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Abstract: When robotic systems are used to perform the in-situ machining of the large spacecraft cabin， there is a dual-
objective optimization issue concerning the numbers of cabin’s rotation and the overall machining performance of 
robots. An optimization method of cabins rotation scheme is proposed based on the robots’ stiffness characteristic and 
the non-dominated sorting genetic algorithm （NSGA）-Ⅱ . First， a quality evaluation index for all machining features 
is proposed based on the Cartesian stiffness of robots， and the process of machining is analyzed and modeled. Second， 
to utilize the NSGA-Ⅱ， a double chromosome coding method is proposed to encode the machining process， 
corresponding crossover and mutation operator is also designed. Third， to solve the frequent appearing of illegal 
codes， a repair operator that ensures the population’s evolutionary efficiency is specially designed based on the 
problem structure. Finally， the result of a case study shows that increasing the number of rotation postures to a certain 
extent can effectively improve the robots’ machining performance， and achieve a comprehensive optimization of the 
mission’s time efficiency and machining quality.
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0 Introduction 

Large structures like aircraft fuselage or space‑
craft cabin are commonly seen in the field of aero‑
space. The machining of these high-value， large-di‑
mension products with complex structures directly 
affect the productivity and cost of the overall manu‑
facturing process. In a conventional workshop， prod‑
ucts are transported toward large dedicated machine 
tools by crane or transporter systems to complete 
the machining. However， due to the dimension and 
weight of the large structures， the transportation 
could be time-consuming and dangerous. For this 
reason， in-situ machining which keeps the product 
installed on one clamp system and moves the in-situ 
machine tools toward the product， can offer obvious 
advantages in large structure machining［1］. An ideal 

in-situ machine tool shall be light-weight， flexible 
and compact for easy deployment in the workshop. 
Recently developed robotic machining systems have 
these exact qualities［2-3］. These are high-accuracy in‑
dustrial robots equipped with mobile platforms and 
visual servo or secondary feedback systems［4］ that 
can move and operate freely on the shop floor， thus  
they are more capable of handling various large 
structures than large dedicated machine tools［5-6］.

This paper considers the manufacturing mis‑
sion of a large spacecraft cabin where the discrete 
machining tasks are handled by multiple robots. Due 
to the structural characteristic of the cabin， several 
rotations are required during the machining process. 
Since the scheme of rotation has an influence to the 
overall performance of the system， the optimal 
scheme has to be specified for the mission.
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The Cartesian stiffness of an industrial robot is 
significantly lower than typical computer numerical 
control （CNC） machines［7］， which causes the major 
obstacle of robotic machining： The unsatisfactory 
machining quality. Extensive studies have been 
done on the stiffness characteristics of industrial ro‑
bots［8-9］， and it has been made clear that the Carte‑
sian stiffness of a robot is highly correlated with its 
configuration［10‑11］. Therefore， prior to investing in 
new robots with high structural stiffness［12］， optimiz‑
ing the robot configuration for machining should be 
first considered in the task planning of a robotic ma‑
chining system.

The inherent redundant degree of freedom 
（DOF） of industrial robots in five-axis machining， 
as well as the extra DOF provided by the mobile 
platforms， is essential to the optimization of robot 
configuration. Bu et al. studied the stiffness optimi‑
zation of a robotic drilling system that was used in 
aircraft wing structure assembly［13‑14］， where the re‑
dundant DOF with respect to the tool axis was uti‑
lized for configuration optimization， and the experi‑
mental results showed significant quality improve‑
ments. Guo et al. verified the correlation between 
the proposed stiffness index and the translational dis‑
placement of end-effector caused by external forc‑
es［15］. The rivet hole quality was then improved 
through the configuration optimization of a robotic 
drilling system. Jiao et al. utilized the external axis 
of a robotic drilling system to optimize the tool axial 
stiffness at drilling process， and improved the hole 
roundness and consistency［16］. Aiming at the stiff‑
ness optimization of robotic milling， Xiong et al. 
proposed a configuration optimization method that 
converted the CNC tool path into the robot trajecto‑
ry［17］. The redundant DOF was utilized by a configu‑
ration optimization model. For tasks or products 
more complex than single point processing （e. g.， 
drilling）， some performance indices that are more 
comprehensive than axial stiffness are needed［18‑19］. 
Fan et al. proposed the mean stiffness performance 
index （MSPI） for the robotic grinding mission of a 
large turbine blade［19］， where MSPI provided a com ‑
prehensive performance evaluation to a large grind‑
ing region， and the robot base position as well as 
the configuration were optimized according to MSPI.

In in-situ machining， a multi-robot team is fa‑
vored for its advantage in production efficiency. 
Some widely used multi-robot work cells would con‑
sider the position optimization of workpieces， since 
it strongly affects the feasibility and performance of 
the operation. Mutti et al. proposed an algorithm for 
this purpose［20］， where the operation feasibility， in‑
cluding kinematic feasibility （e. g.， joint limit） and 
collision avoidance， were considered and optimized. 
There are similar studies that aim to improve opera‑
tion feasibility or productivity of multi-robot work 
cells， but the robot base positions are optimized in‑
stead of the position of workpiece［21‑22］. However， 
seldom do multi-robot work cells perform machin‑
ing tasks. These studies of position optimization do 
not take the stiffness or machining performance into 
consideration. Moreover， the stiffness evaluation of 
a team of robots handling complex machining tasks 
lacks discussion in previous studies.

The existing studies on stiffness/configuration 
optimization focus on the application scenario of a 
single robot performing one specific task， rather 
than a team of robots performing a group of tasks. 
Moreover， the stiffness index is often the single ob‑
jective considered， or only combined with kinematic 
performance［16‑19］. However， optimizing the machin‑
ing performance may affect other performances that 
the manufacturers want to improve， e. g.， the pro‑
duction efficiency. In such case， it may be inappro‑
priate to take only robot performance into consider‑
ation.

This paper studies the machining solution opti‑
mization of a large spacecraft cabin， where the rota‑
tion of the cylindrical cabin （controlled by the posi‑
tioner） provides a mean to optimize the robot config‑
uration and the stiffness in machining. However， 
the rotation is expected to be as less as possible， so 
that the overall time cost can be reduced and main‑
tain productivity. We therefore define the problem 
as a dual-objective optimization problem， and de‑
sign an algorithm based on the non-dominated sort‑
ing genectic algorithm （NSGA）-Ⅱ to provide Pare‑
to-optimal solutions［23‑24］. A quality evaluation index 
of the whole cabin is proposed to guide the algo‑
rithm’s optimization process.

240



No. 3 LIU Shaorui, et al. Rotation Posture Optimization of Large Spacecraft Cabin During Robotic…

The rest of the paper is organized as follows： 
Section 1 introduces the real-world motivation of 
the study. Section 2 describes the dual-objective op‑
timization problem in detail and proposes a quality 
evaluation index of the whole cabin. Section 3 intro‑
duces the stiffness index calculation of the robot. 
Section 4 designs the algorithm. Section 5 conducts 
a case study of the machining solution optimization 
of a cabin and discusses the results. Section 6 con‑
cludes the study and discusses the object of future re‑
search.

1 Real⁃World Motivation 

The machining task of the large spacecraft cab‑
in’s surface features is performed by high-precision 
robotic systems in the way of in-situ machining. As 
shown in Fig.1， the main part of the cabin is a cylin‑
drical， thin-walled structure which is composed of 
several cylindrical segments， and there are many 
small supports distributed on its surface. These sup‑
ports are used as mounting points for the exterior 
equipment （i. e.， sensors， radar antenna， and space 
manipulator）. On top of the supports are the mount‑
ing surfaces that require the robots to process. Since 
the equipment have various shapes and are mounted 
in different ways， the supports are distributed non-

uniformly and have mounting surfaces facing in vari‑
ous directions. All the mounting surfaces have a cer‑
tain machining allowance left， so that the errors 
caused by deformation and assembly can be eliminat‑
ed by in-situ measuring and machining， and eventu‑
ally ensure the performance and precision of the cab‑
in’s exterior equipment.

The cabin is positioned horizontally， and each 
cylindrical segment is handled by one or two robots 
（on one side or both sides of the cabin）. Due to the 
limitation of robot workspace， several rotations， 
i. e.， repositioning will be needed to complete the 
whole cabin. The number and angle of rotations， 
which is the rotation scheme （RS）， will directly 
change the position and posture of a support that ap‑
pears in the robot’s workspace， and therefore influ‑
ence the robot’s configuration as well as its stiffness 
in machining， and eventually influence the quality of 
the machining. In theory， increasing the number of 
rotations helps to improve the machining stiffness of 
more mounting surfaces. Yet， this will introduce 
more interruptions and more recalibration workload 
to the whole process， resulting in lower productivity 
and higher production cost. Based on the above rea‑
sons， the requirement of the RS optimization can be 
expressed as： Maximizing the machining quality of 
the cabin while reducing the number of rotations 
needed； or specifying the minimum number of rota‑
tions needed for a given quality index.

In Fig.1， the position optimization of robotic 
systems is not considered due to the following rea‑
sons： The robots all use relatively wide chasses to 
ensure stability， consequently. There is little room 
left on the shop floor for adjusting positions， hence 
the factor of robot position has less influence on the 
problem. Therefore， we treat them as fixed units. 
Moreover， the thin-walled cabin has tooling sys‑
tems both inside and at the bottom， therefore it has 
negligible gravity deformation during the rotation 
and repositioning.

2 Robot Stiffness Index 

A robot stiffness index is proposed as a mean 
of machining performance evaluation. Salisbury et 
al. proposed the widely used static stiffness model［25］

K ( θ ) = J ( θ ) -T
Kθ J ( θ ) -1 (1)

where K is the Cartesian stiffness matrix； θ = ［θ1， 
θ2， θ3， θ4， θ5， θ6］T the robot configuration； J（θ） 
the Jacobian matrix； Kθ = diag（k1， k2， k3， k4， k5， 
k6） the joint stiffness matrix. In this model， and the 
Cartesian stiffness is only concerned with joint stiff‑
ness and robot configuration. K（θ） consists of four 
sub-matrices

Fig.1　A scenario of large spacecraft cabin in-situ machining 
by robotic systems
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where Kfd and Kfδ are the force-translation and force-

rotation matrices； Kmd and Kmδ the torque-transla‑
tion and torque-rotation matrices. Previous studies 
have demonstrated that the linear displacement of 
the end-effector （EE） caused by cutting force is the 
main influencing factor of the machining quali‑
ty［20-21］， while the torque has negligible influence. 
Therefore， the displacement model of EE can be 
simplified as

f= K fd( θ ) d (3)
where f = ［fx， fy， fz］ is the force applied on EE； 
and d = ［dx， dy， dz］ the linear displacement of EE. 
The unit of f， d and Kfd （θ） are N， mm and N/
mm， respectively. Considering a unit force fu， there 
is

 fu

2
= f T

u fu = d T
u K T

fd ( θ ) K fd( θ ) d u = 1 (4)
where du is the displacement of EE when fu is ap‑
plied.

Eq.（4） defines the stiffness ellipsoid which 
changes in shape and volume with the robot configu‑
ration θ. The length of the ellipsoid’s semi-axis in 
the direction of which cutting force is applied re‑
flects the robot stiffness in the machining， where 
the stiffness along the tool feed force and radial 
force directions affects the trajectory accuracy， and 
the stiffness along the tool axial force direction af‑
fects the quality of the machined surface.

Typically， when setting the tool frame of EE， 
one axis of the frame shall coincide with the tool ax‑
is， while the tool feed direction coincides with （or 
opposite to） another axis of the frame， as shown in 
Fig. 2. Consequently， the tool axial force， the feed 
force and the radial force act in the directions collin‑
ear with the three tool frame axes. The length of the 
three semi-axes along the tool frame’s x， y， z direc‑

tions are denoted as λtx， λty， and λtz， respectively. 
These values are the square of the stiffness index， 
thus the robot stiffness index in machining can be de‑
fined as

k = λtx λty λtz
6 (5)

The dimension of k is N/mm. k is concerned 
with θ， while θ is determined by the machining 
task， that is， the support to the machine， where the 
robot is positioned， and what rotation angle the cab‑
in currently stops at. Thus in a given machining so‑
lution where θ is determined for each machining 
task， the stiffness index k of any task is a deter‑
mined value. It is then used as a machining quality 
evaluation for the corresponding task.

3 Problem Formulation 

Let T = ｛t1， t2， …， tn｝ denote the n mounting 
surfaces that need to be machined， which are the 
tasks. The number of rotation m， the angles at 
which the cabin positioned after each rotation， R = 
［r1， r2， … ， rm］， and the tasks to be machined at 
each angle， A = ｛A1， A2， …， Am｝， form the ma‑
chining solution of the cabin. A feasible solution is 
defined as s = <R， A>. Then there are constraints

ì

í

î

ï
ïï
ï
ï
ï

ï

ï
ïï
ï

ï

C1:A i ⊂ T rch( )ri i = 1,2,⋯,m

C2:A i ≠ ∅ i = 1,2,⋯,m

C3:A i ∩ A j = ∅ i ≠ j

C4:∪i = 1
m A i = T

(6)

where C1 means the tasks to be machined at each 
angle have to be within the robots’ workspace： 
T rch( ri ) are the task set located within robot work‑
space when the cabin is positioned at angle ri； C2 
means there are no redundant rotations （no tasks as‑
signed）； C3 and C4 mean any task shall be pro‑
cessed at one and only one angle. To ease modeling 
and calculation， the rotation angle will be dis‑
cretized in a small step θstep （i. e. θstep = 10°）， and 
ri = θstep·q （i = 1， 2， …， m； q is a integer）.

When processing at different angles， the posi‑
tion and posture of a support and its mounting sur‑
face will be significantly different， and the robot will 
have to reach it in a different way， thus lead to very 
different robot configurations and stiffness indices. 
Generally， each surface can only achieve high pro‑Fig.2　Stiffness ellipsoid and its semi-axes
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cessing stiffness at very limited angles， to improve 
the machining quality of the whole cabin， more rota‑
tions will be needed. However， in practice， we 
hope the rotation number m to be a value as small as 
possible， so the first objective function f1 is given as

min f1 = m (7)
In a given solution ṡ， the configuration as well 

as the stiffness index of the robot who processes 
task tj （tj∈T） totally depends on ṡ， therefore we de‑
note the machining stiffness of tj as kj（ṡ）. Since the 
machining quality is directly correlated to the stiff‑
ness， kj（ṡ） can be used as the quality evaluation in‑
dex of tj. On this basis， the quality evaluation of the 
whole cabin should be a function of the machining 
stiffness of all tasks. K（ṡ） = ｛k1（ṡ）， k2（ṡ）， … ， 
kn（ṡ）｝ can be denoted as F（K（ṡ））. The objective 
function of the whole cabin’s machining quality f2 is 
given as

max f2 = F (K ( ṡ ) ) (8)
It is obvious that f1 and f2 are two conflicting 

goals： A solution s shall not likely achieve optimum 
quality goals with minimum number of rotation an‑
gles， and only Pareto optimal solutions will exist for 
the problem.

As mentioned above， the stiffness index is 
used to evaluate the robot performance in a certain 
machining task. For a given machining solution ṡ to 
the cabin with n supports， there will be n stiffness 
indices （K ( ṡ ) = ｛k1（ṡ）， k2（ṡ）， …， kn（ṡ）｝）. It is 
essential to provide a stiffness-based global perfor‑
mance evaluation index for solution ṡ， which is the 
F (K ( ṡ ) ).

The global index should properly reflect the n 
values in K ( ṡ ). The mean value of K ( ṡ )， denoted 
by k̄ ( ṡ )， might be a choice of the global index. How‑
ever， given the fact that undesirable results are 
more likely to occur to tasks with lower stiffness val‑
ues， evaluating the global performance of ṡ should 
primarily focus on the lower values in K ( ṡ )， yet 
k̄ ( ṡ ) could easily cover up the lower values.

To provide a more reasonable global perfor‑
mance index than k̄ ( ṡ )， we propose two principles 
for designing the index：

（1） The increase of any k in K ( ṡ ) should let 

the global index F (K ( ṡ ) ) increase.
（2） F (K ( ṡ ) ) should be more sensitive to the 

changes of the lower values in K ( ṡ ) than the higher 
values， which means improving a lower stiffness 
value should contribute more to F (K ( ṡ ) ) than im‑
proving a value that is already high.

Here it is defined that the median value of 
K ( ṡ ) is the dividing line between the lower and the 
higher values in K ( ṡ ). To fulfill the two principles， 
a weighted mean stiffness index （WMSI） is pro‑
posed as F (K ( ṡ ) ). The median， the upper and the 
lower quartiles of K ( ṡ ) are denoted as kmed， kQ3， and 
kQ1， respectively， and then K ( ṡ ) is divided into four 
subsets

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

K h1 = { kx | kx ∈ K ( )ṡ    kmed < kx ≤ kQ3 }
K h2 = { kx | kx ∈ K ( )ṡ    kx > kQ3 }
K l1 = { kx | kx ∈ K ( )ṡ    kQ1 < kx ≤ kmed }
K l2 = { kx | kx ∈ K ( )ṡ    kx ≤ kQ1 }

A boxplot is used to demonstrate the division 
in Fig.3. Both the higher and lower values are divid‑
ed into two levels， which are K h2， K h1 and K l1， K l2. 
Different weighting factors shall be applied to the 
four subsets when calculating WMSI， so that WM ‑
SI will have different sensitivity to the values in dif‑
ferent subsets.

The global performance index， i. e. WMSI， is 
defined in Eq.（9）， where h2， h1， l1， l2 are the 
weighting factors of K h2， K h1， K l1， and K l2， and 
there are l2 > l1 > 1 > h1 > h2 > 0， and h1 + 
l1 = h2 + l2 = 2. Since K l2 and K l1 have more 
weights than K h2 and K h1， WMSI will be more sensi‑

Fig.3　Four subsets of K ( ṡ )
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tive to the values in K l2 and K l1. And when there are 
K ( ṡ ) and K ( s̈ ) that have equal mean values 
（k̄ ( ṡ ) = k̄ ( s̈ )） ， if ∑K l2( )ṡ > ∑K l2( )s̈  and 

∑K l1( )ṡ > ∑K l1( )s̈ ， then there must be 
F (K ( ṡ ) )>F (K ( s̈ ) ). This means that solution ṡ 
outperforms s̈， because the lower part of K ( )ṡ  is 
overall higher than the lower part of K ( )s̈ .
WMSI = F (K ( ṡ ) )=

[ ]h2∑K h2 + h1∑K h1 + l1∑K l1 + l2∑K l2  n

(9)

4 Algorithm Design 

The NSGA- Ⅱ algorithm is used to solve the 
dual-objective optimization problem proposed in 
Section 2. The main idea of genetic algorithm （in‑
cluding NSGA-Ⅱ） is to find near-optimal solutions 
by repeated propagation and selection of a given 
population， in which each individual is an encoded 
solution. A double chromosome encoding method is 
first proposed in Section 4.1， then its crossover， re‑
pair and mutation operators for propagation are de‑
signed in Section 4.2. The main loop of the algo‑
rithm is introduced in Section 4.3.

4. 1 Double chromosome coding method　

Encoding the solutions in an effective way is 
the precondition of using genetic algorithms. Ac‑
cording to the definition of feasible machining solu‑
tions （s = <R， A>）， we propose a double chromo‑
some method to encode any instance of s. The first 
chromosome encodes the rotation scheme of the cab‑
in， which is the R in s. The second chromosome en‑
codes the allocation of the tasks， which is the A in s：

（1） VR is a vector of length m_UB， the ith ele‑
ment is the rotation angle ri. m_UB is the maximum 
number of rotations allowed， when m < m_UB （the 
number of rotations）. The empty slots in VR are 
filled with Null.

（2） VA is a vector of length n （the number of 
tasks）， the jth element r（j） is the rotation angle that 
task tj is assigned to.

VR is referred to as the first chromosome， and 
VA as the second chromosome. Solution s can then 
be expressed by the chromosomes as <VR， VA>
（Fig.4）.

As we propose the encoding method， it is al‑
so necessary to clarify the legality of given codes， 
i.e. whether <VR， VA> describes a feasible solu‑
tion that satisfies all constraints. The constrains 
C1—C4 in Eq.（1） are rewritten in the encoded 
form as

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

C′1: ∪
r ∈VR

T rch( )r = T                               

C′2:∀r ( )i ∈VA     r ( )i ∈VR ∧ ti ∈ T rch ( )r ( )i

C ′3:∀r ∈VR        r ∈VA                                  

(10)

where C′1 means the rotation scheme proposed by 
VR allows the robots to reach all tasks； C′2 means 
any rotation angle the tasks assign to exist in the ro‑
tation scheme VR， and the corresponding task can 
be processed under that angle； C′3 means any rota‑
tion angle in VR that has been assigned tasks （exist 
in VA）， which means there are no redundant rota‑
tions exist in the scheme.

The legality constraints in Eq.（10） are in effect 
throughout the operations concerning with codes， in‑
cluding the creation of initial population， the cross‑
over of parents， and the mutation of new codes， 
and we refer to the codes that do not satisfy the con‑
straints as illegal codes.

4. 2 Operators design for propagation　

4. 2. 1 Crossover operator　

Crossover is the way to combine the genetic in‑
formation of two parents. We use bi-tournament se‑
lections to select competitive parents sp1 and sp2 from 
the population， and then perform multi-point cross‑
over to their second chromosome， V p1

A  and V p2
A ， as 

shown Fig.5. The chromosomes produced by the 
crossover are denoted as V c1

A  and V c2
A . If the off‑

spring inherit the first chromosome directly from 
their parents， the codes of the offspring are sc1 = 
< V p1

R ，V c1
A > and sc2 = < V p2

R ，V c2
A >.

Due to the randomness of multi-point cross‑

Fig.4　Double chromosome coding of solution s
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over， < V p1
R ，V c1

A > or < V p2
R ，V c2

A > could possi‑
bly become an illegal code. Since the first chromo‑
some comes directly from a parent， it always satis‑
fies constraint C′1； however， the second chromo‑
some produced by the crossover may not satisfy 
C′2， which means there are tasks assigned to the ro‑
tation angles that do not exist in the first chromo‑
some. Define the illegal angles in V c1

A  （that do not 
exist in V p1

R） is defined as
R c1

illegal ={r ( )i |r ( )i ∈V c1
A ,r ( )i ∉V p1

R } (11)
Due to the complexity of the problem and the 

randomness of crossover， there is a high probability 
of the occurrence of illegal codes. If the illegal codes 
are abandoned directly， the efficiency of the propa‑
gation process will be reduced. But more important‑
ly， the offspring will mostly come from the cross‑
over of similar parents， and this will obviously af‑
fect the performance of the algorithm. Therefore， 
we design the repair operator that fixes the illegal 
code while preserving the genetic information of its 
two parents as much as possible.
4. 2. 2 Repair operator　

The repair operator is used to fix every illegal 
code derived from random crossover. Since the ge‑
netic information sc1 acquired from its parent sp2 all lo‑
cated in the second chromosome V c1

A ， the repair op‑
erator should place as much illegal angles in R c1

illegal in‑
to the first chromosome V p1

R  of sc1， so that the infor‑
mation of sp2 can be preserved in sc1. Any illegal an‑
gles may not be placed into the Null slots of V p1

R ， 
because this will increase the number of rotations 
m， and cause that the repaired code always has a 
larger m value than the parents. Therefore， the ille‑
gal angles shall be placed into V p1

R  by replacing the 
existing angles in V p1

R . For r ( )x ∈ R c1
illegal， the placing 

by replacing process is as follows：

（1） Traverse through the existing angles in 
V p1

R  to find every candidate one that can be replaced 
by r（x） without violating C′1.

（2） Randomly chose a candidate angle and re‑
place it with r（x） with a given probability ρrpl， if any 
candidate exist.

（3） If r（x） successfully replaces the existing an‑
gle rj， V p1

R  turns into V͂ p1
R ， and the tasks assigned to 

rj have to be reassigned.
（4） If r（x） fails to replace any existing angle， 

the tasks assigned to it have to be reassigned to the 
existing angles.

The repair process is shown in Fig.6， where 
r（2） is an illegal angle in offspring sc1， and the repair 
operator uses it to replace the existing angle r2； task 
tj is once assigned to r2 （before the replacement， 
r（j） = r2）. After the replacement， it is reassigned to 
a new angle， and it has to be noted that the new an‑
gle does not necessarily be r（2）.

According to steps （1—4）， there will be tasks 
in V c1

A  that need to be reassigned whether or not the 
replacement occurs： If the replacement occurs， the 
tasks once assigned to the original angle which has 
been replaced have to be reassigned； if not， the 
tasks that try to use the illegal angle have to be reas‑
signed to existing angles. Here， the reassignment al‑
ways selects the angle in V͂ p1

R  that achieves the high‑
est stiffness index for the tasks. After the repair， 
V͂ p1

R  becomes a feasible first chromosome for sc1， de‑
noted as V c1

R . Moreover， if any angle in V c1
R  be‑

comes redundant， it has to be deleted from V c1
R .

4. 2. 3 Mutation operator　

After crossover and repair， the mutation opera‑
tor ensure that every offspring has a probability of 
ρmtt to mutate. Once the mutation occurs， every ele‑
ment in the first chromosome mutates with a proba‑
bility of ρms. If ri ∈VR mutates， the mutation is per‑
formed by randomly changing the angle of ri within 

Fig.5　Multi-point crossover of the second chromosome

Fig.6　A demonstration of the repair operator
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a limited range
r͂ i = ri + θ step ∗rand i( - smax,smax ) (12)

where smax is the maximum step limit of ri mutation 
（smax is an integer）； function randi（x， y） returns a 
random integer from range ［x， y］. Eq.（12） means 
that a mutated rotation angle will move forward or 
backward randomly and a mutation result is feasible 
if it does not repeat with other angles， and VR still 
satisfies C′1. If no feasible mutation is found within 
limited attempts， the algorithm will abandon the 
mutation of ri. Reassignment of tasks will be needed 
if any rotation angle mutates.

The mutation of the second chromosome VA is 
similar to VRt： Every task has a probability of ρms to 
reselect the rotation angle of processing， i. e. every 
element r（i） in VA has a probability to change into an‑
other angle in VR.

4. 3 Initializing population and the main loop　

The individuals （i.e. codes） with the same val‑
ue of m are defined as the same type， then there are 
m_UB-mmin+1 types of individuals exist in the prob‑
lem （mmin is the minimum number of rotations need‑
ed for a feasible solution）. When the population is 
initialized for the evolution， each type of individuals 
shall be included and has a same ratio in the popula‑
tion.

When the population propagates， the entire 
process， including bi-tournament selection， cross‑
over， repair， and mutation is roughly the same as in 
classic NSGA-Ⅱ， but with two modifications：

（1） Identical offspring shall not exist in the 
population. After each round of propagation， the re‑
peated individuals will be deleted.

（2） When the new population is constructed， 
the individuals with a crowding distance of 0 is re‑
moved from every non-dominant layer that is includ‑
ed in the new population， rather than only the last 
layer included.

These measures are used to prevent the contin‑
uous multiplification of identical codes in the popula‑
tion， and maintain the population’s ability of finding 
new solutions. Finally， the algorithm stops after a 
pre-set number of evolutions and outputs the Pareto-

optimal solutions as the final solution. The overall 
process is illustrated in Fig.7.

5 Experiments and Discussion 

5. 1 Machining experiment　

A machining experiment is conducted on a test 
piece of the cabin to verify the correlation between 
the robot stiffness index k and the machining quality. 
Since k is concerned with the robot configuration θ， 
several machining processes are carried out using 
different configurations， and the machining quality 
is inspected and compared. Due to the limitation of 
experimental conditions， the test piece cannot be ro‑
tated like a real cabin. However， the robot can be re‑
positioned using its mobile platform. Therefore， the 
change of θ is achieved by shifting the robot be‑
tween several base positions.

The layout of the experimental platform is 
shown in Fig.8. A KR210 industrial robot equipped 
with milling EE handles the machining of a support， 
which is mounted on the test piece. An accelerome‑
ter is attached to the bottom of EE to record the vi‑
bration. A total of seven base positions are used in 
the experiment， denoted as w1—w7， where w4 di‑
rectly faces the support， and the spacing between 
adjacent positions is 0.5 m， as shown in Fig.9.

The robot configurations and corresponding 
stiffness indices at positions w1—w7 are listed in Ta‑
ble 1. It can be found that k varies significantly with 
the base position. An 8 mm three‑edge end mill is 

Fig.7　Flowchart of the algorithm
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used in the seven machining processes. The spindle 
speed is fixed at 5 000 r/min， and the robot feeds at 
a speed of 2.5 mm/s. The machined surfaces corre‑
sponding to the seven base positions are shown in 
Fig.10. The machining quality is verified through 
surface roughness， which is listed at the top of 
Fig.10. It can be found that the surface machined at 
w3 has the minimum roughness （Ra0.353）， while 
w3 is also the position that has the highest k value 
（1 523 N/mm）. The positions that have lower k val‑
ues usually result in less desirable surfaces， e. g.， 
k = 1 166 N/mm at w1， and the roughness of the 

machined surface is Ra0.588.
Apart from the inspection of the machined sur‑

face， the machining vibration is recorded by the ac‑
celerometer， and the maximum vibration accelera‑
tion in Cartesian space （denotes as aCrt） at w1—w7 
is shown in Fig.11. The k values in Table 1 are also 
visualized in Fig.11. A strong correlation can be 
found between aCrt and k： From w3 to other posi‑
tions， aCrt grows with the decrease of k. The results 
prove that optimizing the robot configuration to im ‑
prove stiffness is helpful in reducing the machining 
vibration， hence more desirable machining quality 
can be expected.

Although the experiment is restricted in its 
form， it provides a verification of the positive corre‑
lation between the stiffness index k and the machin‑
ing quality： Optimized configuration with higher 
stiffness will suppress machining vibration and im ‑
prove the quality of machined surface. Therefore， 
the robot stiffness index k proposed in Section 2， as 
well as the WMSI index generated from it， provides 
reliable evaluations to the machining quality of a sin‑
gle machining task and the whole cabin. Moreover， 
the experiment proves that robot configuration θ is 
the key to improve k， while θ can either be opti‑
mized through the change of robot base position or 
through the rotation of the cabin.
5. 2 Computational experiments

This section takes a simulated cabin with three 
cylindrical segments as a case study. The rotation 
schemes as well as the machining solutions to it are 

Fig.8　Machining experiment platform

Fig.9　Robot base position setup of the experiment

Fig.10　Machined surfaces of w1—w7

Table 1　Robot configurations and corresponding stiff⁃
ness indices at different positions

Posi‑
tion
w1

w2

w3

w4

w5

w6

w7

θ1/
(°)

42.2
29.7
15.5

-4.1
-21.6
-37.1
-47.5

θ2/
(°)

-60.7
-75.2
-85.2
-89.4
-84.6
-72.6
-57.2

θ3/
(°)

75.6
95.8

107.4
108.3
103.8
89.6
67.5

θ4/
(°)

160.2
158.9
158.7
161.6
165.7
171.3
175.6

θ5/
(°)

-79.6
-70.1
-63.7
-60.6
-55.7
-55.0
-60.5

θ6/
(°)

15.3
5.9

-7.0
-27.6
-46.4
-64.3
-77.0

k/

(N·mm-1)
1 166
1 380
1 523
1 506
1 403
1 199
967

Fig.11　Correlation between the machining vibration (max 
Cartesian acceleration) and the robot stiffness index
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optimized by the proposed method. The simulated 
cabin is 6.6 m long with a 3.6 m diameter. After 
been attached to the tooling system， the axis of the 
cabin is 2.2 m above the shop floor， and a total of 
90 small supports are distributed on the surface of 
the cabin. These are the 90 machining tasks that 
need to be handled by the robots. Three KR500-3 
robots are deployed on each side of the cabin， and 
each segment has two robots operating on its left 
and right sides. The position of the robot relative to 
the cabin is shown in Fig.12. The robots are restrict‑
ed to process tasks located within the height ranging 
from 1.3 m to 3.1 m （covering about 60° of the cab‑
in’s circumference） so that they will not operate 
near the edge of their workspace. The base-to-base 
distance of adjacent robots is 2.2 m.

Given θstep = 10°， the machining stiffness indi‑
ces of the 90 tasks on all 36 rotation angles are calcu‑
lated in advance， and the joint stiffness matrix Kθ of 
KR500-3 adopts the results of a previous study［28］. 
The results form a 90×36 matrix， MK， where line i 
（i = 1， 2， …， 90） is the stiffness indices of task ti. 

If ti cannot be processed by any robot at rotation an‑
gle rj， the stiffness index ki，j = 0. Task t1 is taken as 
an example. It can be machined at 13 rotation angles 
（-100°—-50°， and 80°—140°， corresponding to 
the two robots on each side of the cabin）. The stiff‑
ness index k1 is shown in Fig.13. It can be seen that 
k1 changes significantly with the selection of rotation 
angle， and the maximum value is almost twice the 
minimum， and only on five angles k1 will be above 
1 500 N/mm， indicating that improving the machin‑
ing quality of t1 requires a proper selection of rota‑
tion angles.

The proposed algorithm is used to optimize 
the machining solutions of the object cabin， and the 
parameter setup of the algorithm is listed in Table 
2. A total of eight Pareto-optimal solutions are 
found by the algorithm， as shown in Fig.14. The 
minimum value of m， mmin = 3. That is， at least 
three rotations will be needed to complete all tasks. 
In Fig.14， when m grows from 3 to 10， WMSI al‑
so grows significantly， from 1 372.0 N/mm to 
1 693.8 N/mm.

To intuitively analyze to what extent the eight 
solutions are close to the quality optimal solution， 
we define the optimization level of machining quality

qopt = WMSI WMSImax (13)

where WMSImax is the maximum value that WMSI 
can achieve in the problem. That is， when each task 
is assigned to the rotation angle that maximizes its 
machining stiffness （e.g.， assign t1 to -70°）. In the 

Fig.12　Position of the robot on one side of the cabin

Fig.13　Machining stiffness index k1 of task t1 on different ro‑
tation angles

Table 2　Parameter settings of the proposed algorithm

Variable
θstep/(°)

m_UB

[l2, l1, h1, h2]
ρrpl

[ρmtt, ρms, smax]
[N, E]

Value
10
10

[1.3, 1.15, 0.85, 0.7]
0.70

[0.10, 0.15, 6]
[100, 200]

Explanation
Step length of the rotation

Maximum number of rotations
Weighting factors of WMSI
Parameter of repair operator

Parameters of mutation operator
Population scale and number of evolutions of NSGA‑Ⅱ
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studied case， WMSImax = 1 836.9 N/mm， but up 
to 36 rotations will be required to achieve this， 
which is almost impractical in real-world applica‑
tions. In Fig.14， when m = 3， qopt = 0.747， while 
m = 10， qopt = 0.922. Such results are already 
quite close to the quality-optimal solution. More‑
over， we notice that neither WMSI nor qopt grows 
linearly with m. When m grows from 3 to 6， qopt in‑
creases by 0.121； when m further increases to 10， 
qopt only increases by 0.054. This indicates that the 
effect of increasing the number of rotations on im ‑
proving the machining quality is gradually reduced， 
and in engineering practice， properly selecting the 
value of m will help balance the goal of machining 
quality and productivity. The indices of the eight so‑
lutions are listed in Table 3.

In Fig.15， eight boxplots are used to visualize 
the distribution of 90 stiffness indices （k1，k2，…，k90） 
in the eight solutions. In a boxplot， the horizontal 
line inside the box denotes the median value of the 
data set， while the top and the bottom of the box de‑
note the upper and the lower quartiles， respectively. 

It can be found that with the increase of m， the stiff‑
ness indices of the 90 tasks have an overall in‑
crease， and almost all the tasks have their stiffness 
index above 1 400 N/mm when m ≥ 8.

To verify whether the proposed index WMSI 
helps bias the algorithm towards improving the low ‑
er values in the 90 indices， the mean stiffness index 
（MSI） is introduced by changing the weights in 
WMSI into l2 = l1 = h1 = h2 = 1. To statistically 
compare the results generated using WMSI and 
MSI， 50 random instances of task distribution are 
generated. That is， the positions of the 90 small 
supports on the cabin are randomly changed 50 
times. The algorithm is executed 50 times with dif‑
ferent instances using WMSI and MSI seperately. 
The comparison is conducted between the lower k 
values （i. e. K l1 ∪ K l2）. Fig.16 analyses the distribu‑
tion of the lower k values with the mean value， the 
standard deviation （S. D.）， and the minimum val‑
ue， where the solid line indicates the median， the 
upper and the lower edges of the shadow block indi‑
cate the upper and lower quartiles， respectively. Ex‑
cept for the results with m = mmin = 3， compared 
to MSI， WMSI let the lower k values have higher 
mean and minimum values， as well as lower S.D.， 
indicating that WMSI can effectively bias the algo‑
rithm toward improving the lower k values， thus 
more reasonable solutions will be produced by using 
the WMSI index.

To verify the efficiency of the proposed algo‑
rithm， we compare the optimized solutions pro‑
duced by the algorithm with the solutions currently 
used in engineering practice （denoted as EP solu‑

Fig.15　Stiffness index distribution of the 90 tasks 
(f2=WMSI)

Fig.14　Pareto-optimal solutions

Table 3　Indices of the eight solutions

m
3
4
5
6
7
8
9

10

WMSI/(N·mm-1)
1 372.0
1 478.1
1 541.2
1 594.3
1 635.5
1 666.9
1 685.7
1 693.8

qopt

0.747
0.805
0.839
0.868
0.890
0.907
0.918
0.922

Increment of qopt

—
0.058
0.034
0.029
0.022
0.017
0.011
0.004
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tions）. In engineering practice， the cabin is rotated 
with a fixed angle， e.g.， if m = 6， the cabin rotates 
60° each time. Each task will then be assigned to the 
angle that maximizes the robot stiffness index. 
When m < 6， such method does not find rotation 
schemes that satisfy constraint C′1， therefore only 
five EP solutions （m = 6—10） can be compared 
with the corresponding optimized solutions. The 
comparison with respect to WMSI is shown in 
Fig.17.

It is obvious that the optimized solutions out‑
perform the EP solutions， and it is interesting to 
find that when m increases from 8 to 9， the value of 
WMSI decreases for the EP solutions. This indi‑
cates that a proper rotation scheme （rather than just 
more rotation angles） is quite essential to improving 
the machining quality of the whole cabin. In fact， 
when m = 9， the rotation scheme proposed by the 
algorithm is ［30° ，60° ， 80° ， 110° ， 130° ， 160° ， 

210°， 260°， 350°］， while the rotation scheme pro‑
posed by the EP method （i. e.， fixed angle） is ［0°， 
40° ， 80° ， 120° ， 160° ， 200° ， 240° ， 280° ， 320°］ 
（maximum WMSI can be achieved when the rota‑
tion starts from 0°）. The two schemes are obviously 
different.

The optimized solutions can also gain advantag‑
es in production efficiency by reducing the rotations 
required for the cabin： When m = 6， the optimized 
solution achieves the WMSI index of 1 594.3 N/
mm， while for the EP solution， two more rotations 
are required to achieve the WMSI index no worse 
than the former （1 615 N/mm）. When m = 7， the 
WMSI index of optimized solution is 1 635.5 N/
mm， only the EP solution with m = 10 can com‑
pete it （WMSI = 1 643 N/mm）. Since less rota‑
tions can reduce interruptions and recalibration 
workload of the whole process， more desirable effi‑
ciency can be obtained by the proposed method with‑
out affecting the machining quality.

6 Conclusions 

This paper studies a dual-objective optimiza‑
tion problem of production efficiency and machining 
quality in the in-situ manufacturing of a large space‑
craft cabin. The production efficiency is dominated 
by the number of rotations performed to the cabin， 
and the machining quality is mainly affected by the 
robot stiffness in machining， which is also influ‑
enced by the rotation of the cabin. A solution that 
specifies the optimal rotation scheme of the target 
cabin is required for the manufacturing mission.

The robot stiffness index is introduced as a ma‑

Fig.17　Comparison between the optimized solutions and 
EP solutions

Fig.16　Comparison of the lower k value distribution between the results produced using WMSI and MSI
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chining quality evaluation of a single task. The cor‑
relation between the index and the machining quali‑
ty is then experimentally verified. To properly evalu‑
ate the machining quality of the whole cabin， a stiff‑
ness-based global evaluation index， WMSI， is fur‑
ther proposed. The main contribution of the study is 
the weighting strategy applied to WMSI and the du‑
al-objective optimization algorithm designed for the 
problem. Results of the computational experiment 
show that the algorithm provides more desirable so‑
lutions than currently used EP solutions， both in 
machining quality and in production efficiency. Fur‑
ther， the proposed WMSI index biases the algo‑
rithm towards improving the lower stiffness indices 
among the tasks， hence more reasonable solutions 
will be produced.

Future research may focus on balancing the 
workload among the robots in order to equalize tool 
wear and uniform tool replacement time， so that on-

line break down can be avoided as much as possible.
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面向机器人原位加工的大型飞船舱体变位姿态优化方法

刘少睿， 田　威， 沈建新， 李　波
（南京航空航天大学机电学院，南京  210016，中国）

摘要：在利用机器人实施大型飞船舱体的原位加工时，对舱体旋转变位次数与机器人整体加工性能的关注引入

了一双目标优化问题。本文基于机器人刚度特性和非支配排序遗传算法，提出了一种舱体变位方案优化方法。

首先，设计了以机器人笛卡尔刚度为基础的特征加工质量评价指标，并建立了原位加工过程模型。其次，为应用

非支配排序遗传算法，提出了一种加工过程的双染色体编码方法及相应的交叉变异算子。此外，通过修复算子

处理频繁出现的非法编码，保证了算法的寻优效率。仿真及实验研究的结果表明，适当增加舱体变位次数能够

有效提升机器人的加工性能，并在工质量和时间成本上实现综合优化。

关键字：大型结构件制造；原位加工；机器人刚度优化；双目标优化；非支配排序遗传算法
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