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Abstract: Aiming at the difficulty of air-sea joint operation in complex multi-equipment combat with high uncertainty， 
a new intelligent decision-making method for air-sea joint operation based on deep reinforcement learning is proposed. 
To uniformly represent the input and output of complex networks and their corresponding relations， various networks 
are utilized， e. g.， perceptron， deep long-short term memory network and actor critical structure. Aiming at the 
instability of policy network learning process and the defects of the proximal policy optimization（PPO） algorithm， an 
improved proximate policy optimization algorithm is proposed. To enhance the variability of opponent’s strategy in 
the process of policy network self-learning， a baseline policy model selection method based on model performance and 
model diversity is proposed. The experiments demonstrate that the proposed method is effective and stable in air-sea 
joint operation decision. In the 4th Wargaming Competition hosted by Chinese Institute of Command and Control， the 
winning rate in more than 100 rounds against regular decision-making algorithm and human confrontation was 97%， 
which was about 20% higher than that of regular decision-making algorithms.
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0 Introduction

Reinforcement learning is an important re‑
search field in machine learning. It does not require 
supervisory signals. It interacts with the environ‑
ment with a trial-and-error mechanism， balances ex‑
ploration and utilization in an environment with un‑
known models， and learns optimal strategies by 
maximizing cumulative rewards. Deep reinforce‑
ment learning combines the advantages of deep neu‑
ral networks and reinforcement learning， which can 
be used to solve the perception decision-making 
problem of agents in complex high-dimensional 
state space.

In 2015， the Google DeepMind team［1］ pro‑
posed the deep Q network （DQN）， which innova‑
tively combines convolutional neural networks with 

Q-learning. By using the experience replay tech‑
nique and the fixed-target Q network， the instability 
and divergence caused by the neural network’s non‑
linear action value function approximator are effec‑
tively handled， greatly improving the applicability 
of the reinforcement learning method. At the same 
time， the experience replay technology increases the 
use efficiency of historical data， and breaks the cor‑
relation between data by using random sampling， 
which stabilizes the training process of action value 
function furtherly. In 2016， artificial intelligence Al‑
phaGo［2］ based on deep reinforcement learning and 
Monte Carlo tree search defeated the top profession‑
al Go players， which has attracted worldwide atten‑
tion. Subsequently， DeepMind introduced artificial 
intelligence AlphaGoZero［3］ and AlphaZero［4］ based 
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on reinforcement learning and greatly promoted the 
development of reinforcement learning technology.

In recent years， deep reinforcement learning 
has been widely used in games［5］， robots［6］， recom‑
mendation systems［7-8］ and other fields. In 2017， 
OpenAI used reinforcement learning to defeat top 
human players in the real-time strategy game Do‑
ta2［9］； in 2019， Google’s Deepmind AlphaStar［10］ 
defeated StarCraft human players. In the same year， 
OpenAI trained the humanoid robot hand Dactyl［11］ 
to manipulate objects flexibly； in 2018， DeepMim‑
ic［12］ simulated humanoid robots which mastered dif‑
ficult motion modes.

With the successful application of algorithms 
such as DQN， deep reinforcement learning has grad‑
ually been applied to military decision-making. For 
different practical applications， scholars have de‑
signed a series of methods from different technical 
approaches， such as military decision-making meth‑
od based on game theory［13‑15］， military decision-

making method based on optimization theory［16-18］ 
and so on. Conde et al.［19］ used genetic algorithm to 
solve the problem of conflict avoidance according to 
the characteristics of fighters. Smith et al.［16］ used 
the bilateral model to solve the aircraft planning 
problem， but their algorithm is easy to fall into local 
optimum. Cui et al.［20］ used particle swarm optimiza‑
tion to analyze the conflict avoidance problem， but 
due to the lack of time series data， its convergence 
accuracy is low. Burak［21］ proposed a path planning 
method for unmanned aerial vehicle （UAV） team 
using reinforcement learning. Yang et al.［22］ de‑
signed a short-range UAV air combat decision-mak‑
ing method based on DQN， which improved the de‑
cision-making efficiency and algorithm performance.

It can be seen that although deep reinforcement 
learning has become an effective solution to military 
decision-making problems and being widely used， 
most of the current methods focus on a single type 
of weapon agent. There is still a lack of research on 
joint decision-making of multiple types of weapons， 
such as air-sea joint operations. Even in the few 
joint operation algorithms， most of them are still 
rule-based， which face serious bottlenecks in terms 
of handling timeliness and robustness， and are far 

from meeting the complex confrontation require‑
ments of modern warfare.

Compared with the traditional application， the 
difficulties of joint operation and decision-making 
mainly lie in the complex confrontation characteris‑
tics of non-omniscience， uncertainty， high confron‑
tation and strong game， together with its non-linear‑
ity， randomness， fuzziness and other uncertainty 
characteristics. As well as the multi-domain com‑
plex of opposing forces， complex opposing environ‑
ment， unpredictable situation evolution and many 
other characteristics also make a difference. For ex‑
ample， in the process of joint air-sea operation， the 
sea attack and defense confrontation of aircraft carri‑
er battle group needs to make decisions under thou‑
sands of constraints in a very limited time against 
dozens of combat equipments， hundreds of combat 
sequence groups， such as airman， ship-based air de‑
fense weapons， and jamming equipment. The com‑
bat unit needs to respond to the autonomously gener‑
ated maneuvering instructions and make tactical ac‑
tion selections timely and accurately by sensing the 
environmental state information. Its problem-solving 
dimension far exceeds the general two-person multi-
round game problem.

The main contributions of this work are as fol‑
lowing： First， we propose a general framework for 
joint operations of multi-type equipment with differ‑
ent functions in air-sea confrontation. Second， an 
improved proximal policy optimization（PPO） algo‑
rithm is proposed to mitigate the instability in case 
of large variance of advantage function. Third， aim‑
ing at the variability of rival strategy in the self-learn‑
ing process of policy network， a baseline policy 
model selection method is proposed.

Combining the above points， we construct a 
new intelligent decision-making approach for joint 
operations for air-sea confrontation. The proposed 
new approach is numerically simulated on the simu‑
lation deduction platform. The simulation results 
show that the method can make effective and stable 
air-sea joint operation decisions in the local scale 
conflict scenario of single aircraft carrier combat 
group. The superiority and advancement of the 
method have been fully verified in the 4th Wargam ‑
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ing Competition hosted by Chinese Institute of Com ‑
mand and Control. The method has achieved 97% 
winning rate in more than 100 rounds against rule 
decision algorithms and human decision.

1 Intelligent Decision Method for 
Air‑Sea Joint Operation

The objective of air-sea joint operation deci‑
sion-making is to destroy the rival’s combat equip‑
ment to the maximum extent and minimize our casu‑
alties through our own cooperation in the encounter 
of aircraft carrier battle groups. The forces of both 
sides are limited to a single aircraft carrier and es‑
cort destroyers， carrier-based aircraft， while the red 
and blue forces are completely the same. The es‑
sence of the decision-making problem of the joint 
air-sea operation mission is a complex game be‑
tween the red （our） and blue （enemy） agents. The 
complexity is mainly due to the different action 

space and decision rules of different type forces， as 
well as the uncertainty and agnosticity of the game 
process. For example， the destroyer mainly com ‑
pletes the major attack mission in the assault mis‑
sion， but also cooperates with the air fighters to 
complete the mission of air supremacy and aircraft 
carrier attack. At this time， the destroyer must ad‑
just its role and action in time on the basis of maxi‑
mizing the overall reward.

Faced with the complex types of forces and var‑
ied game environment， this paper constructs a uni‑
fied air-sea joint operation network model by using 
perceptron， deep long-short term memory network 
and actor-critic structure. In the network structure， 
the action space and decision rules of different forces 
can be uniformly represented and flexibly config‑
ured. The joint operation network model is shown 
in Fig.1， which mainly includes three parts： State 
（network input）， action （network output） and net‑
work model structure.

1. 1 Environmental state of joint operation　

The environmental state of joint operation is di‑
vided into four parts： Entity information， map infor‑
mation， player data information， and combat statis‑
tics information， as shown in Fig.2.

（1） Entity information： Entity refers to the air‑
craft carrier， destroyer， aircraft， etc. in the current 
environment. The entity information of each entity 

is represented by a vector. For example， the entity 
information vector of an aircraft includes information 
such as firepower， grade， position， and flight time 
at the current moment. For all the entity information 
at the current moment， the environment will input 
N vectors with lengths of Ki to the neural network 
to represent the specific information of the N enti‑
ties that the agent can see at this moment.

Fig.1　Overall architecture of the air-sea joint operation
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（2） Map information： The map information 
represents the confrontation situation in the current 
state， and the map information is fed into the neural 
network in the form of a matrix.

（3） Player data information： The player’s ID 
and level information （scalar information） in the 
current state.

（4） Game statistics information： The location 
of the view and the start time of the current game 
（scalar information）.

For scalar information， multi-layer perceptron 
（MLP） is used to get the corresponding vector， 
which is an embedding process. For entity informa‑
tion， the transformer architecture［23］ is used as an 
encoder to get its vector. For map information， the 
ResNet architecture is used as the encoder to obtain 
a fixed-length vector.

1. 2 The action information　

The action information includes six parts： Ac‑
tion type， delay， the sequence of execution action， 
the selected unit， the target unit， and whether it is 
repeated. The output action is related back and 
forth.

（1） Action type： The type and attribute of ac‑
tion to be performed at the next moment. Such as 
the destroyer will go forward or turn left， and its 
speed. The action type uses the embedded vector of 
the deep long-short term memory network as an in‑
put， uses the residual multi-layer perceptron to ob‑
tain the output of the Softmax activation function， 
and then passes it to the next sub-model for embed‑

ding.
（2） Delay： How long to wait before receiving 

network input. The delay inputs the result of the 
embedded action type and the result of the deep 
long-short term memory network into the multi-lay‑
er perceptron to output， and passes it to the next 
sub-model for embedding.

（3） The sequence of execution action： Wheth‑
er to perform the action immediately. For example， 
for fighter A， whether to attack directly or stand by 
after reaching the destination. The sequence of exe‑
cution action inputs the delayed result and the em ‑
bedded result together into the multilayer percep‑
tron to obtain the output， which is passed to the 
next sub-model for embedding.

（4） Selected unit： The entity that performs 
the action in the first step. For example， the type of 
action we want to carry out in the first step is to 
control the fighter， so we should choose which 
fighter to control. The selected unit sends the re‑
sults of the sequence， the embedded results， and 
all the results after the entity coding （non-average 
results） together into the pointer network to obtain 
the results and pass them to the next sub-model for 
embedding. The input of the pointer network is a se‑
quence， the output is another sequence， and the el‑
ements of the output sequence come from the input 
sequence.

（5） Target unit： The selected destination or 
attack object. After the aircraft is given an action， 
the target unit is a certain location to go to or the ri‑

Fig.2　Environment state information
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val’s entity to be attacked， etc. The target unit and 
the target area are either selected. For the target 
unit， the attention mechanism is used to get the op‑
timal action to effect it. For the target area， a de‑
convolution residual network is used to deconvolute 
the embedded vector to the size of the map， there‑
by performing the corresponding action of moving 
to a certain target area.

（6） Whether to repeat： If the fighter A needs 
to attack continuously， then you do not need to cal‑
culate the next action through the network， just re‑
peat the previous action.

The action types of aircraft carriers and escort 
destroyers are relatively simple， mainly including 
heading and its speed. The action types of fighters 
are complex. Considering the basic actions of fight‑
ers and the preferences or intentions of decision 
makers， the action types of fighters are to stand‑
still， linear accelerating/decelerating， avoidance， 
active attack， and active defense. The mapping rela‑
tionship between motivations and actions can be ex‑
pressed in Table 1.

1. 3 Network model and training algorithm　

The global architecture and network structure 
is shown in Fig.1， which is composed of three 
parts， as described above. The observation at each 
step are concatenated into a fixed-length vector as 
single step feature， which is composed of scalar 
characteristics，entity information and map informa‑
tion encoded by MLP，pointer network and ResNet 
network structures， respectively. The encoded vec‑
tors for consecutive frames （simulation steps） are 
then processed by a deep LSTM network， which 
maintains memory between steps， and are further 

processed by sequenced MLP networks before 
transformed into action outputs by decoders de‑
scribed in Section B and value estimation by anoth‑
er MLP network.

Besides the network architecture described 
above， the network training algorithm， i.e. the rein‑
forcement learning algorithm， is yet another impor‑
tant element in agent training. Currently， the com‑
monly used reinforcement learning algorithms in‑
clude trust region policy optimization （TRPO）［24］ 
and its approximation algorithms penalty-PPO and 
clip-PPO［25］. To balance between performance and 
simplicity， the clip-PPO algorithm is adopted as the 
baseline and is further improved as clip2-PPO in 
this paper. Taking the complexity of air-sea joint op‑
eration task into consideration， we also uses rule da‑
ta to complete the model initialization and improves 
the model performance through self-learning.
1. 3. 1 Model initialization　

When the training begins， the model is initial‑
ized by using expert rule-based data. The input of 
the model is the collected expert rule-based combat 
data， and the output is the trained neural network. 
The approach is to send the collected expert combat 
data， that is， the decoded game state at each mo‑
ment， into the network to obtain the probability dis‑
tribution of each action， and to calculate the output 
of the model and the Kullback‑Leibler（KL） diver‑
gence of the expert combat data. Then use the KL 
divergence to optimize the network. Different loss 
functions need to be used in KL divergence. For ex‑
ample， the loss of action type， that is， the loss of 
classification problem uses cross entropy； calculat‑
ed mean square errors are used for regression prob‑
lems such as target location. After supervised learn‑
ing， the probability distribution of model output can 
be similar to that of expert’s output.
1. 3. 2 Improved PPO algorithm　

The purpose of reinforcement learning is to 
maximize the expected reward by optimizing the 
policy based on the above initial model. This paper 
uses the improved PPO algorithm and actor-critic 
structure to construct the reinforcement learning 
model. The actor-critic model is used to train the 

Table 1　Mapping relationship between motivation and 
maneuver

Number
1
2
3
4
5
6

Motivation
Standstill

Linear accelerating
Linear decelerating

Avoidance
Active attack

Active defense

Action
Low speed flight
Accelerated flight
Decelerated flight

Steer 90°
Attack rival fighter

Return voyage
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value functionV θ ( st ) and the policy network 
πθ ( |at st )， and the sampled data of experience re‑
play is used to update them alternately. The loss of 
value function is

J c ( θ )= Et [ ( Rγ
t - V θ ( st ) )2 ] (1)

where Rγ
t  is the return of discount factor γ.

For the policy network πθ ( |at st )， if the same 
policy algorithm is used， that is， the learning agent 
is the same as the agent interacting with the environ‑
ment， once the parameter θ is updated to θ ′， the 
previously sampled data is not applicable， and the 
data needs to be resampled to update the parame‑
ters again， which is very inefficient. In order to im ‑
prove efficiency， this paper changes the same policy 
algorithm into a different one， uses another policy 
πθ′， another actor θ ′ to interact with the environment， 
and trains θ with the same batch of sampled data. 
It can use the data sampled by θ ′， perform gradient 
ascent， and update parameters for multiple times.

Based on the above ideas， the policy loss func‑
tion is designed as

J a ( θ )= Et [ min ( rt ( θ ) Aθ ( st,at ),    
clip ( rt ( θ ),1 - ε,1 + ε ) Aθ ( st,at ) ) ] (2)

where importance sampling coefficient rt ( θ )=
πθ ( |at st ) πθ ' ( |at st )， present policy πθ， past policy 
πθ′，clip function clip ( )， defined by

clip ( x,a,b )=
ì
í
î

ïïïï

ïïïï

a x < a
b x > b
x a < x < b

(3)

l ( rt ( θ )， A ) = min ( rt ( θ ) Aθ ( st， at )， and clip
( rt ( θ )，1 - ε，1 + ε ) Aθ ( st，at ) ) are used to present 
the policy loss at time t. Here， A = Aθ ( st，at ) is 
called the advantage function of the state-action pair 
( st，at )， that is， the advantage of an action at rela‑
tive to the average under state st. The advantage 
function helps to reduce variance， improve learning 
efficiency and make learning more stable. When 
A>0， it means that the state-action pair ( st，at ) is 
good. We hope to increase its probability， or vice 
versa. Fig.3（b） and Fig.3（c） show the policy loss 

l ( rt ( θ )，A ) when A>0 and A<0， respectively.
It  can  be seen from  Fig .3（c） that when 

rt ( θ )≫ 1 and A<0， the variance of the policy loss 
J a ( θ ) will be large， which will easily lead to the 
instability of the learning process. Therefore， the 
improved policy loss function is

J a ( θ )= Et [ l͂ ( rt ( θ ),A ) ] (4)
where

l͂ ( rt ( θ ),A )=
ì
í
î

ïï
ïï

min ( rt ( θ ),clip ( rt ( θ ),1 - ε,1 + ε ) ) Aθ ( st,at ) ) Aθ ( st,at ) )≥ 0
clip ( rt ( θ ),clip ( rt ( θ ),1 - ε,1 + ε ),τ ) Aθ ( st,at ) ) Aθ ( st,at ) ) < 0

(5)

τ > 1 + ε is the truncated upper bound. The 
m odif ied  policy  loss when A < 0 is  shown in  

Fig.3（d）. For the convenience of description， the 
original PPO algorithm is called as clip-PPO， the 

Fig.3　Comparison of policy loss
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improved algorithm is called as clip2-PPO. The symbols in Fig.3 are shown below.
ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

c1( rt ( θ ) )= clip ( rt ( θ ),1 - ε,1 + ε )
c2p ( rt ( θ ) )= min ( rt ( θ ),clip ( rt ( θ ),1 - ε,1 + ε ) ) ⋅ A            A > 0
c2n ( rt ( θ ) )= min ( rt ( θ ),clip ( rt ( θ ),1 - ε,1 + ε ) ) ⋅ A            A < 0
c3n ( rt ( θ ) )= clip ( rt ( θ ),clip ( rt ( θ ),1 - ε,1 + ε ),τ ) ) ⋅ A       A < 0

(6)

1. 4 Process of self‑learning

Self-learning is to fight with yourself. The key 
to self-learning is how to select the opponent in the 
training process and to archive the current strategy 
in what circumstance. In this paper， the purpose of 
self-learning is to further improve the performance 
and applicability of the current policy model. To fa‑
cilitate the narrative， the following definitions are in‑
troduced.

Definition 1 If rt ∈ ( 1 - ε，1 + ε )， that is， 
the current learning policy πθ is similar to the crawl‑
ing policy πu， ( st，at ) is called as an ordinary sam ‑
pling， and recorded as I ( st，at )= 0.

Definition 2 If A<0 and rt ∉ ( 1 - ε，1 + ε )， 
( st，at ) is called as an unordinary sampling， and re‑
corded as I ( st，at )= 1.

Definition 3 For a round of training data 
{ ( st，at ) |t = 1，2，⋯，N }， the more unordinary sam ‑
pling is， the more diversiform this sampling round is. 
We use k = 1 N ∑t

I ( st，at ) to present the sampling 
diversity.

In order to effectively improve the performance 
and sample diversity of the policy model， this paper 
proposes a new performance best-n （PB-n） and 
sampling diversity best-n （DB-n） model selection 
method. PB-n refers to the n models with the best 
performance in the historical model， and DB-n the n 
models with the best sampling diversity in the histor‑
ical model.

Current models continually improve their per‑
formance by competing against the above 2n mod‑
els. Compared with the traditional self-learning 
method， the innovation of this paper is that the ad‑
versarial model comprehensively considers the per‑
formance of historical models and the data diversity 
of historical models. The performance of the histori‑
cal model helps to improve the performance of the 
current model， and the data diversity of the histori‑
cal model helps to improve the adaptability and au‑

tonomy of the model. Similarly， if the current policy 
model can defeat the above 2n models， or the sam ‑
pling diversity of the current model is better than 
that of the best-n candidate model， archive the cur‑
rent policy.

2 Numerical Simulation 

In this paper， the simulation samples are gener‑
ated based on the rules of the 4th Wargaming Com ‑
petition hosted by Chinese Institute of Command 
and Control. In order to obtain representative state 
information and training sample set， the red and 
blue combat units are uniformly and randomly gener‑
ated， and the heading angle is randomly initialized 
in the form of normal distribution. According to the 
change of threat situation， the action selection of 
both red and blue is in order to get minimum threat 
index. The threat situation degree of the combat 
unit at each moment involves indicators such as di‑
rection， distance， and speed， which is a mapping of 
reward and punishment signals.

The primary innovation of this paper is the im ‑
provement of policy loss estimation in PPO algo‑
rithm. In order to verify the effectiveness of the pro‑
posed method， Fig.4 shows the comparison of poli‑
cy loss between the traditional PPO algorithm and 
the PPO algorithm in this paper. It can be seen from 
Fig.4 that compared with the traditional clip-PPO al‑
gorithm， the clip2-PPO algorithm in this paper has 
a smoother loss curve and less loss. The main rea‑
son is that the variance of policy loss of clip-PPO in‑
creases when A<0， which leads to inaccurate esti‑

Fig.4　Comparison of policy loss curves
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mation of policy loss expectation. The clip function 
and policy loss of the modified algorithm clip2-PPO 
effectively suppress the negative effect of the advan‑
tage function， and the learned policy network con‑
verges faster and more smoothly.

To verify the effectiveness of the improved 
PPO algorithm furtherly， Fig.5 shows the reward 
value distribution of the training process.

From Fig.5， it can be seen that the cumulative 
and average round reward functions show an upward 
trend as a whole during the training process， and fi‑
nally basically stabilize at a higher cumulative re‑
ward value. The result shows that in the above train‑
ing process， the combat unit decision-making agent 
can successfully achieve the combat target of quick‑
ly entering the mission area and effectively attacking 
the enemy unit. At the same time， from Fig.5（a）， 
it can be seen that the cumulative reward and aver‑
age reward function decreased from 1 500 to 2 000 
rounds. The decrease of this reward is due to the 
loss caused by the agent’s encounter with enemy 
fighters when flying to the mission area， which 
makes some of our fighters unable to enter the mis‑
sion area. In view of this situation， the agent 

learned to avoid enemy fighters in the early stage， 
and bypassed from the side to avoid the above prob‑
lems， but resulting in a decline in the reward func‑
tion. After several rounds of training， the reward 
function rises again. As can be seen from Fig.5， the 
agent chooses to shoot out the air-to-air missiles it 
carries as soon as possible when encountering ene‑
my fighters to protect itself， and the reward is in‑
creased by effectively destroying the enemy aircraft.

For the effect analysis of fighters in air com ‑
bat， this paper mainly focuses on the implementa‑
tion of fighters flying to the mission area and the 
micro-operation avoidance of the enemy’s incom‑
ing guidance weapons during air combat. The re‑
sults of the confrontation process are shown in 
Fig.6， and our side is the red side. In terms of the 
execution of fighters flying to the mission area， the 
octagonal area in the figure corresponds to the coor‑
dinated air combat patrol area. As can be seen from 
the process figure， the fighters successfully flew to 
the patrol mission area， which verified the ability of 
the agent to execute the decision of the task plan‑
ning level.

In terms of micro-operation avoidance of the 
enemy’s incoming weapons， it can be seen from 
the results in Fig.7 that， through the training in 
the confrontation process， when the combat unit 
decision-making agent detects an incoming weap‑
on， it can realize continuous tactical avoidance ac‑
tion and effective avoidance of the incoming 
weapons by actively throwing decoy jamming on 

Fig.5　Decision reward function

Fig.6　Execution of fighter area of responsibility

Fig.7　Incoming weapon micro-operation avoidance situation
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the one hand， and continuously adjusting its own 
course， changing its own speed and height on the 
other hand. Effectively improve the survivability 
of our fighters.

The above results show that， through in-depth 
intensive learning and training， our fighters can go 
to the mission area to execute the combat mission 
designated by the mission planning layer under the 

condition of maximum survival.
This paper also compares two typical rule algo‑

rithms （air-to-air cooperative rule algorithm and 
joint air-defense rule algorithm） with the air-sea 
joint operation agent， and 50 kinds of rule decision 
algorithms are chosen to fight against over 1 000 
games randomly. The combat effect is shown in Ta‑
ble 2 and Fig.8.

From the results of Table 2， it can be seen that 
the air-to-air cooperative rule algorithm effectively 
completes the strike and destruction of enemy fight‑
ers. Only using it can complete the destruction of an 
average of 13.48 of all 16 fighters， which greatly re‑
duces the enemy’s combat capability. However， 
the protection ability of our ship is slightly insuffi‑
cient. It can be seen from the results of Fig.5（b） 
that in 1 000 rounds of confrontation， our destroyer 
has a probability of about 20% being destroyed， 
showing the lack of robustness of the air-to-air coop‑
erative rule algorithm.

Due to the lack of air combat capability （air-to-

air weapons of air-defense fighters are obviously in‑
sufficient compared with air-to-air fighters）， the 
joint air defense rule algorithm has weak air combat 
capability， poor ability to attack the enemy and de‑
fend allied ship （almost all the destroyer is de‑
stroyed）， but with the help of the destroyers， the in‑
coming fighters can still be hit to a certain extent. At 
the same time， it can be seen from the loss of our 
fighters that this rule algorithm effectively preserves 
the combat capability of our air-to-surface fighters， 
but the short board of air combat is obvious and the 
robustness is insufficient.

The performance of reinforcement learning al‑
gorithm in this paper greatly exceeds the first two 

rule algorithms. This is mainly due to the feature 
representation ability of deep learning and the deci‑
sion-making ability of reinforcement learning. The 
proposed algorithm participated in the 4th Wargam ‑
ing Competition hosted by Chinese Institute of Com ‑
mand and Control in December 2020， and main‑
tained a complete victory in more than 100 rounds 
of rule decision algorithm and human confrontation， 
which fully verified the effectiveness and superiority 
of the proposed algorithm in this paper.

Another innovation of this paper is the selec‑
tion of candidate policy model in self-learning pro‑
cess. In order to verify the effectiveness of the pro‑
posed method， the proposed method （PB-n + DB-

n） and the case only using PB-2n or DB-2n are sim ‑
ulated. The PPO algorithm of this method， PB-2n 
and DB-2n is exactly the same， and the difference is 
only the selection strategy of candidate models in 
the self-learning process. Table 2 shows the compar‑
ative performance results of the above methods.

The candidate model of PB-2n is from the 2n 
model with the best performance in testing the his‑
torical model during training， and the candidate 
model of DB-2n is from the 2n model with the best 
sampling diversity during training. The 2n candidate 
models of PB-n + DB-n are n from the best perfor‑
mance model and n from the best sampling diversity 

Table 2　Comparison test results of each decision‑making algorithm (average value)

Algorithm

Loss of fighters
Loss of ships

Units destroyed
Ships destroyed

Scores
Win rate/%

Air‑to‑air cooperative rule 
algorithm

2.60
0.21

13.48
0.00

1 125.29
79

Joint air‑defense 
rule algorithm

3.59
1.02
9.06
0.00

-1 082.67
0

Air‑sea joint operation 
agent
3.30
0.01

15.37
0.96

3 428.58
97

PB‑2n

3.50
0.05

15.12
0.60

2 884.82
90

DB‑2n

3.59
0.12

13.90
0.40

1 421.53
84
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model.
It can be seen from Table 2 that the result ob‑

tained by using only the best performance or only 
the best diversity is inferior to the method in this pa‑
per. This is because the PB-2n selection strategy on‑
ly focuses on the performance of the policy model 
and ignores the diversity of samples during model 
training and vice versa. The method in this paper us‑
es both the best performance strategy and the best 
sampling diversity strategy， and the performance 
and diversity of the model obtained by self-learning 
of the rules are fully considered.

Through simulation， the final winning rate of 
PB-2n self-learning strategy is 90%， the final win‑
ning rate of DB-2n self-learning strategy 8%， and 
the final winning rate of PB-n+DB-n 97%. This 
huge performance difference verifies the importance 
of model selection strategy and the high complemen‑
tarity between performance best strategy and sam ‑
pling diversity best strategy.

3 Conclusions

Aiming at the difficulty of high uncertainty in 
multi-weapon complex combat scenarios of air-sea 
joint operation， this paper proposes a new intelli‑
gent decision-making method for air-sea joint opera‑
tion based on deep reinforcement learning. This pa‑
per innovatively proposes an improved clip2-PPO al‑
gorithm and a new strategy for selecting candidate 
models in the self-learning process. Aiming at the in‑
stability of the policy network learning process and 
the defects of the PPO algorithm， a baseline policy 
model based on model performance and model diver‑
sity is proposed. The strategy selection method 
mainly aims at the variability of the opponent strate‑
gy in the self-learning process of the policy network. 
Through the improvement of PPO algorithm and 
the new strategy of selecting candidate models in 
self-learning process， a policy model with faster con‑
vergence， higher precision and wider adaptability is 
obtained. The proposed new method is numerically 
verified on the simulation deduction platform. In the 
scene of local scale conflict of single aircraft carrier 
combat group， in the 4th Wargaming Competition 

Fig.8　Operation effectiveness evaluation under different 
algorithm configurations
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hosted by Chinese Institute of Command and Con‑
trol， this method has a winning rate of 97% in more 
than 100 rounds of confrontation with rule decision 
algorithm and human， which is about 20% higher 
than that of traditional rule decision algorithm. The 
work of this paper focuses on the scene decision-

making of local scale conflict of single carrier com ‑
bat group， so the follow-up research will focus on 
the intelligent decision-making technology and appli‑
cation in the scenario of increasing the number of 
equipment types and enhancing the heterogeneity of 
combat units.
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基于深度强化学习的空海联合作战智能决策新方法

宋晓程 1， 冯舒婷 1， 李陟 1， 贾政轩 1， 周国进 2， 叶 东 3

（1.北京电子工程总体研究所，北京  100854， 中国； 2.北京华戍防务技术有限公司，北京  100084，中国； 
3.哈尔滨工业大学卫星技术研究所，哈尔滨   150080，中国）

摘要：针对空海联合作战中多装备复杂作战场景不确定性高的难点，提出了一种基于深度强化学习的空海联合

作战智能决策新方法。为了统一表示复杂网络的输入、输出及其对应关系，提出了综合利用感知机、深度长短时

记忆网络及 actor‑critic 结构的方法。针对策略网络学习过程中的不稳定性及近似策略优化算法的缺陷，提出了

改进的近似策略优化算法；针对策略网络自学习过程中对手策略的易变性，提出了基于模型性能和模型多样性

的新策略以对于基线策略模型进行选择。实验结果表明，该方法在空海联合作战决策中是有效和稳定的。在第

四届中国指控学会兵棋推演专项赛中，本方法在百余轮与规则决策算法及人类的对抗中胜率达到 97%，较规则

决策算法提升 20% 左右。

关键词：空海联合作战；深度强化学习；近似策略优化；智能决策
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