Oct. 2022

Transactions of Nanjing University of Aeronautics and Astronautics

Vol. 39 No. S

Double Transformed Tubal Nuclear Norm Minimization for

Tensor Completion

TIAN Jialue', ZHU Yulian®, LIU Jiahui'

1. College of Computer Science and Technology/College of Artificial Intelligence,

Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P.R. China;

2. Fundamental Experimental Teaching Department, Nanjing University of Aeronautics and Astronautics,
Nanjing 211106, P.R. China

(Received 8 May 2022; revised 23 July 2022; accepted 28 August 2022)

Abstract: Non-—convex methods play a critical role in low-rank tensor completion for their approximation to tensor

rank is tighter than that of convex methods. But they usually cost much more time for calculating singular values of

large tensors. In this paper, we propose a double transformed tubal nuclear norm (DTTNN) to replace the rank norm

penalty in low rank tensor completion (LRTC) tasks. DTTNN turns the original non-convex penalty of a large tensor

into two convex penalties of much smaller tensors, and it is shown to be an equivalent transformation. Therefore,

DTTNN could take advantage of non-convex envelopes while saving time. Experimental results on color image and

video inpainting tasks verify the effectiveness of DT TNN compared with state-of-the-art methods.
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0 Introduction

Low rank tensor completion (LRTC) aims at
completing the whole tensor through mining hidden
information from visual positions for further tasks,
such as color image inpainting, video recovery, hy-
perspectral image reconstruction, recommender sys-
tem, etc. LRTC constraints low rank property on
the target tensor. However, unlike matrix, tensor
rank doesn’ t have a unified definition. CP-rank,
tucker rank, and tubal rank are the popular defini-
tions used widely. Although there are various tensor
rank definitions, the same as matrix rank, they are
all NP-hard to solve directly. Hence, researchers
usually convert to {ind convex or concave envelopes
of the rank norm. Zhang et al. found a convex enve-
lope named tensor nuclear norm ( TNN)' based on
tensor singular value decomposition (T-SVD) ,

which 1s similar to matrix nuclear norm, and
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achieve great success in tensor completion tasks.
Other researchers further extended TNN to concave
cases, such as Wu et al."”’ applied Laplace function
to tensor singular values, Shi et al.”” used LogDet
function to replace nuclear norm function, Kong et

al.H]

extended nuclear norm to Schatten-g norm
with 0 <T¢ <1, etc. But these methods often corre-
spond with high time-consumption, because of the
T-SVD operation on large tensors. To solve this
problem, we transfer to factorization methods. In
matrix case, Shang et al."”’ proposed a low rank ma-
trix completion model based on matrix factoriza-
tion, which factorizes the original large matrix into
two small matrices. Hence, the original SVD on
large matrix is converted to two much smaller matri-
ces, and this operation saves a lot of time. Inspired
by this success application, we consider extending

this approach to tensor case.
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1 Notations, Preliminaries and Re-
lated Work

1.1 Notations and preliminaries

In this paper, we mainly focus on the field of 3-
order complex tensors denoted as C" """ ™. Table 1
demonstrates the commonly used symbols. Tensors
and matrices are denoted by handwritten letters and
italic capital letters respectively.
®-product'”’  The @-product
of AeC ™" and B&C" ™ " is a tensor
ce Cc 7, which is given by

C= Ao, B=

(fold(bdiag(As) bdiag(Ba))) =

H

Definition 1

(fold( A, B.)) (1)

o
Definition 2  Unitary tensor A tensor
AecC " is called unitary tensor if satisfying
Ao e A" = A"04,4=Z, where Z is the identity
tensor.

Definition 3 Transformed tubal nuclear norm

(TTNN)'"
of a tensor A€ C" """, denoted as | A | __, is

TTNN

The transformed tubal nuclear norm

the sum of the nuclear norm of all the frontal slices

of qu

(2)

H A ||TTNN - ZH Ao’

i=1

*

Theorem 1 Tensor singular value decomposi-
tion (T-SVD)'"  Suppose that X€ C"* """, then
A can be factorized as follows

A=UIS0, V" (3)
where Z4€ C"" "7,

sors, and SEC" """ is a diagonal tensor (the

Yye Ct " are unitary ten-

frontal slices of its transformed form &, are diagonal
matrices). The proof is constructed and the compu-
tation of T-SVD is shown in the Algorithm of T -
SVD as follows.

Algorithm of T-SVD'*

Input: XeCc" """, @cC""

(1) Compute transformed tensor A,

(2) fori=1,2, -+, n;do

(3)[U,S, V]=SVD(A,');

Table 1 Basic notations

Notation Field Description
A c " A 3-order tensor
Ay C The (7,7, )-th entry of A
<.4, B> C The inner product between A4 and B, <.4, B> = z< A,f},B,;,,)
ik
lAl, C The Frobenius norm of A, | A | = /(A4,4)
A ¢ The ith frontal slice (A (:,:,7) ) of A
A =hdiag(.A4) ¢ A block diagonal matrix with each diagonal element being A’
fold(fi) =A cmm s The inverse operation of bdiag(.4)
The unfolded tensor of A4 in the third dimension with the columns of A being the tubes
A = unfold(.A4) C
(A(ij.:))orA
tensor(A)= A4 cn The inverse operation of unfold(.4)
(0] cerr A unitary transform matrix with @@" = @" @ = [
The transformed tensor was obtained by multiplying @ to the third dimension of A4,
A, = tensor( @A) o
and A=(A,),.
A" Cc=" """ The tensor conjugate transpose obtained by fold(fiﬁ)
z ¢ """ The identity tensor with each Z, ' being identity matrix

-], C

The matrix nuclear norm
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(4) Z/lwiz U, Stpf:S’ Vqﬁi: Vs
(5) end for

(6) L/:(um)q;m‘s:(‘g«p) V:(Vm)

o’ ot
Output:

uUcCcr o, SeCh T, yee T,
Definition 4 Tensor tubal multi-rank, tubal
rank and sum rank, m-rank, t-rank, and s-rank'”’
Given a tensor A€ C"* """, m-rank(Xx) is a vec-
tor with its /-th entry being the rank of the /-th fron-
tal slice of A5. trank(Ax) is defined as the max val-
ue of frontal slices rank of A or described by the di-
agonal tensor & calculated in T-SVD. s-rank(.t) is

the rank sum of all frontal slices of Ap. mrank =

[ rank( A,'), rank(.X,?), , rank(Ap™) ], t-

rank(/l")Z#{i:S(i,z',:)iO}Zmax<rank(A’¢1)>,
s-rank(/l"):z:rank(/l’;,’), where i=1,2, .-,
=1

min (7, 7,); j=1,2, -+, n; and rank(+) represents

the matrix rank.
1.2 Related work

LRTC is proposed under the assumption that
the data has a low rank attribute™®. Given a tensor
De C ", the low-rank tensor completion mod-

el is described as follows

min rank ( £)
L

s.t. Po( £L)= Po( D)

where L is the completed result, 2 the observed
tensor and 7(+) the projection operation, in which
the entries in 2 indicate the observed values and
missing values otherwise. However, directly solv-
ing the rank norm minimization problem is NP-hard.
Therefore, the rank norm penalty is usually re-
leased to its envelopes. Using the tensor tubal rank
defined in Definition 4, Song et al.'® proved that
transformed tensor nuclear norm (TTNN) is a con-
vex envelope of the sum of the elements of the ten-
sor tubal multi-rank over a unit ball of the tensor
spectral norm'”. And they proposed the LRTC
model based on TTNN

*

mzin H L HTTNX - m[in ZH Lo
n, min () -
mtin 2 Z o( L")
s.t. Po( L)= Po D) (4)

It’ s worth noting that TTNN is under a uni-
tary transform matrix @, when @ is a discrete Fou-
rier transform (DFT) matrix, TTNN is converted
to the TNN'",

When the tensor only has two dimensions,
LRTC is degraded into low rank matrix completion
(LRMC). To solve the highly time-consuming
problem in the matrix case, Shang et al."”' proposed
a matrix factorization method: Double nuclear norm
(D-N), and applied it to the LRMC problem

1
rillvl'lE<HUH+HVH> (5)

s.1. Pn( I,): PQ(D), L= UV“
which motivates us to extend this factorization mind

to the tensor case.

2 Double Transformed Tubal Nu-

clear Norm

Since the TTNN noted in Section 1.2 is the
convex envelope of tensor sum rank, in this sec-
tion, we extend TTNN to non-convex envelope
fields. We first define the transformed tensor Schat-
ten-¢ norm (TT-S,) under the transform matrix @
distinguishing from the DFT matrix used in Ref.
[4]. After that, inspired by the D-N'"' in the matrix
case, we propose a DTTNN and prove its equiva-

lence with TT-S, under minimum optimization
2

problem.

Definition 5 TT-S,
e with trank(AX)=r<<min(n,n,),
TT-S, (0<<g<<co) is defined as

Given a tensor

ny min(ny,n,) q
XTTSq:_<z 2 O-;I(sz.)) (6)

j
where o,( A,’) denotes the j-th singular value of
A,', @ the any unitary matrices, including discrete
Fourier transform matrix'*', wavelet transform ma-
trix'® , cosine transform matrix®’, and data-based

transform matrix™®’.
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Definition 6 DTTNN
e with trank () =r<<d (d is the esti-
mated tubal rank) , we decompose it into two factor
tensors Z/€ C"" "™ and V&€ C"" "™ such that A=

o V"' Then the DTTNN is defined as

Given a tensor

|| +lvl (7)

DTTNN ’ TTNN

— min~ (| 2|
uy 4

TTN\])
Theorem 2 DTTNN is equivalent to the TT-
Schatten-1/2 norm. i.e.

| x (8)

To prove Theorem 2, we first demonstrate the

=]

DTTNN TT-Sy,
following LLemma.
Given two tensors & C" """

and Ve C* " and let ¢=>0, then the following

Lemma 1

inequality holds for the decreasing ordered singular

values of each frontal slice of A=, V", U«

and V.
ny min(ny,n,d) ny min(ny,ny,d)
=SS s ete o v
i j i J
(9)
Proof
n, min(ny,n,d) ny min(ny,n,,d)
E 2 e > ol Xe)=
nymin(ny,ny.d)
SRR
k
ny min(ny,n,,d)
HY)
>, ailUa)ar(Ve)=

k

ny min(ny,nd)
> 2 (Us') (V')
where the inequality in the proof follows from Ref.
[10] (Theorem 3.3.14).
Proof of Theorem 2 Since A= /0, V",
where Z/E C" """ and VE C*" "™, we have

ny min(ny,n,.d)
[Ea E:E;
TT— Sy

ny min(ny,n,,d)

22

N\H

N\H

‘im>\

(i%ﬁlﬁ+igf )
Y )=t

Vo'
=1

[V

TTNN)
where the first inequality follows from Lemma 1 as
g=1/2,

well-known Holder’ s inequality'"!" and the third in-

the second inequality follows from the

equality follows from the Jensen’s inequality'*’.

Next, when 2, = Poo,D", V.= R0,D",
and the SVD of X being A=Uo,V'=
WMD%RHweMWHXMH‘*<\ ot
V] )

Hence, we can conclude that

12Dy =1 Ly, (10)

3 Problem Formulation and Opti-

mization

3.1 Problem formulation

By Theorem 2, we use DTTNN, which is
equivalent to TT-S,, and tighter envelope than
TTNN for tensor rank defined in Definition 3, to
substitute the tensor rank norm penalty in LRTC.
Then we present the following tensor completion
model

min (2], 1 V) +

TTNN

QVMzwvmpwz

.
st. L=Uo, V" (11)
where 7,(+) represents the tensor observed entries

and A the balance coefficient.
3.2 Optimization algorithm

We use the framework of ADMM'"* to solve
Eq.(1). By introducing the auxiliary variables Z£ and
V, Eq.(1) converts to solving the following aug-

(H HTT\N

[9], )+ 5170 - 2 D)+

(viu—t)+{y.v—v)+

mented [Lagrangian function

L(u vuv c y)=

(VL= V') + 5 (Hu u| +

v—y[ 4| c—w, | (12)
F F

where ¢ > 0 is the penalty parameter and Y, are La-
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grangian multipliers.
3.2.1 Updating U;., and V;.,

By fixing other variables, U,., and V,, could
be calculated by solving the following two optimiza-
tion problems

. 2
m;nH U— U+ Y/ HF +
| ci—wo oV + Vi | (13)
. 2
min | V— Vit W/ +
“ACA_L{A+1°¢V[1+J}§/#&‘|; (14)

It is obvious that Eq.(13) and Eq.(14) are sim-
ilar optimization problems, for simplicity we only
show the procedure of solving Eq.(13). Eq.(13) is
actually equivalent to the following Eq.(15) accord-
ing to the property of | - Hk

2

-+
F

o~ Ta+(Vi/1),

i
Hz:w—(uoq,vmw+(y§/m)wHi (15)

and block diagonalizing the tensor doesn’ t change

, hence we can convert Eq.(15) to

Eq.(16)

min H f] + U.,,
Us

2 +H fzf U«b‘}/qt];
F

T = bding((Vi/), — tho)  (16)

r :bdiag(£k¢+<y§//“’)m>

Therefore, U, can be directly obtained by solv-

ing the least square Eq.(16), and the optimal solu-

tion is given by

~ —1
Uero=(TVid + T))( — L+ VidVia) (1)
and U, ,, can be gotten as

mﬂz(fold(zjﬂm)) (18)

"

Similarly, V. is
‘}k\ 1¢:<f2HUﬁ< e fz)(*lsde UM 1;[Um 10)71
)jkv1:<f01d(‘}k+ld§)>‘p“ (19)

where fSZbdiag<( Y 1 e — Vm)-
3.2.2 Updating &, ., and V, .,
To update U, and V..,

ables and obtain the following optimization problems

we fix other vari-

m;n%HL/ Tt — et Yilu | (20)

H TTNN

V2 2D

T
m,in E H 4 H TTNN

%H Viii—

which are equivalent to

m;nE(ZK Uy' .

Hud, Usiro = (V) IZ) (22)
) P
EH Vol = Vioro' — (Vi) ) (23)

By Ref.[14],
and Eq.(23) are

U . o'=

the optimal solutions of Eq.(22)

(Ro')" (24)
(cp)" (25)

Po' Q0
Aiiro' B0
where Py’ Qo' (Ro')
llk+1¢"+(yf/m)¢f and

Viiio'=
is the singular value decom-
position of
A, 10'Bo'(Co')" is the singular value decomposi-
tion of Vo' +( ;/m)lpz‘. Qo' = max{Qy' —
205 0fand Bo, o' = max{Bo' — 2p,, 0}.
3.2.3 Updating £,

Fixing other variables, we then get the optimi-

zation problem in reference to £,

A
in | 2o £) = P D) +

Ble—toavit 2w (26)

It is a least square problem as well with limita-
tion Py( +) on £L — D, we can directly write the op-

timal solution as
1
L= PQ(W(AD+/ka+1<>q,V211y§) +

7)(2 (L/kﬂoq))/’:lﬂ_y’f//l/e) (27)
where 2+ is the complement set of Q.
3.2.4 Updating Lagrange multiplier Y/ ' and
Pt
The multiplier Y/ are directly obtained by

k+17y1+#k(m+l L{Hl)
Zk\l:yz"+#k<Vk+1_Vk—l) (28)
.yaM 1:y§+flk(£k+1*%+lod’v’\‘+‘l{)

and the penalty parameter p, ., 18

prier = min ( O o) (29)
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3.2.5 Convergence judgment
We think the algorithm is convergent when the

max value of

H Z{k+1 o L-lkJrl H[/H DHF
H Vi — le HP/H DHP
H‘C“ 1*1/{/m 1<>¢sz4\ 1 H}/H D”F

is smaller than the stop parameter €.

We conclude the whole procedure in Algo-
rithm 1.

Algorithm 1  ADMM for solving Eq.(11)

Input: P(D)eC" """,
d and A

Initialize: po, p > 1, =0, and €.

the estimated rank

(1) while not converged do

(2) UpdateU,. and V,. by Eq.(8) and Eq.(10)
(3) Compute &/, ., and V, ., via the SV T
(4) Update £, , by Eq.(27)

(5) Update the multipliers /"' by Eq.(28)
(6) Update y,-, by Eq.(29)

(7) b<k+1

(8) end while

Output: Uiy, Vi and £, .

4 Experimental Results

We evaluate the performance of DTTNN on
image and video inpainting tasks and compare our
methods with some start-of-the-art methods includ-
ing DN, TTNN® |
PSTNN'" | where D-N is the matrix completion

t-Schatten-¢'*"  and

method based on matrix factorization, TTNN the
tensor completion method using data-based trans-
formed tubal nuclear norm, t-Schatten-¢ the tensor
completion method based on tensor factorization in
the frequency domain and PSTNN the non-convex
method by truncating smaller singular values. It is
worth noting that when @ is DF'T matrix, our meth-
od is equal to t-Schatten-¢'*’.

For the satisfactory performance of the data-
based transform matrix @ verified by quantities of
experiments in Refs.[6, 16], we use the data-based
transform matrix in DTTNN and TTNN. It can be
calculated by unfolding tensor data & into matrix X

along the third-dimension, then take the singular

value decomposition of the unfolded matrix X =
UXV"and U" is the data-based transform matrix.
In our methods, basic parameters are set as fol-
lows: A=1/
1.05, e=1X 10", d=[30, 50, 100 ] corresponds
to missing rate (MR) MR =[95%, 85%, 70% ]in

max (1, ny)ns, po=1Xx 10", o=

image inpainting task and A=>5/./max(n,, n,)n;,
p=1X10", o=12, e=1x10", d=
[ 30, 50, 50] MR =
[90%, 80%, 70% ] in video inpainting task. Be-

sides, the parameters in other methods are consis-

corresponds to

tent with their proposed papers. When it comes to
matrix completion method D-N, we apply it to each
frontal slice of color images. We use linear interpola-
tion to pre-complete the input images. Peak signal-
to-noise ratio (PSNR) (higher is better)'” and run-
ning time are used to quantify the performance of dif-

ferent methods. PSNR is defined as follows

211 /‘l,maxi/‘l)min ’
PSNR — 10log,, "2 ) (30)

|r— 2

where A is the recovered solution, and A, the
ground-truth tensor. A&, and A, are the maximal

and the minimal entries of A}, respectively.
4.1 Image inpainting

We use the six classic color images (shown in
Fig.1.) to evaluate the performance of our proposed
methods. From left to right, Image (1) 300X 300X
3, Image (2) 300X300X3, Image (3) 300X
300<3, Image (4) 300x300X3, Image (5)
278 X410X 3, Image (6) 210X 350X 3. In the ex-
periments, the input images are generated by set-
ting randomly some pixels as missing entries, then
applying different methods to recover them, respec-
tively. PSNR and running time are given in Table 2,
and the 1" place is bolded among tensor methods.
All experiments are run in MATLAB R2021b under
Windows 10 on a personal computer with a
2.60 GHz CPU and 16 GB memory.

E""
; -
- BN >
moo® 6 @ 06 ©6)

Fig.1 Six color images
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Table 2 Average quantitative assessment index (PSNR/Time(s)) of different methods on the six color images

MR=95%
Image
D-N TTNN PSTNN t-Schatten-1/2 DTTNN
(1) 18.51/0.78 20.02/9.156 17.95/4.22 20.72/3.01 21.19/1.79
(2) 17.99/0.70 18.90/8.64 18.94/4.19 19.13/3.38 19.40/2.27
(3) 19.72/0.78 20.35/8.17 20.82/4.09 20.43/3.59 20.38/2.33
4) 14.30/0.67 16.55/8.68 16.26/4.17 17.68/3.43 17.72/2.16
(5) 19.49/0.69 20.09/10.41 19.30/4.81 20.94/3.78 21.22/2.39
(6) 23.46/0.52 23.72/6.51 23.41/2.83 23.21/3.00 24.18/1.83
MR=85%
Image
D-N TTNN PSTNN t-Schatten-1/2 DTTNN
(1) 24.58/0.94 25.96/8.10 24.48/4.31 26.62/3.14 27.02/2.07
(2) 21.32/0.88 21.95/7.74 22.39/4.20 22.43/3.43 23.00/2.05
(3) 22.33/0.87 22.83/7.60 23.37/4.34 23.04/3.73 23.30/2.11
4) 18.47/0.86 20.34/7.78 21.51/4.22 23.32/3.41 23.65/2.14
(5) 22.38/1.03 23.83/9.28 23.77/4.84 24.05/4.18 24.59/2.54
(6) 27.964/0.67 28.25/5.96 27.62/2.77 28.62/3.10 29.00/3.32
MR=70%
Image
D-N TTNN PSTNN t-Schatten-1/2 DTTNN
(1) 26.36/1.23 30.04/7.94 31.36/4.26 31.47/5.23 32.01/3.34
(2) 22.44/1.22 25.10/7.63 26.57/4.28 26.51/5.32 26.71/3.47
(3) 23.41/1.21 25.53/7.58 26.63/4.26 26.44/5.47 26.23/4.70
4) 19.03/1.43 24.78/7.83 28.81/4.07 28.90/5.22 29.15/3.64
(5) 23.63/1.45 26.17/9.24 27.89/4.77 27.37/6.44 27.67/4.06
(6) 29.86/1.03 33.33/5.72 33.07/2.82 33.27/5.19 33.14/5.13

As is shown in Table 2, D-N is a matrix meth-
od and others are tensor methods. It is obvious to
see those tensor methods outperform D-N under
PSNR which verifies the advantage of tensor meth-
ods. Hence, it is effective and necessary to deal
with tensor data directly. In most cases, our
DTTNN saves a great quantity of time than
TTNN, PSTNN, and t-Schatten-1/2 when MR =
[95%, 85% ). DTTNN also achieves competitive
results when MR = 70%. This verifies the effective-
ness of DTTNN. Besides, Fig.2 (from left to
right, original image, input image with MR=
85%, D-N, TTNN, PSTNN, tSchatten-1/2,
DTTNN) presents the completion result of all
methods when the input images have 85% random
missing pixels. Actually, the visual effects don’ t
vary a lot between different methods. But we have
to emphasize that DTTNN takes less time to get
this result especially when MR is very low. This ad-
vantage will be enlarged when dealing with larger

tensors in the video inpainting tasks.

(Dhttp://trace.eas.asu.edu/yuv/

g TR TR YT YT WY

WO A0 O T -1l i
oo ] oo TR ) ]
] L o .. 1w 1o

-

Fig.2 Completion results of color images
4.2 Video inpainting

In this part, we use the first 100 frames of
three videos Suzie, Carphone, Container” to verify
the performance of DTTNN. All videos are of size
144 X 176 X 100.

Table 3 shows the average PSNR and running
time of different methods. From Table 3, it is obvi-

ously seen that matrix method D-N does not perform
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well although it runs fast. This again verifies the ne-
cessity of tensor methods. In all tensor methods, our
DTTNN achieves the highest score in most cases and
the running time is second only to D-N. DTTNN
even saves more than twice as much time as TTNN
and PSTNN. Additionally, the difference between
DTTNN and t-Schatten-1/2 is larger than that in im-

age cases. And this shows the advantage of DTTNN
in dealing with large tensors. Fig.3 (from left to right,
original image, input image with MR=90%, D-N,
TTNN, PSTNN, t-Schatten-1/2, DTTNN) dem-
onstrates the visual results of different methods when
MR=90%. We can see that DTTNN achieves bet-

ter visual effects compared with other methods.

Table 3 Average quantitative assessment index (PSNR/Time(s)) of different methods on the three videos

, MR=90%
Video
D-N TTNN PSTNN t-Schatten-1/2 DTTNN
Suzie 19.08/9.68 26.38/73.65 26.10/32.48 26.23/11.22 27.26/11.03
Carphone 16.20/7.00 26.65/78.06 26.10/32.46 25.87/10.93 27.40/10.73
Container 17.49/6.61 28.33/83.34 31.27/31.69 29.16/10.63 30.34/10.22
. MR=80%
Video
D-N TTNN PSTNN t-Schatten-1/2 DTTNN
Suzie 22.31/7.93 29.04/71.24 28.56/32.94 28.93/16.55 29.81/16.17
Carphone 19.57/8.65 29.41/72.09 28.61/32.59 28.69/16.06 30.28/15.52
Container 19.28/7.99 31.96/83.07 35.20/31.73 35.28/15.22 36.71/14.09
. MR=70%
Video
D-N TTNN PSTNN t-Schatten-1/2 DTTNN
Suzie 24.23/9.02 31.11/70.71 30.80/31.78 30.73/16.98 31.86/16.25
Carphone 20.92/9.36 31.54/69.02 30.74/31.91 30.19/16.54 32.13/15.90
Container 20.29/9.53 35.24/82.72 39.69/32.22 37.225/15.81 39.68/14.16
References

Fig.3 Completion results of the 20th frame of videos

5 Conclusions

In this article, we propose a non-convex tensor
completion model. We first define a new TT-S, and
use it to replace the rank norm penalty in the LRTC
problem. Then we prove the equivalence between
TT-S,, and DTTNN. Hence the non-convex prob-
lem is converted into a problem that each block is
convex and can be solved under the multi-block AD~
MM framework. Finally, we verify the performance
of DT'TNN on color image inpainting.

Since the model proposed above is only appli-
able for suitable value ¢, we consider expanding the
equivalence between DTTNN with TT-S,, to any
g values as our future work, and applying them to

more LRTC tasks.
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ETWNERZEHERNMBKEI £

HPe, R EE,

pIRES- &

(1B R 2 MR KRBT BHLR 2 5 HOR 22 B /N TR B2 Be , Bt 211106, T [
2. W A MR R IS 38, H L 211106, )

WE D7k EIRARKIKEA A TEAELETEZOER AL Tk, EG 7kt kEHG ZEMHT, 22
BEFFERAATEFLRK TGO FFAMmEFTRLE, ALIHE T —H L #4258 2 (Double transformed tubal
neclear norm, DTTNN)4F 4 # 76 2 49 4F & 4> 2 8 T K M 4K %k 5k & A& (Low rank tensor completion, LRTC) 7]

DTTNN a5 X 7K 2 9 3F o0 & 57 F A4 < mA DR F 0 &, B, DTTNN T A 27 4 3k &

Zr ik e KA, B & EARAS A A AL B0 3 s RIRE T DTTNN 7 3k 89 A 2Lk
KEIR MR BAHEHGRFE I DR R E SR E AN



