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Abstract: The number of harmonics generated by power electronics in power systems is increasing， and the harmonic 
problem is a significant concern. In this paper， we propose an improved coprime sampling （CS） scheme for harmonic 
and interharmonic frequency estimation. The proposed scheme uses sparse sampling to reduce the sampling rate 
significantly and combines it with modern spectral estimation algorithms. Then， the segmented coprime sampling 
（SCS） method replaces the traditional CS， effectively reducing the sampling rate and the hardware system’s 
workload. In addition， the root-multiple signal classification （root-MUSIC） algorithm returns the commonly used  
MUSIC algorithm， which guarantees estimation accuracy and significantly reduces computational complexity. The 
simulation results show that the proposed scheme outperforms the traditional uniform sampling （US） method in 
estimation accuracy.
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0 Introduction 

As energy technologies have been developed 
rapidly in recent years， increasing power electronics 
have been added to the power grid， which leads to 
intermittent harmonics with variable frequencies. 
Thus， a variety of problems arise， such as pollution 
of electrical energy， increased energy losses， re‑
duced power system reliability， and new monitoring 
challenges［1-2］. Therefore， harmonic and interhar‑
monic analysis is significant for monitoring and pro‑
tecting power systems［3］.

Harmonic and interharmonic detection systems 
utilize the Nyquist sampling theorem［4-6］. As the har‑
monic and interharmonic detection process becomes 
increasingly complex［7-8］， the signal is usually sam ‑
pled for tens of fundamental frequency cycles， and 

the detection is poor in real-time［9］. Effective har‑
monic estimation methods have become a hot topic. 
Until now， many new methods have been pro‑
posed， and different researchers have conducted 
studies. Refs.［10-11］ proposed a sub-Nyquist sam ‑
pling technique and improved it to reduce the sam ‑
pling burden. Ref.［12］ proposed an interpolation 
fast Fourier transform （FFT） algorithm based on 
the Hanning window， and Ref.［13］ used the multi‑
ple signal classification （MUSIC） algorithm to esti‑
mate harmonics and interharmonics.

Modern spectrum estimation methods have 
been widely used for fault diagnosis， aerospace， 
and direction of arrival （DOA） estimation［14-16］ due 
to their higher frequency resolution， adaptability， 
and more accurate frequency detection of sinusoidal 
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signals， which can be used to overcome the draw‑
backs present in discrete Fourier transform （DFT） 
algorithms.

For the DOA estimation problem of sparse ar‑
rays， many improved techniques have been pro‑
posed to improve the estimation accuracy and re‑
duce the amount of computation. The proposed 
coprime array［17］， nested array［18］， and minimal re‑
dundancy array［19］ all have large array apertures. 
Among these arrays， the nested array is composed 
of two parts： Continuous array elements and sparse 
array elements with large intervals. If the nested ar‑
ray is used as a sampling configuration， it will lead 
to a relatively high sampling rate and increase the 
hardware burden. The minimal redundancy array is 
used as a sampling configuration to avoid sampling 
at the Nyquist rate， but there is no closed-form ex‑
pression for the sampler. The coprime array is used 
as a sampling configuration that can fully achieve 
sparse sampling， and there are various extensions 
available to improve the array aperture.

Compared with traditional coprime sampling 
methods， the recently proposed segmented coprime 
sampling （SCS） schemes have received increasing 
attention in frequency estimation［20］. Ref.［20］ adopt‑
ed the SCS scheme to estimate the frequency of the 
weak linear frequency modulated signals， which re‑
duced the sampling rate， and the estimation perfor‑
mance was also close to the traditional method.

In this paper， inspired by the sparse array 
DOA estimation techniques［21-22］， we propose a har‑
monic and interharmonic frequency estimation 
scheme based on segmented coprime sampling. 
First， the proposed scheme uses sparse sampling to 
obtain sparsely sampled received data. Second， in 
order to obtain high-resolution estimation results， 
the sample data are analyzed by the root-MUSIC al‑
gorithm. The proposed scheme is applicable to har‑
monic and interharmonic signals in power systems， 
and the sparse sampling process reduces the sam ‑
pling burden， while modern spectral estimation al‑
gorithms can obtain accurate frequency estimates. In 
summary， this paper makes the following contribu‑

tions.
（1） We construct the received data of the har‑

monic and interharmonic signals of the power sys‑
tem， applicable to frequency estimation under 
coprime sampling.

（2） We improve the sampling process of 
coprime sampling［23］ ， and effectively reduce the 
sampling rate by alternating the two sets of sam ‑
plers.

（3） We propose a frequency estimation scheme 
based on segmented coprime sampling， apply mod‑
ern spectrum estimation methods to the harmonic es‑
timation problem of power systems， and use the 
root-MUSIC algorithm instead of the MUSIC algo‑
rithm to reduce the computational complexity of the 
overall scheme.

1 Data Model 

1. 1 Signal model　

The power system frequency signal containing 
noise， harmonic， and interharmonic is expressed as 
follows［24］

f ( t )= ∑
d = 1

D

αd sin ( ωd t + φd )+ e ( t ) (1)

where D is the number of sinusoidal components， 
including fundamental， harmonic and interharmon‑
ic； αd the amplitude of the dth sinusoidal compo‑
nent； ωd the angular frequency of the dth sinusoidal 
component； φd the phase of the dth sine wave com ‑
ponent， which is uniformly distributed in （- π，π） 
statistically independent； and e ( t ) the noise signal. 
Eq.（1） can be transformed into Eq.（2）［9］.

x ( t )= ∑
d = 1

D

αd ej( ωd t + φd ) + u (2)

where u is the uncorrelated complex Gaussian white 
noise with zero mean.

1. 2 Segment coprime sampling　

Fig.1 illustrates the sampler for coprime sam ‑
pling and segmented coprime sampling， both of 
which contain two sets of sub-Nyquist samples. The 
difference is that the two sets of samples for segmen‑
ted coprime sampling are alternated instead of being 
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performed simultaneously， where M and N are 
coprime integers， and T represents the Nyquist sam ‑

pling interval.
According to Ref.［25］， two sets of samplers 

are used to sample the signal to be measured with 
sampling time spacing and， where represents the 
Nyquist sampling frequency. The following exam ‑
ple shows the sampled signals in the l （l≥0） units 
of both sets of samplers.

Fig.2 illustrates segmented coprime sampling 
with two sets of samplers， along with the sampling 
time for the two sets. Two sets of samplers are sam ‑
pled alternately once to get the sample data of one 
unit， as shown in Eqs.（3，4）.

xM [ ( M + N - 1 ) l + n ]=

∑
d = 1

D

αd ej(( 2MN - M - N ) l + Mn ) ωdT + φd ) +

u ( ( 2MN - M - N ) l + Mn )T ) (3)
xN [ ( M + N - 1 ) l + N + m ]=

∑
d = 1

D

αd ej((( 2MN - M - N ) l +( N - 1 ) M + mN ) ωdT + φd ) +

u ( ( 2MN - M - N ) l +( N - 1 ) M + mN )T )
(4)

where m（1 ≤ m ≤ M - 1） and n（0 ≤ n ≤ N - 1） 
are the number of samples in each group of sam ‑
plers.

As explained above， we can use two subsets of 
samples to compose a sampled signal vector， shown 
as

yM ( l )=[ xM ( ( M + N - 1 ) l + 0 ),
xM ( ( M + N - 1 ) l + 1 ),⋯,
xM ( ( M + N - 1 ) l + N - 1 ) ]T (5)

yN ( l )=[ xN ( ( M + N - 1 ) l + N + 1 ),
xN ( ( M + N - 1 ) l + N + 2 ),⋯,
xN ( ( M + N - 1 ) l + N + M - 1 ) ]T (6)

Concatenating the samples of the two subsets， 

the signal vector of the entire sampled signal can be 
expressed as follows

y ( l )=
é

ë

ê
êê
ê
ê
ê ù

û

ú
úú
úyM ( l )

yN ( l )
=

∑
d = 1

D

a ( ωd ) αd ejφd ej( 2MN - M - N ) l + u =

As ( l )+ u (7)
where A=[ a ( ω 1 )，a ( ω 2 )，⋯，a ( ωD ) ] is the fre‑
quency matrix， here a ( ωd ) is a frequency vector 
containing a single frequency information， which is 
denoted as
a ( ωd )=[ 1,ejMωdT,⋯,ej( N - 1 ) MωdT,

ej(( N - 1 ) M + N ) ωdT ),⋯,ej(( N - 1 ) M +( M - 1 ) N ) ωdT ) ]T

and s ( l ) is denoted as
s ( l )=[ A 1 ej(( 2MN - M - N ) lω1T + φ1 )，

A 2 ej ( ( 2MN - M - N ) lω2T + φ2 )，⋯，

A D ej(( 2MN - M - N ) lωDT + φD ) ]T

2 Frequency Estimation 

According to Ref.［26］， the segment coprime 
sampling using MUSIC methods for directly esti‑
mating parameters does not produce any ambigui‑

Fig.1　Coprime sampling and segmented coprime sampling

Fig.2 Sampling time for the two sets (M=4 and N=5)
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ties. Root-MUSIC is a polynomial rooting version 
of the MUSIC algorithm， whose main idea is the 
Pisarenko decomposition. It consists of the follow‑
ing steps.

（1） Calculate the corresponding covariance ma‑
trix， that is

R̂Y = E [ y ( l ) yH ( l )]=

∑
d = 1

D

α2
da ( ωd ) aH ( ωd )+ σ 2

n I=

AR SAH + σ 2
n I (8)

where R S = diag [ p1，p2，⋯，pD ]， pd = α2
d， I is an 

identity matrix，σ 2
n  the noise power， rank ( R̂Y )= S， 

rank ( RS )= D， and rank（·）represents the rank of 
the matrix.

According to Eq.（8）， the noise subspace can 
be obtained by performing eigen-decomposition on 
the obtained covariance matrix， that is

R̂Y = E sΛ sE H
s + E nΛ nE H

n (9)
where Λ s denotes a D×D dimensional diagonal ma‑
trix whose diagonal elements contain the larger D ei‑
genvalues obtained from the eigenvalue decomposi‑
tion， Λ n a diagonal matrix consisting of S-D small‑
er eigenvalues， E s the signal subspace， and E n the 
noise subspace.

（2） Define the polynomial and solve
p k ( z )= uH

k p ( z )    k = D + 1,⋯,M + N - 1 (10)
where u k is the kth eigenvector of the covariance ma‑
trix R̂Y， z the surrogate parameter， and p ( z ) =

[ ]1，zM，⋯，z( )N - 1 M，⋯，z( )N - 1 M +( )M - 1 N .
In order to extract information from all eigen‑

vectors simultaneously， it is necessary to find the ze‑
ros for the denominator pH ( z ) Λ nΛH

n p ( z ) of the 
MUSIC spectral function. Since only the value of z 
on the unit circle is required， pT（z-1） should be sub‑
stituted for pH（z）.

Substituting a polynomial in z for the above 
polynomial， we obtain
F ( z )= z[ ( )N - 1 M + ( )M - 1 N ] pT ( z-1 ) Λ nΛH

n p ( z ) (11)
As z = ejωd， p belongs to the signal subspace， 

F（z）=0， which is the polynomial on the unit circle 
of the roots corresponding to the sinusoidal signal’s 
frequency. The D roots of polynomial F（z） closest 

to the unit circle z1，z2，⋯，zD are found， correspond‑
ing conjugate roots for （z*

1，z*
2，⋯，z*

D）.
（3） Estimate harmonic and interharmonic fre‑

quencies calculated from the follow of polynomial. 
Thus， the frequency of the complex sine signal can 
be calculated as follows

fd = arg ( zd )
2πT

= ωd

2πT
    d = 1,2,⋯,D (12)

where arg （·） is the operation of phase angle.
Finally， we obtain harmonic and interharmonic 

frequency estimation schemes for segmented 
coprime sampling， and the main process can be sum ‑
marized as follows.

Algorithm 1 Frequency estimation via seg‑
mented coprime sampling

Input： The sampled signal vector y（l） in 
Eq.（7） and the number of frequencies D

Covariance matrix：
（1） According to Eq.（8）， calculate the covari‑

ance matrix of the sampled signal R̂Y；

（2） According to Eq.（9）， perform eigenvalue 
decomposition on the covariance matrix， select the 
largest first D eigenvalues to construct the signal 
subspace， and use the remaining eigenvalues to con‑
struct the noise subspace.

Root-MUSIC：

（1） Define Eq.（10）；

（2） Substitute a polynomial in z for Eq.（11）；

（3） Find the D roots of polynomial F（z） c1os‑
est to the unit circle z1， z2， …，zd；

（4） According to Eq.（12）， use the z obtained 
by solving the polynomial to obtain the estimated 
value of the frequency fd. 

Output： Estimated value of the frequency fd.

3 Performance Analysis 

3. 1 Cramér Rao bound

The purpose of this section is to provide the 
Cramér Rao bound （CRB） for segment coprime 
sampling. According to Ref.［25］， the parameter 
vectors of the signal model （Eq.（7）） are defined as 
follows
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r= vec( R̂Y )=

∑
d = 1

D

α2
da* ( ωd ) ⊗ a ( ωd )+ σ 2

n i=

A c p+ σ 2
n i (13)

where ⊗ denotes the Kronecker product，A c =
A* ⊙A，p=[ p1，p2，⋯，pD ]T， i= vec( I )， here 
vec ( • ) is the operation of vectorization and ⊙ de‑
notes the Khatri-Rao product.

η=[ ω 1,⋯,ωD,p1,⋯,pD,σ 2
n ]T (14)

The （i， j）th element of the fisher information 
matrix （FIM） can be shown as follows

FIM i,j = L trace
é

ë

ê
êê
ê
ê
ê ∂R̂Y

∂ηi
R̂-1

Y

∂R̂Y

∂ηj
R̂-1

Y

ù

û

ú
úú
ú (15)

where trace ( • ) refers to the trace of the matrix.
Based on a similar derivation in Ref.［27］， 

FIM  can be given as follows

FIM = L é
ë
êêêê

ù
û
úúúúM H

f M f M H
f M S

M H
S Μ f M H

S M S

(16)

where M f = ( R̂T
Y ⊗ R̂Y )- 1

2 A dR s， M S = 

( R̂T
Y ⊗ R̂T

Y )- 1
2  [ A c，i ] and A d =A *

der ⊙A+A* ⊙A der， 

here A der = é

ë
ê
êê
ê ∂a ( ω 1 )

∂ω 1
，

∂a ( ω 2 )
∂ω 2

，⋯，
∂a ( ωD )

∂ωD

ù

û
úúúú. And 

CRB is obtained as

CRB = 1
L

( M H
f ( I-M S ( M H

S M S )-1M H
S )M f )-1

(17)

3. 2 Complexity analysis　

According to Ref.［28］， for the traditional 
coprime sampling scheme， the complexity of esti‑
mating the covariance matrix is 
O (( M + N - 1) 2

L)， the complexity of making ei‑

genvalue decomposition of it is O ( M + N - 1) 3
， 

the complexity of spectral peak search is O (( M +
N - 1) DP )， here P is the search accuracy. The to‑
tal complexity is O（（M + N -1）2L+（M+N-
1）3+（M +N -1）DP）.

For the proposed segmented coprime sampling 
scheme in this paper， the MUSIC algorithm is re‑
placed by the root-MUSIC， where the complexity 
of finding the root is O (2( M + N - 2) 3) and the 

total complexity is O（（M + N -1）2L+（M+N-
1）3+2（M +N -2）3）. The complexity comparison 

of the two algorithms is shown in Fig.3.

3. 3 Advantages of the proposed scheme

Advantages of the proposed scheme are sum ‑
marized as follows.

（1） The proposed scheme uses a sparse sam ‑
pling method， which has a lower sampling rate than 
traditional uniform sampling.

（2） The proposed scheme uses root-MUSIC 
for analysis， which has lower computational com ‑
plexity than the MUSIC algorithm.

（3） The proposed scheme is applicable to har‑
monic and interharmonic signals in power systems 
and is easy to implement in practice， enabling high 
precision frequency estimation.

4 Simulation Results 

Assume that the received harmonic-containing 
signal is

x ( t )= 0.2cos( 2π × 25.2t )+ cos ( 2π × 49.8t )+
0.5cos( 2π × 151.5t )+ e ( t ) (18)

This signal contains three frequency compo‑
nents： 50 Hz industrial frequency， 25 and 150 Hz 
interharmonics， and e（t） is Gaussian white noise. 
According to Ref.［29］， the signal frequency will 
fluctuate by 1%—2% on the power transmission 
line， and a certain error should be reasonably set.

The proposed scheme is evaluated using the 
root mean square error （RMSE） of the signal fre‑
quency estimation in the simulation. RMSE is 
shown as

RMSEFre = 1
D ∑

d = 1

D 1
K ∑

k = 1

K

( ω̂d,k - ωd )2 (19)

where ω̂d，k is the estimated value of ωd in the kth 

Fig.3　Complexity comparison
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Monte Carlo simulation， K the total number of sim ‑
ulations， and we take K=200 in the following simu‑
lation.

4. 1 Frequency estimation results　

According to Ref.［29］， it is reasonable to as‑
sume that the main components in the harmonic-con‑
taining signal include the fundamental wave， the 
third harmonic and the inter-harmonic less than the 
power frequency to determine D=3 in Eq.（8）.

Fig.4 illustrates the estimation results of the 
frequency principal components under different con‑
ditions. In Fig.4， we set L to 300， and SNR is uni‑
formly increased from 5 dB to 30 dB. In Fig.5， we 
set SNR to 20 dB， and L increases evenly from 100  
to 1 000. It can be seen from the simulation results 
that the proposed method can effectively estimate 
the main frequency components in the signal.

4. 2 Performance of stability　

In order to verify the stability of the proposed 
scheme， we set a set of signals with frequency fluc‑
tuations， and the frequencies to be measured， f1 =

25 Hz，f2 = 50 Hz，f3 = 150 Hz， all have 1%—2% 
fluctuations.

Fig.6 illustrates the line graph of RMSE with 
the number of experiments of the proposed scheme. 
We set M=4， N=5， L=300， SNR=20 dB， and 
the algorithm is simulated over 100 times. Despite 
low SNR， the scheme can still estimate frequency 
parameters effectively. Considering the fluctuation 
of the signal， under different number of experi‑
ments， RMSE tends to be stable， indicating that 
the scheme has good stability.

4. 3 Performance of different sampling schemes

Fig. 7 illustrates the RMSE performance of the 
proposed scheme， the uniform sampling method［10］， 
the nested sampling method［30］ and the coprime sam ‑
pling method［21］ at different SNR. In the simulation， 
we set L=300， and SNR increases uniformly from 
5 dB to 30 dB. In order to allow a fair comparison， 
the number of samples per unit of uniform sampling 
is M+N-1=8.

Fig.4　Frequency estimation with different SNR

Fig.5　Frequency estimation with different L

Fig.6　RMSE performance with different experiment 
numbers

Fig.7　RMSE performance versus SNR with L=300
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Fig.8 shows the RMSE performance of the pro‑
posed scheme， the uniform sampling method［10］， 
the nested sampling method［30］ and the coprime sam ‑
pling method［21］ with different L. Based on the simu‑
lation， SNR is set to 20 dB and L is increased uni‑
formly from 100 to 1 000.

As shown in Figs.7，8， RMSE of the proposed 
scheme is significantly lower than those of coprime 
sampling， uniform sampling， and nested sampling. 
Nested sampling can also reduce the sampling rate. 
However， nested sampling creates a continuous 
sampling structure that is ineffective in reducing the 
sampling rate.

5 Conclusions 

We propose a scheme for estimating interhar‑
monic frequencies by sparse sampling and spatial 
spectrum estimation algorithms. The sampling rate 
is reduced using sparse sampling， and then super-

resolution estimation is performed using root-MU‑
SIC. In addition， our proposed scheme does not im ‑
pose an additional sampling burden on the sampler. 
The proposed scheme is applicable to harmonic and 
interharmonic signals in power systems， and the 
sparse sampling process reduces the sampling bur‑
den， while modern spectral estimation algorithms 
can obtain accurate frequency estimates.
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基于分段互质采样的谐波和间谐波频率估计方法

岳 衡 1，2， 张小飞 1，2

（1.南京航空航天大学天地一体频谱认知智能实验室,南京  211106, 中国； 
2.南京航空航天大学电子信息工程学院, 南京  211106, 中国）

摘要：电力系统中电力电子产生的谐波数量不断增加，谐波问题是一个重要的问题。本文提出了一种改进的互

质采样（Coprime sampling， CS）方案，用于谐波和间谐波频率估计。所提方案使用稀疏采样来降低采样率，并将

其与现代频谱估计算法相结合。特别是，使用分段互质采样（Segmented coprime sampling， SCS）方法，然后使用

求根多重信号分类（Root‑multiple signal classification， root‑MUSIC）算法代替常用的 MUSIC 算法可以减少计算

工作量并获得准确的频率估计。仿真结果表明，该方法在估计精度上优于传统的均匀采样（Uniform sampling， 
US）方法。

关键词：互质采样；间谐波；root‑MUSIC 算法；频率估计
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