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Abstract: Annular plate structure is widely used in the engineering field. A unified method is proposed to predict the 
free vibration behavior of the annular plates in the steady-state thermal environment. Based on the spectral geometry 
method （SGM）， the displacement of the annular plate is expanded by the improved Fourier series. The potential 
energy and the maximum kinetic energy of the annular plate are obtained based on the first-order shear deformation 
theory （FSDT）. Three sets of linear springs and one set of rotating springs are used to simulate the arbitrary boundary 
of the annular plate. The continuity of the circumferential boundary of the annular plate with subtended angle of 360° is 
realized by using circumferential coupling spring. The Rayleigh-Ritz method is used to construct the theoretical model 
of the annular plate， and the vibration characteristics of the annular plate are solved. The accuracy of this method is 
verified by comparing with the finite element calculation results. The method used in this paper is a meshless method， 
which is more computationally efficient than current mainstream methods， such as the finite element method （FEM）. 
The relationships between the modal numerical solution and boundary condition and the ratio of inner and outer radius 
in the thermal environment are studied. This paper provides a reference for the application of annular plates in 
engineering practice.
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0 Introduction 

Plate structures have a wide range of applica‑
tions in the fields of marine engineering， aerospace 
engineering， and mechanical engineering， making it 
essential to study and control their vibration［1］. The 
annular plate is a typical type of rotary plate. Com‑
pared with common fan and round plates， annular 
plates have many advantages， such as maintaining a 
certain degree of stiffness with reduced mass and 
having a certain degree of heat and sound absorp‑
tion. As annular plates are a type of thin plate struc‑
ture， they are highly sensitive to temperature and it 
is necessary to analyze the vibration characteristics 
of annular plates in the thermal environment.

Irie et al.［2］ used the transfer matrix method to 
derive dimensionless frequency parameters for the 

free vibration of annular plates. Due to its good con‑
vergence， the discrete singular convolution （DSC） 
method［3-6］ has also been fully applied in the plate 
and shell modeling. In addition， the semi-analytic 
polynomial method （SAPM）［7-8］ and the generalized 
differential quadrature method （GDQM）［9-10］ have 
also been studied by many scholars and applied in 
several fields， such as free vibration and nonlinear 
dynamic analysis of plate and shell structures. Han 
et al.［11］ performed a numerical analysis of the axi‑
symmetric free vibration of a medium-thick plate us‑
ing the differential product method （DQM）. Torna‑
bene et al.［12］ studied the dynamics of medium-thick‑
ness functional gradient annular plates based on first-
order shear deformation theory （FSDT） and the 
two-dimensional differential product method. 
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Efraim et al.［13］ used FSDT to investigate the free 
vibration characteristics of isotropic annular plates of 
variable thickness. Ke et al.［14］ studied the bending， 
buckling， and free vibration of annular plates of 
functional gradient materials based on the modified 
coupled stress theory and the Mindlin plate theory. 
Gürses et al.［15］ analyzed the free vibration proper‑
ties of nanoscale annular sector plates using non-lo‑
cal continuous medium theory. Pu［16］ established the 
differential equations of motion and corresponding 
boundary conditions for in-plane free vibration of an‑
nular plates of functional gradient materials （FGM） 
in a thermal environment based on two-dimensional 
elasticity theory. Bagheri et al.［17-22］ conducted an in-

depth investigation of the mechanical behavior of an‑
nular plates in a thermal environment， including 
studies of the buckling behavior of annular plates un‑
der different external conditions［17-21］ and a study of 
the thermally excited vibration behavior of FGM an‑
nular plates［22］， which greatly improved the theory 
of annular plate dynamics.

The spectral geometry method （SGM） is com‑
monly used in dealing with the continuity of dis‑
placements of structures at boundaries， and it has re‑
ceived extensive attention and research in the aca‑
demic field. Li［23］ developed a general method based 
on the SGM for deriving sets of displacement func‑
tions that can be universally applied to various 
boundary conditions. Bao et al.［24］ analyzed the trans‑
verse vibration characteristics of an arbitrary elastic 
boundary Euler-Bernoulli beam based on the non-lo‑
cal theory and SGM. Zhao［25］ constructed the dis‑
placement functions of a rotating shell-like structure 
based on the principle of SGM. Zhang et al.［26］ mod‑
eled the vibration behavior of a hyperboloid shell in 
a thermal environment based on SGM. Wang et 
al.［27-28］ used SGM to establish the displacement 
function of Timoshenko beams with elastic con‑
straints at the ends， and proposed a unified method 
to study Timoshenko beams with arbitrary variable 
cross-sections. In addition， the acoustic radiation 
properties of rectangular plates with submerged elas‑
tic boundary constraints were also investigated. Shi 

et al.［29-30］ analyzed the in-plane free vibration charac‑
teristics of annular plates under arbitrary boundary 
conditions， which improved the theory of static and 
dynamic characteristics of annular plates under arbi‑
trary boundaries.

In summary， the research on the vibration char‑
acteristics of annular plates has been relatively com ‑
plete， but there is still less research on the free vi‑
bration of annular plates in thermal environments， 
and there is also less comparative research on the vi‑
bration characteristics of open and closed annular 
plates. When using the boundary of a simulated 
spring-constrained plate， most of the research only 
considers a set of linear springs and a set of rotating 
springs in one direction， and there is still room for 
improvement in the calculation accuracy. In re‑
sponse to the above lack of research in the litera‑
ture， this paper investigates the vibration character‑
istics of annular plates in a thermal environment by 
considering the changes in material properties 
caused by thermal strain and temperature increase 
within the annular plate surface. Three sets of linear 
springs and one set of rotating springs are used to 
simulate an arbitrary boundary of the annular plate， 
and circumferentially coupled springs are used to 
achieve continuity of the circumferential boundary of 
the closed annular plate. The theoretical model of 
the annular plate is constructed using the Rayleigh-

Ritz method， and the vibration characteristics of the 
annular plate are solved. The vibration characteris‑
tics of the annular plate are solved and compared 
with the finite element results to verify the accuracy 
of the theoretical model.

1 Theoretical Analysis 

Fig.1 shows the schematic diagram of the mod‑
el of the annular plate. Four sets of springs are intro‑
duced to simulate arbitrary boundary conditions for 
the annular plate. When φ0=360°， coupling springs 
are introduced to ensure the continuity of the bound‑
ary displacements. In Fig.1（a）， x and θ are the radi‑
al and circumferential coordinates of the annular 
plate， respectively， and R， r， φ0， and h denote the 
outer radius， inner radius， subtended angle and 
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thickness of the annular plate， respectively. The an‑
nular plate is bounded by three sets of linear dis‑
placement restraint springs （ku， kv， kw， in N/m） 
and one set of rotational restraint springs （Kw， in N·
m/rad） along the x， θ， and z coordinate directions 
to simulate the various complex boundary conditions 
of the plate. When φ0=360°， the two circumferen‑
tial boundaries of the annular plate overlap and be‑
come a circular annular plate， as shown in Fig.1（b）. 
Coupling springs are introduced at the coincident 
boundaries， including three sets of linear coupling 
springs （k cp

w， k cp
u ， k cp

v ， in N/m） and one set of rotat‑
ing coupling springs （K cp

w， in N·m/rad） to ensure 
continuity of the boundaries.

As the annular plate in this paper is a plate 
structure with a small thickness， the effect of trans‑
verse shear can be ignored. Based on this， the theo‑
retical model in this paper is derived based on the 
Kirchhoff’s thin-plate theory. The strain in the annu‑
lar plate can be expressed by the mid-plane displace‑
ment as
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where εx， εθ and εxθ represent the positive strains 
along the x and θ directions and the shear strain； κx， 
κθ and τxθ the buckling strains； and u， v and w the 
displacements of the mid-plane face in the x， θ and 
z directions， respectively. Considering the thermal 
effects arising from temperature changes， the ther‑
mal strain in the annular plate mid-plane can be ex‑
pressed as

ε t
x = αx ΔT,ε t

θ = αθ ΔT,ε t
xθ = αxθ ΔT （5）

where αx， αθ and αxθ denote the coefficients of ther‑
mal expansion of the material in the x， θ and tangen‑
tial directions， respectively； ΔT is the amount of 
temperature change in K. The total strain in the mid‑
dle face of the annular plate is

εx = ε0
x - ε t

x,εθ = ε0
θ - ε t

θ,εxθ = ε0
xθ - ε t

xθ （6）
As a result， the strain energy and the maxi‑

mum kinetic energy kinetic of the annular plate 
structure can be expressed as

V p = K
2 ∫

0

φ0∫
r

R ( )ε2
x + ε2

θ + 2μεx εθ + 1 - μ
2 ε2

xθ xdxdθ +

D
2 ∫
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R ( )κ 2
x + κ 2
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2 τ 2
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Tp = ρhω2

2 ∫
0

φ0∫
r

R

( w 2 + u2 + v2 ) xdxdθ （8）

where K=Eh/（1- μ2） and D=Eh3/12（1- μ2） de‑
note the tensile and flexural stiffness of the annular 
plate structure， respectively； E and μ are the 
Young’s modulus and the Poisson’s ratio of the an‑
nular plate material， respectively. Assuming that 
the Young’s modulus E decreases linearly with tem ‑
perature， the expressions are

E = E 0 × (1 - β × ΔT ) （9）
where E0 is the Young’s modulus of the material at 
the initial temperature and β the sensitivity coeffi‑
cient of Young’s modulus relative to temperature.

Fig.1　Schematic diagram of annular plate model
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The potential energy stored in the boundary-

bound spring can be expressed as

V b = 1
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In summary， the Lagrangian function Lp of the 
annular plate structure can be expressed as

Lp = V p + V b - Tp （11）
When φ0=360°， the potential energy stored in 

the coupled constrained spring can be expressed as
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In this paper， a modified Fourier series is used 
and auxiliary functions are introduced to ensure the 
continuity of the displacement function and its deriv‑
atives at the boundary. The displacement function of 
the annular plate can be expressed as［24］
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where A u
m，n， A v

m，n and Aw
m，n represent the unknown 

Fourier coefficient matrixes of displacements； and 
Θm and Θn the trigonometric functions corresponding 
to m and n， expressed as

Θ m =
ì
í
î

sin ( λm x )    m < 0
cos ( λm x )    m ≥ 0

,Θ n =
ì
í
î

sin ( λn θ )    n < 0
cos ( λn θ )    n ≥ 0

（16）

where λm=mπ/L， λn=nπ/φ0. When m<0 or n<0， 
Θm and Θn are the auxiliary functions whose purpose 
is to eliminate the discontinuity of the boundary dis‑
placements.

The Rayleigh-Ritz method is used to conduct 
variational operations on the Lagrange function of 
plate structure， shown as

∂L
∂ϑ

= 0      ϑ = A u
m,n,A v

m,n,Aw
m,n （17）

Truncation of the levels at m=M and n=N 
gives a free vibrational equation of dimension （M+
5）×（N+5）+2×（M+3）×（N+3）， expressed as

( K- ω2M ) A= 0 （18）
where K， M  and A represent the stiffness matrix， 
mass matrix， and Fourier displacement coefficient 
matrix of the annular plate respectively.

2 Results and Discussion 

2. 1 Setting of boundary conditions　

In this paper， four sets of boundary springs are 
used to achieve constraints on the boundary condi‑
tions of the annular plate， and arbitrary boundary 
conditions can be achieved by changing the stiffness 
values. In this paper， C， S， and F are used to repre‑
sent the clamped， simply supported， and free 
boundaries， and E1， E2 and E3 are the three elastic 
boundaries with spring stiffness coefficients［9］. Each 
boundary condition is shwon in Table 1.

2. 2 Convergence and accuracy verification　

This section verifies the convergence and accu‑
racy of the theoretical approach used in the previous 
section. The results of this paper are first compared 

Table 1　Each boundary condition corresponding to the 
spring stiffness value

Type of boundary

F
C
S
E1

E2

E3

Spring stiffness value
ku /D

0
1015

1015

1015

104

1015

kv /D

0
1015

1015

1015

1015

104

kw /D

0
1015

1015

104

1015

1015

Kw /D

0
1015

0
1015

1015

1015
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with those in the literature. To facilitate the compari‑
son， the dimensionless frequency parameter λ2=
ωa2（ρh/D）1/2 is introduced and set to r/R=0.1. 
Table 2 shows the comparison of the dimensionless 
frequency parameters of the annular plate under dif‑
ferent boundary conditions and different cut-off coef‑
ficients with the calculated results obtained by using 
the DQM in Ref.［10］， the annular plate used is a 
circumferentially closed circular plate with a radius 
ratio r/R=0.1. The results in the table show that af‑
ter M=N=10， the results of this paper agree very 
well with those in Ref.［10］， which verifies the con‑
vergence and accuracy of the method used in this pa‑
per.

The next step is to verify the accuracy of the 
theoretical model in this paper under different tem ‑
perature environments. Tables 3 and 4 show the 
first eight order natural frequencies of the annular 
plate （φ0=45°） and the circular annular plate （φ0=
360°） calculated by the present method and FEM 
for different boundary conditions at ΔT=0， 20， and 
60 K， respectively. Set the annular plate dimen‑
sions： R=1 m， r=0.3 m， h=0.01 m， material pa‑
rameters： E=200 GPa， μ=0.3， ρ=7 850 kg/m3， 

α=1.2×10-5， β=5×10-3. FEM uses the ANSYS 
software for modeling calculations， using 
SHELL181 cells. As can be seen from Tables 3 and 
4， when M=N=14， the modal numerical solution 
obtained by this method is basically in good agree‑
ment with the finite element calculation results. The 
slight numerical differences may be because FEM 
uses a different plate theory for the solution and the 
accuracy of the calculation results is related to the 
degree of mesh refinement. This is a good indication 
that the convergence and accuracy of the present 
method are reliable.

Table 2　Comparison of the frequency parameter

Boundary
condition

C‑C
C‑S
C‑F
S‑C
S‑S
S‑F
F‑C
F‑S
F‑F

Present, M=N

2
28.36
19.73

4.29
23.29
14.55

3.96
10.32

5.40
9.84

6
27.30
17.80

4.24
22.70
14.49

3.96
10.16

4.86
8.78

10
27.28
17.79

4.24
22.70
14.49

3.45
10.16

4.85
8.78

14
27.28
17.79

4.24
22.70
14.49

3.45
10.16

4.85
8.78

DQM[10]

27.28
17.79

4.24
22.70
14.49

3.45
10.16

4.85
8.78

Table 3　The first eight order natural frequencies of the annular plate (φ0=45°) obtained by two methods Hz

Mode order

ΔT=0

ΔT=20

ΔT=60

C‑C‑C‑C

S‑S‑S‑S

F‑F‑F‑F

C‑C‑C‑C

S‑S‑S‑S

F‑F‑F‑F

C‑C‑C‑C

S‑S‑S‑S

F‑F‑F‑F

M=N=14
FEM

M=N=14
FEM

M=N=14
FEM

M=N=14
FEM

M=N=14
FEM

M=N=14
FEM

M=N=14
FEM

M=N=14
FEM

M=N=14
FEM

1
262.81
262.34
139.90
139.75
106.48
105.93
249.32
248.88
132.72
132.58
101.02
100.49
219.88
219.49
117.05
116.92
89.09
88.63

2
474.36
472.44
313.26
312.55
109.57
109.25
450.02
448.20
297.18
296.51
103.95
103.64
396.88
395.27
262.09
261.50
91.67
91.41

3
545.21
542.80
361.57
360.63
138.75
138.35
517.23
514.95
343.02
342.12
131.63
131.25
456.16
454.14
302.51
301.72
116.09
115.75

4
763.14
758.05
566.94
564.61
248.23
246.32
723.98
719.15
537.85
535.64
235.49
233.68
638.49
634.23
474.34
472.39
207.68
206.09

5
856.27
849.94
623.96
621.17
310.47
309.50
812.33
806.32
591.94
589.29
294.54
293.62
716.41
711.11
522.04
519.71
259.76
258.95

6
918.47
911.41
676.10
672.82
326.44
324.56
871.34
864.64
641.40
638.29
309.69
307.90
768.45
762.54
565.67
562.92
273.12
271.55

7
1147.03
1135.80
912.90
906.91
341.01
338.81

1088.17
1077.51
866.05
860.37
323.51
321.42
959.67
950.28
763.79
758.78
285.31
283.47

8
1208.48
1195.80
932.56
926.34
471.78
467.32

1146.46
1134.44
884.70
878.80
447.57
443.34

1011.09
1000.48
780.24
775.03
394.72
390.99
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Among the three boundary conditions， the an‑
nular plate has the highest natural frequencies at the 
C-C-C-C boundary and the lowest at the F-F-F-F 
boundary. This is because the increase in the bound‑
ary constraint makes the plate structure stiffer and 
thus increases the natural frequencies of the plate. 
As the temperature increases， the plate structure 
suffers from thermal stresses and softening of 
Young’s modulus and its natural frequencies de‑

crease. The 1st， 3rd， 5th， 7th， and 22nd order 
modal shapes of the annular plate （φ0=45°） ob‑
tained by this method and the FEM at the C-C-C-

C， S-S-S-S， F-F-F-F boundaries and the circular 
annular plate （φ0=360°） at the C-C， S-S， F-F 
boundary conditions at ΔT=60 K are given in 
Figs.2， 3. It can be seen that the modal shapes ob‑
tained by the two methods are in good agreement， 
which verifies the accuracy of the method.

Table 4　The first eight order natural frequencies of ring plate (φ0=360°) obtained by two methods Hz

Mode order

ΔT=0

ΔT=20

ΔT=60

C‑C

S‑S

F‑F

C‑C

S‑S

F‑F

C‑C

S‑S

F‑F

M=N=14

FEM

M=N=14

FEM

M=N=14

FEM

M=N=14

FEM

M=N=14

FEM

M=N=14

FEM

M=N=14

FEM

M=N=14

FEM

M=N=14

FEM

1

110.24

110.23

51.24

51.23

11.93

11.91

104.58

104.57

48.61

48.60

11.32

11.30

92.23

92.23

42.87

42.86

9.98

9.96

2

113.39

113.37

56.68

56.66

11.93

11.91

107.57

107.55

53.77

53.75

11.32

11.30

94.87

94.85

47.42

47.41

9.98

9.96

3

113.40

113.37

56.68

56.66

20.31

20.31

107.58

107.55

53.77

53.75

19.27

19.27

94.88

94.85

47.42

47.41

16.99

16.99

4

124.32

124.26

73.60

73.56

29.82

29.78

117.94

117.88

69.82

69.79

28.29

28.25

104.01

103.96

61.58

61.54

24.95

24.92

5

124.32

124.26

73.60

73.56

29.82

29.78

117.94

117.88

69.82

69.79

28.29

28.25

104.01

103.96

61.58

61.54

24.95

24.92

6

145.94

145.82

101.88

101.81

44.47

44.28

138.45

138.34

96.65

96.59

42.19

42.01

122.10

122.00

85.24

85.18

37.21

37.05

7

145.94

145.82

101.88

101.81

44.47

44.28

138.45

138.34

96.65

96.59

42.19

42.01

122.10

122.00

85.24

85.18

37.21

37.05

8

179.76

179.54

139.90

139.75

52.95

52.87

170.54

170.33

132.72

132.58

50.23

50.16

150.40

150.21

117.05

116.92

44.30

44.23
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2. 3 Parametric analysis　

The accuracy of the theoretical model used in 
this paper has been verified in the previous section， 
and the next step is to carry out a parametric analy‑
sis of the annular plate structure. Firstly， the effect 
of the magnitude of the subtended angle φ0 on the 
natural frequencies of the annular plate structure in 
the thermal environment is investigated. The dimen‑
sions of the annular plate used for the calculations in 
the previous section are used， and the two planar 
boundaries of the open annular plate are set as free 
boundaries， while the remaining two curved bound‑
aries are classical or elastic. Fig. 4 gives the fractal 
scatter diagram for different φ0 corresponding to the 
natural frequencies of the annular plate at ΔT=
100 K for the S-S， C-C， F-F， E1-E2， E2-E3， and 
E1-E3 boundary conditions， with φ0 taking values 

from 15° to 360° . It can be seen from Fig. 4 that 
when φ0<360° ， the 1st order natural frequency of 
the annular plate under the remaining boundaries， 
except for the F-F boundary， increases with the in‑
crease of the φ0； the 2nd， 3rd， and 4th order natural 
frequencies under the S-S， C-C， F-F， and E1-E2 
boundaries decrease with the increase of the φ0； un‑
der both the E2-E3 and E1-E3 elastic boundaries， the 
2nd， 3rd and 4th natural frequencies of the plate de‑
crease overall as the φ0 becomes larger， but fluctu‑
ate at some angles. At φ0=360°， the first four order 
natural frequencies at all six boundaries increase 
slightly due to the addition of coupling springs at the 
two planar boundaries of the annular plate increasing 
the stiffness of the structure. Among these six 
boundary conditions， the first four natural frequen‑
cies of the annular plate structure are the highest un‑

Fig.2　Comparison of vibration modes of annular plates (φ0=45°) obtained by the method and FEM

Fig.3　Comparison of vibration modes of annular plates (φ0=360°) obtained by the method and FEM
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der the C-C boundary condition. This is because the 
plate has the most boundary-bound springs under 
the C-C boundary condition， which makes the over‑
all stiffness of the plate greater than that under other 
boundaries. An interesting phenomenon is that the 
plate structure also has high natural frequencies at 
the F-F boundary when φ0 is small. This is because 
we have neglected the first six natural frequencies 
with zero values at the free boundary， which corre‑
spond to the six rigid body motion modes of the 
plate structure. In addition to this， the fundamental 
frequency of the plate structure under the E2-E3 
boundary is significantly higher than those under E1-

E2 and E1-E3 for the three elastic boundary condi‑
tions.

Next， the effect of the ratio r/R of the annular 
plate on the natural frequency of the structure in a 
thermal environment is analyzed， using the thick‑
ness of the annular plate used for the calculations in 
the previous section. Figs. 5 and 6 show the influ‑
ence of the ratio r/R on the natural frequencies of 
two types of annular plate， φ0=45° and φ0=360°， 
at ΔT=100 K for classical and elastic boundary con‑
ditions respectively. r/R is taken to be from 0.1 to 

0.8 and the first 10 order natural frequencies are ob‑
served.

For all three classical boundary conditions， the 
natural frequencies of the annular plate increase with 
increasing r/R when φ0=45°. This is because when 
R is constant， the increase in r/R reduces the mass 
of the annular plate， while the reduction in stiffness 
is not significant in comparison. Therefore， the 
overall inherent frequency is in an increasing trend. 
However， it is worth noting that at the F-F-F-F 
boundary， this trend is not obvious for the funda‑
mental frequencies. As the mode order increases， 
the natural frequencies tend to increase with increas‑
ing r/R， and the natural frequencies of the annular 
plate tend to increase with increasing mode order for 
all three boundary conditions.

When φ0=360°， with the increase of r/R， the 
natural frequencies of the circular annular plate un‑
der the F-F boundary change gently， and its natural 
frequencies gradually decrease in the first four or‑
ders， and from the 5th order onwards， the results 
no longer varies monotonically， and a small fluctua‑
tion appears， which is very different from the results 
under the two outer boundaries， and under the C-C 

Fig.4　Influence of subtended angle φ0 on natural frequency of the annular plate under different boundary conditions at 
ΔT=100 K
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boundary and S-S boundary， the natural frequencies 
of the circular annular plate increase with the in‑
crease of r/R， and the larger the value of r/R is， 
the more obvious this trend is. With the increase of 
the mode order， the natural frequencies of the circu‑
lar annular plate have a great tendency to rise under 
the F-F boundary， while the change is more gentle 
under the C-C and S-S boundaries. When the bound‑

ary conditions are elastic boundaries， i. e. as shown 
in Fig.6， it can be seen that the plate has the highest 
natural frequencies under the E2-E3 boundary and 
the trend of change is similar to that under the C-C 
boundary； the change in natural frequencies under 
the E1-E2 and E1-E3 boundaries is very similar for 
φ0=360° ， which is because the direction of the 
small stiffness spring restraint in both E2 and E3 

Fig.5　Influence of r/R on the natural frequency of the annular plate under classical boundary conditions at ΔT=100 K

Fig.6　Influence of r/R on the natural frequency of the annular plate under elastic boundary conditions at ΔT=100 K
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boundaries is parallel to the midplane of the circular 
annular plate， so the effect of the restraint is close. 
The natural frequencies of the annular plate are sig‑
nificantly higher for the E2-E3 boundary conditions 
than the results for the other two elastic boundary 
conditions， especially when r/R takes on larger val‑
ues， indicating that the constraint in the z-axis direc‑
tion has the greatest effect on the vibration of the an‑
nular plate.

3 Conclusions 

The vibration characteristics of the annular 
plate in a thermal environment are investigated by 
considering the changes in Young’s modulus of the 
material caused by thermal strain and temperature 
increase within the annular plate face. The boundary 
of the annular plate is constrained by virtual springs 
and the coupling of the overlapping boundary of the 
circular annular plate is realized. The theoretical 
model of the annular plate is constructed using the 
Rayleigh-Ritz method and the accuracy of the theo‑
retical model in this paper is verified by comparing it 
with the finite element results. Based on the correct‑
ness， a parametric analysis of the annular plate 
structure was carried out. The following conclusions 
were obtained：

（1） As the temperature increases， the annular 
plate is subjected to thermal stress and softening of 
Young’s modulus， and the natural frequencies of 
the annular plate gradually decrease.

（2） When φ0<360°， the 1st order natural fre‑
quency of the annular plate increases with the in‑
crease of φ0， and the 2nd， 3rd， and 4th order natu‑
ral frequencies decrease with the increase of φ0. Un‑
der the two elastic boundaries of E2-E3 and E1-E3， 
the 2nd， 3rd and 4th natural frequencies as a whole 
decrease with the increase of φ0， but in some angles 
there are fluctuations. When φ0=360° ， there is a 
slight increase in the first four orders of natural fre‑
quencies.

（3） When φ0=45° ， the natural frequencies of 
the annular plate increase with increasing r/R under 
classical boundaries. As the mode order increases， 

the tendency of the natural frequencies increasing 
with increasing r/R becomes more and more obvi‑
ous. When φ0=360°， with the increase of r/R， the 
natural frequencies of the circular annular plate un‑
der the F-F boundary change gently； under the C-C 
boundary and S-S boundary， the results increase 
with the increase of r/R. When the boundary condi‑
tion is the elastic boundary， the plate has the natural 
frequencies under E2-E3 boundary.
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热环境下复杂边界环形板振动特性建模及分析

朱梓渊， 徐瑞康， 王 刚
（苏州大学机电工程学院,苏州  215131，中国）

摘要：提出一种统一的方法来预测环形板在稳态热环境下的自由振动行为。基于谱几何法（Spectral geometry 
method， SGM），采用改进的傅里叶级数展开环形板的位移。基于一阶剪切变形理论（First‑order shear deforma‑
tion theory， FSDT）得到了环形板的势能和最大动能。采用三组线性弹簧和一组旋转弹簧模拟环形板的任意边

界，使用周向耦合弹簧以保证回转角为 360°的圆环板周向边界的连续性，结合瑞利‑里兹法构建环形板的理论模

型，求解环形板的振动特性，通过与有限元（Finite element method， FEM）计算结果的对比，验证了该方法的准确

性。本文采用无网格法，与目前主流的方法（如有限元法）相比，其计算效率更高。本文还研究了环形板的模态

数值解和边界条件、内外半径比之间的关系。本文为环形板在工程实践中的应用提供了参考。

关键词：环形板；谱几何法；热环境；瑞利‑里兹法
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