re-

matrices  V,=[v,, v,, -

an  upper  Hessenberg  matrix
cursion formulas for Arnoldi process can be ex-

pressed as a partial Arnoldi decomposition
AV, =V, H,.\,
where m is the pre-determined dimension of the Kry-
lov subspace to be projected. In Refl.[6], they ter-
minated the initial Arnoldi process as soon as the fol-
lowing conditions hold , i.e.
By = hyya ‘
h

where 7 and 7/ are certain user-specified parameters

hjfl,j< 71, 24 9)

Jg— 1

which are close to 0 and 1, respectively. Then the
index j that meets Eq. (9) is the real Krylov sub-
space to be projected. Finally, four preconditioners
M, ,M;,M;,M, are defined as
M=V, H;. V'
M,=V,H' V5 +(I—V V")
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M, = V]+2Hj+2.j+l jTH
M,=V,H',, V., +(IT—V, V')
After being preconditioned, the original linear

system Ax = b is transformed into
AMy=15
{ xr=My

so the corresponding least squares problem is

min{H AMy—b\|2+y2HyH2} (10)
YER"

2 Preconditioned Projected Frac-
tional
Method

Tikhonov Regularization

Considering the minimization problem (4) ,
when the regularization matrix L takes the following

finite difference operator

1 —1 0
1 —1
L= L ER" T (1D)
0 1 —1
1 —2 1 0
1 —2 1
L2: . . eR(7172)X7' (12)
0 1 —2 1
L3:
—1 3 —3 1 0
_1 3 _3 1 GR(H*\?)XH
0 —1 3 —3 1
(13)

Later, Morigis et al.'® proposed an orthogonal
projected operator as a regularization operator,
which has the same null space as the finite difference
operator. Define the orthogonal projected operator

L=I1—PP", PER"", P'P=1 (14
as a regularization operator, consequently the regu-

larization operator defined by

1 .
P=—1[1,1,---,1]"€R" (15)

Vn

has the same null space as Eq. (11). Moreover,

think about QR decomposition'”

1 1
1 2
. . |=P:R (16)
1 n

where P,€R""’ is the orthogonal matrix, and R

represents the upper triangular matrix. The regular-
ization operator generated by P, has the same null
space as the regularization operator (12). In fact,
the matrix P can also be determined in many differ-
ent ways, in which the regularization operators gen-
erated by some matrices can give computed solu-
tions with higher accuracy. Then, define the weight-

ed inverse of L as'"’

Li=(I—(A(I—L"L) A)L"€R"*
where L™ € R"** represents the generalized inverse
of the orthonormal projected regularization operator
L. Let

A=AL/!, i=Lxr.b=b— Ax'
a'=(A(I—L"L))b

The problem (4) can be converted to standard

form

T

I};ilzr}{“AiJrl;“sz;zz 2} (17)
In that way, the solution of Eq.(4) can also be
obtained by the following equation
x#ZL/Ii"—O—x’ (18)
Furthermore, by using the orthogonal project-
ed operator above, we will give a new regularization
method. First, the general problem is converted to
the standard form by using the orthogonal projected
operator (15), and then the fractional power of the
matrix is used as the weighted matrix to measure
the residual error of the standard form (17). In oth-

er words, the minimum problem

x

TER"

. e )
min{HAj+bH + } (19)
w
is used to replace the problem (17).
To solve the problem (19), it is transformed

to solve the following normal equation
((AATY* 2 4 ) =(ATAY A% (20)
Consider the singular value decomposition of A
A=Uzv’ (21)
where U and V are unitary matrices'” , ¥ =
diag(si, 05, **+,0,), and o, 0,, +++, 0, are the singu-
lar values of A. Substituting Eq.(21) into Eq.(20),
the solution of Eq. (20) can be obtained as
F=V(Z 1) EUTD
That 1s

where
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a

0;
O_g+l + /12
Therefore, by combining Eq.(22) with Eq.(18),

the solution of the generalized minimum problem

¢(5,‘):

(4) can be obtained. The above is the projected frac-
tional Tikhonov regularization method, denoted as
the PFT algorithm.

Note that the method described on the above 1s
based on the singular value decomposition of the co-
efficient matrix. However, for large-scale matrices,
its singular value decomposition requires a very
large amount of calculation, so it is necessary to
first project the large-scale problem into the Krylov
subspace with lower dimension and then solve the
projected one. In 2009, Reichel et al."™" proposed
the Arnoldi-Tikhonov method based on this idea,
which is briefly introduced below.

For large-scale matrices, the Arnoldi decompo-

sition is performed to obtain
AV, =V, H, i,

According to Algorithm 1, the matrix V,, satis-

fies
R(V,)=K,(A,b)=span{b,Ab,--- , A" b}

In general R(V, )7 R(A), this decomposi-
tion is the basis of GMRES method. Assuming that
the GMRES method is used to solve the linear
equations (1) for m iterations, the computed solu-
tion is

x,=x,+ V,y., y.ER"
When solving x, €K, (A, b) through the Ar-

noldi process, it holds that

H ry,

= min HAx—bH:minHAV,,,y—bH:
b) yER"

rcx,+K,(Ab

mln H V1/1+1Hm+ ].mvmy - b H -

yER"

mmH | (Hm—l,my - H b ”el ) H:

yER"

il 1.y le| 2
YER"

In fact, Eq.(23) shows that the original prob-
lem is transformed into the following minimization
problem

drnglkn H H, \,y—|b|e H (24)

Then the Tikhonov method is used to solve the
transformed problem, and the regularized solution is
obtained. Above is the main idea of the Arnoldi-Tik-

honov method. Combining the projected fractional

Tikhonov (PFT) algorithm and the Arnoldi-Tik-
honov method introduced on the above, a new algo-
rithm Arnoldi-projected fractional Tikhonov regular-
ization method is defined, which is recorded as the
APFT algorithm.

The Arnoldi-projected fractional Tikhonov al-
gorithm is given as follows.
Algorithm 2 The Arnoldi-projected fractional Tik-
honov regularization process
(1)Input: z,= 0, AER", bER";
(2)Compute: ro=A — bx,, B=|
(3)fork=1,2,--+,m
(4)Compute w; = Av;;
(5)fori=1,2,---
(6)Compute h;=(w;, v, );

) 5

, 711:7'0/H r

,j, do

(7)Compute w, = w; — h;v;

(8)Compute h;+ 1, = w,
(DIfh;,=0,

(10)Set m =j; end
(1DElse v, 1 =w/h; 1 ;

(12)End for

(13)End for

(14)The PFT algorithm is used to solve the mini-

’

mization problem (24), and the computed solu-
tion is denoted as y,.

(15)Restore regularized solution: x, = x,+ V,, y,.

3 Solution to Preconditioned Prob-

lem

The section discusses the application of Algo-
rithm 2 and the Arnoldi-Tikhonov algorithm to
solve the preconditioned system (10), so the prob-
lem (10) is projected into the Krylov subspace V,,
where

AMV, =V, H, \, (25)
and % is actuallyjselected by satisfying the inequality
(9) in the second section. The minimization prob-

lem (10) is transformed by Eq.(25) into'®
min{| Hoox =6 es |+ L2} 20
zER"

Next, the PFT algorithm is used to obtain the
computed solution (26) of the problem as z,, so
that the solution of the problem (10) is y,= V,z,

which gives the computed solution x,= My, of the
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problem (4). This preconditioned Arnoldi-projected
fractional Tikhonov method is denoted as P-PFT al-
gorithm. In particular, when using the P-PFT algo-
rithm, we choose g that satisfies the discrepancy
principle

| Hivaz =] b]e|< e
where ¢ is the bound for the noise in &, and let ¢ be

a user-specified value that independent of §.

4 Numerical Experiments

In this section, we will construct some experi-
ments to illustrate the effectiveness of the P-PFT al-
gorithm for solving linear discrete ill-posed prob-

lems. All the computations were carried out in

1.0
09

—P-PFT
——Exact

1500 2250
The ith component
(a) M,, 6=0.001

0 750 3000

1.2

—P-PFT
——Exact

Value of the ith component
e g o ™~
£ (=)} o0 (=

T T T T

=3
N
T

1500 2250
The ith component
(c) M, 6=0.01

0 750 3000

—P-PFT
——Exact

1500 2250
The ith component
()M, 6=0.1

0 750 3000

Value of the ith component

Value of the ith component

MATLAB R2016b on personal computer with
1.86 GHz Intel Core 14, 4 GB DDR3. For all the
tests, the initial guess o, = 0 and the stopping crite-
ria (9) are used with z;=20.9, /= 10 *. Besides,
the maximum allowed number of the Arnoldi itera-
tions in algorithm 1 is m = 200. We use the relative

/H xt‘xacl

measure of the accuracy of the computed solution.

error norm, defined by Hx*xmu , as a

4.1 Examplel

Consider the linear systems Ax =5, where
AER™ ™ s the foxgood matrix'™ , and the
right-hand b=Ax.+
o rand(3 000, 1) level

side vector

with  relative  noise
1.0
0.9
0.8 |
0.7
0.6 |
0.5
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0.1
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Fig.1 Exact solution of the foxgood problem and the computed solution obtained by P-PFT algorithm
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6=0.001, 0.01, 0.1. Let the orthogonal projected
operator be generated by Eq.(16) and the regulariza-
tion parameter @ = 0.1. The numerical results of ap-
plying P-PFT algorithm equipped with precondition-
er M;, M, are shown in Fig.1 that illustrates the dis-
tance between the computed solution and the exact
solution. It can be seen from the Fig.1 that the com-
puted solution obtained by using the P-PFT algo-
rithm can approximate the exact solution well,
which indicates that our proposed method is effec-

tive.
4.2 Example 2

Consider the linear systems Ax=¥b, where
AERI rakes the foxgood, baart matrix' ™',
b - AIexm‘! +

noise  level

and the right-hand side vector
Serand(3000,1)  with
6=0.001, 0.01, 0.1. Let the orthogonal projected

operator be generated by Eq.(16) and the regulariza-

relative

tion parameter « = 0.1. Then compare the relative
error of the computed solution obtained by the P-
PFT algorithm with different preconditioners. The
numerical results of comparing the relative error that
applying P-PFT algorithm and P-AT algorithm
equipped with preconditioners M,, M., M;, M, are
shown in Tables 1, 2.

Table 1 Comparison of the relative error for P-PFT al-
gorithm and P-AT algorithm in solving baart

problem

¢0=0.001 0=10.01 0=0.1
P-AT P-PFT P-AT P-PFT P-AT P-PFT
M, 0171 0.138 0.201 0.201 0.413 0.337
M, 0176 0.140 0.199 0.183 0.413 0.338

M, 0171 0.143 0.200 0.171 0.415 0.329
M, 0.170 0.143 0.200 0.173 0.410 0.320

Baart

Table 2 Comparison of the relative error for P-PFT al-
gorithm and P-AT algorithm in solving foxgood

problem

0=0.001 0=10.01 0=0.1
P-AT P-PFT P-AT P-PFT P-AT P-PFT
M, 0.0156 0.008 0 0.038 8 0.028 6 0.044 7 0.049 5
M, 0.0157 0.0081 0.038 7 0.0291 0.0450 0.064 2
M, 0.016 0 0.008 5 0.038 6 0.028 4 0.0451 0.049 8
M, 0.017 0 0.008 6 0.0400 0.028 7 0.044 9 0.049 7

Foxgood

Table 1 shows that the P-PFT algorithm can
give the more accuracy computed solution than the
P-AT algorithm for the test problem baart under all
noise levels. Moreover, the approximate solution
computed when using the preconditioner M, does
look much improved for the test problem foxgood in
Table 2. It can also be found from Table 2 that the
P-PFT algorithm performs much better than the P-
AT algorithm for the test problem foxgood when

the relative noise 1s smaller.

5 Conclusions

In this paper, a new regularization method is
formed by combining the preconditioned technique
for solving discrete ill-posed problems with the pro-
jected Tikhonov method based on the projected op-
erator. The numerical experiments in this paper
show that the preconditioned Arnoldi-projected frac-
tional Tikhonov method has the advantages of more
accurate results, so the method is effective and feasi-

ble to some extent.
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