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Abstract: When the observation requirement from users exceeds the satellite’s observation capability， astronomy 
satellite task scheduling becomes an oversubscription problem. For the oversubscribed task scheduling of astronomical 
satellites， a framework with a clustering phase and a short-term task scheduling phase is designed. First， a task 
clustering model is established to reduce the size of the oversubscribed task. Second， using the clustered results as 
input， we develop a mathematical model of short-term scheduling for the tasks. Finally， we propose an improved 
artificial bee colony algorithm with adaptive hybrid search strategies （DirectABC）. It introduces an adaptive elite 
global-local search strategy and an adaptive variable neighborhood optimal search strategy to the basic artificial bee 
colony algorithm （BasicABC）. The proposed algorithm demonstrates superior optimum-searching capability and a 
faster convergence speed in the simulation. In addition， it effectively reduces the number of tasks in the clustering 
phase and improves task completion in the short-term task scheduling phase.
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0 Introduction 

Task scheduling is a crucial technology that ev⁃
ery astronomical observation satellite mission will 
face. Astronomical satellite task scheduling typically 
becomes an oversubscription problem， i. e.， the 
time and resources of a satellite are insufficient to 
fulfill all observation requests one by one［1］， as re⁃
searchers place more observational demands to dis⁃
cover novel laws and phenomena. According to 
ESA AO-10 documents， the Suzaku satellite’s total 
available time during the AO-10 period was 5 951 ks， 
while the operation center received 8 330 ks of pro⁃
posals. It indicates that the oversubscription fraction 
is 140%. Many missions face the problem of over⁃
subscription［2］， which presents an even more signifi⁃

cant challenge for task scheduling techniques.
In astronomy satellite task scheduling， some 

research has been done， and some results have been 
obtained. Johnston et al.［3］ designed the SPIKE sys⁃
tem for the Hubble telescope. The system first gen⁃
erates a solution that satisfies most constraints， then 
iteratively repairs the plan by relocating or removing 
observations that do not satisfy the constraints. 
NASA and JAXA subsequently used the system in 
many missions. For NASA’s SWIFT mission， 
Penn State University has developed a scheduling 
system similar to SPIKE. The system continues to 
view the scheduling problem as a constraint satisfac⁃
tion problem and generates a daily schedule with up 
to 125 tasks［4］. ESA developed the XMAS system 
for the XMM-Newton mission， which uses algo⁃
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rithms such as hill climbing， forbidden search， and 
simulated annealing［5］. The MrSPOCK system uti⁃
lized by the Mars Express mission is based on a 
multi-objective genetic algorithm. The AIMS sys⁃
tem was used by the INTEGRAL mission［6］. The 
Advanced Planning & Scheduling Initiative （APSI） 
developed the generic constraint processing platform 
that AIMS and MrSPOCK used［7］. EChO［8-9］ em⁃
ployed a two-phase strategy， in which scientific re⁃
quests are first planned by the genetic algorithm， 
followed by the insertion of as many operational 
tasks as possible to fill in the gaps in the plan. 
Huang et al.［10］ developed a multi-objective genetic 
algorithm for the HXMT mission’s long-term 
scheduling. In cooperation with China and France，  
Jaubert and Li et al.［11-12］ developed a multi-objective 
genetic algorithm for rescheduling the SVOM mis⁃
sion. Wu et al.［13］ designed a multi-objective obser⁃
vation mission planning algorithm （MOMPA） that 
considers the constraints of both satellite observa⁃
tion and data downlink. Liu et al.［14］ developed a 
mathematical model for task scheduling of space as⁃
tronomy satellites and designed a multi-objective ge⁃
netic algorithm based on observation window se⁃
quences. She et al.［15］ presented a method for calcu⁃
lating the optimal slew path for the SVOM mission 
based on the Primal-dual interior point algorithm. 
Xu et al.［16-17］ developed a planning method based on 
tiling coverage rules for targets of opportunity.

Few of the above studies examined task sched⁃
uling in the context of oversubscription. A novel ap⁃
proach to solving the oversubscription problem is 
clustering. Recent astronomical satellites with large 
field-of-view offer the possibility of observing multi⁃
ple tasks simultaneously. By clustering targets with⁃
in the same field-of-view， an astronomical satellite 
can observe multiple targets simultaneously and ful⁃
fill more observation requests. For instance， the 
wide-field x-ray telescope （WXT） of the Einstein 
Probe satellite has a field-of-view of 3 600 deg2. To 
this end， this paper examines clustering and schedul⁃
ing techniques in the context of oversubscription.

Clustering has been studied less in astronomi⁃
cal satellite task scheduling， but it has been ad⁃

dressed in some research on Earth observation satel⁃
lite （EOS） task scheduling. For instance， Zhao et 
al.［18］ clustered densely distributed target points be⁃
fore using the Tabu algorithm to generate the local 
observation path. Before assigning tasks to multiple 
satellites， Du et al.［19］ also used task clustering. Be⁃
sides， in EOS task scheduling， She et al.［20］ present⁃
ed a new Agile Earth Observation Satellite mission 
planning algorithm based on the Modified Mixed-In⁃
teger Linear Programming （MILP） approach. Du et 
al.［21］ developed an observation path planning algo⁃
rithm based on the dynamic imaging mode and the 
grid discretization approach using the modified ant 
colony algorithm with sensational and consciousness 
strategy for area targets.

Inspired by the above studies， this paper pro⁃
poses a four-phase framework to address the over⁃
subscription of tasks， as shown in Fig.1. Our re⁃
search focuses on the task clustering phase and the 
short-term scheduling phase. First， the relevant 
clustering constraints are analyzed in the task clus⁃
tering phase to formulate a clustering model and 
cluster of the oversubscribed tasks to reduce the 
problem scale. Second， the constraints of resourc⁃
es， user requirements， and space environment are 
investigated in the short-term scheduling phase， and 
a mathematical model is then developed to maxi⁃
mize task completion and task priority. Finally， the 
artificial bee colony （ABC） algorithm is used to 
solve the clustering and scheduling problems.

To speed up the convergence and improve the 
global searching capability， a modified artificial bee 
colony algorithm is put forward by introducing the 
adaptive elite global-local search strategy to the em ⁃
ployed bee phase and the adaptive variable neighbor⁃
hood optimal search strategy to the onlooker bee 
phase， respectively. After experimental validation， 
the improved ABC algorithm exhibits excellent con⁃
vergence and optimum-searching capabilities in both 
clustering and scheduling. This study offers theoreti⁃
cal and technical guidance for short-term task sched⁃
uling of astronomical satellites in the context of over⁃
subscription.
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1 Problem Formulation 

The section divides the model into two stages， 
clustering and short-term scheduling， and formu⁃
lates the corresponding models.

1. 1 Clustering problem for oversubscribed 
tasks　

In actual missions， astronomers’ requests typi⁃
cally exceed the satellite’s capacity. For instance， 
the total duration of requests exceeds the available 
observation time of a satellite［1-2］， resulting in an 
oversubscription problem.

Clustering is one possible solution to this prob⁃
lem. In machine learning， clustering means dividing 
the objects into several groups based on their inher⁃
ent similarity［22］. Clustering for astronomical obser⁃
vation tasks has a similar definition. Tasks that satis⁃
fy certain constraints are clustered together for si⁃
multaneous completion. This method can be advan⁃
tageous for mitigating oversubscription pressure， in⁃
creasing observation efficiency， and maximizing sci⁃
entific output.
1. 1. 1 Definition and description of the sym ‑

bols　

M = { mi |i = 1，2，⋯，I } denotes the set of me⁃
ta-tasks， in which mi is the ith meta-task.

P=[ p1，p2，⋯，pI ] is the vector of priorities of 

the meta-tasks. For example， pi is the priority of the 
meta-task mi.

U=[ u1，u2，⋯，uI ] is the vector of required ob⁃
servation durations of the meta-tasks. For example， 
ui is the required duration of mi.

R=[ r1，r2，⋯，rI ] is the vector of the right as⁃
censions of the meta-tasks， in which ri is the right 
ascension of meta-task mi.

D=[ d 1，d 2，⋯，dI ] is the vector of the declina⁃
tions of the meta-tasks， where di is the declination 
of mi.

W i = ⋃
ni

j = 1
wi，j is the visible time window of me⁃

ta-task mi， containing ni sub-windows. w i，j =
[ w s

i，j，w e
i，j ]∩ Z represents the jth time window of mi. 

w s
i，j is the start time of this window in minutes， and 

w e
i，j is the end time in minutes.

M '= { Sk }N
k = 1denotes the set of clustered tasks. 

| M ' |= N， |∙| represents the cardinal number of a 
set. Sk = { mi }nk

|Sk |

i = nk
1
∈ M '， is a clustered task that con⁃

tains several meta-tasks. nk
j  is the index of jth meta-

task in Sk.

W 'k = ⋂
nk

|Sk |

i = nk
1

W i is the visible time window of clus⁃

tered task Sk. It takes the intersection of the set of 
all meta-tasks’ visible time windows within the clus⁃

ter. W 'k = ⋃
n'k

j = 1
w 'k，j consists of n'k time windows.

Fig.1　Four-phase framework for oversubscribed task scheduling
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P '=[ p'1，p'2，⋯，p'N ]， where p'k represents the 
priority of the clustered task Sk， k = 1，2，⋯，N.

U '=[ u'1，u'2，⋯，u'N ] represents the required 
duration of clustered tasks in the set of M '.

C k
l  denotes whether the clustered task Sk satis⁃

fies the lth constraint.
1. 1. 2 Constraints for clustering　

（1） All meta-tasks in each clustered task must 
meet the following constraints.

① Time window
For any clustered task Sk = { mi }nk

|Sk |

i = nk
1
∈ M '， its 

visible time window set W 'k = ⋃
n'k

j = 1
w 'k，j should satisfy 

the observation requirements of all meta-tasks with⁃
in the class， i.e.

∀i,∃j:w 'e
k,j - w 's

k,j ≥ max ( ui ) （1）
where i = nk

1，nk
2，⋯，nk

|Sk |；j = 1，2，⋯，n'k；k=1，2，
…，N.

If the clustered task Sk satisfies this constraint， 
then C k

1 = 1， otherwise C k
1 = 0.

② Field⁃of⁃view of the payload
All meta-tasks in each clustered task should be 

visible to the payload. It indicates that the maximum 
angle between these meta-tasks and the payload 
must be less than the payload’s field-of-view angle 
v°， as shown in Fig.2， i.e.

∀i,j: mi,mj ≤ v （2）
where ∙ ，∙  represents the angle between two tasks 
and the payload. Eq.（2） is equation to Eq.（3）.

∀i,j: cos mi,mj ≥ cos v （3）
A meta-task in a 3D coordinate system is de⁃

picted as Fig. 3. Assuming that the payload’s posi⁃
tion can be roughly regarded as the origin of the equa⁃
torial coordinate system， the three-dimensional unit 
vector of the meta-task mi is ei=（cosri cosdi，sinri ·
cosdi， sindi）. Thus， meta-tasks mi and mj have the 
following relationship

cos mi,mj = ei ∙ej = cos di cos dj cos ( ri - rj)+
sin di sin dj （4）

where i，j = nk
1，nk

2，⋯，nk
|Sk |.

If a clustered task Sk satisfies this constraint， 
then C k

2 = 1， otherwise C k
2 = 0.

（2） Different clustered tasks should satisfy the 
following constraint： Observation times of the 
meta⁃task.

Meta-tasks are atomic. Each meta-task can on⁃
ly be observed once， i.e.，

∀k,k ':Sk ∩ Sk' = ∅ （5）
where k = 1，2，⋯，N； k '∈ C[ ]1，N { k }.

If a clustered task Sk satisfies this constraint， 
then C k

3 = 1， otherwise C k
3 = 0.

1. 1. 3 Multi‑objective function　

The multi-objective function f1 that minimizes 
the number of clustered tasks and maximizes the 
constraint satisfaction degree is defined as

f1 = α1 ∙ ( 1 - fcn )+ β1 ∙fcs （6）
where fcn denotes the number of clustered tasks after 
normalization； fcs the constraint satisfaction degree 
of the meta-tasks after normalization； and α1 and β1 
are the factors of fcn and fcs， respectively. This paper 
sets α1 = 1 and β1 = 10. A higher factor β1 allows a 
task to satisfy each constraint as early as possible in 
the iteration. fcn and fcs are calculated as follows.

If there are fewer clustered tasks， the problem 
dimension in the scheduling will be smaller， result⁃
ing in more tasks being assigned.

fcn = N
I

（7）

The meta-tasks in each clustered task should 
satisfy clustering constraints as much as possible， 
and the normalized task constraint satisfaction de⁃

Fig.2　Field of view of a telescope (a circular field-of-view 
in this example)

Fig.3　A meta-task in a 3D coordinate system
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gree is computed as 

fcs =
∑
k = 1

N

C k
1 ∙C k

2 ∙C k
3 ∙|Sk |

I
（8）

1. 1. 4 Recalculation for the properties of a clus‑

tered task　

Meta-tasks are grouped into several clustered 
tasks by clustering， each containing at least one me⁃
ta-task. The properties of a clustered task Sk =
{ mi }nk

|Sk |

i = nk
1
∈ M ' must be recalculated.

The priority of the clustered task is the average 
of all the meta-tasks in it， i.e.

p'k =
∑
i = nk

1

nk
|Sk |

pi

|Sk |
（9）

The observation duration of the clustered task 
is the maximum among all its meta-tasks， i.e.

u'k = max ( { ui }nk
|Sk |

i = nk
1
) (10)

1. 2 Short‑term task scheduling problem for as‑
tronomy satellites　

Short-term scheduling typically generates 
weekly plans in minutes or seconds［1， 23］.The calcula⁃
tion precision in this paper is measured in minutes.
1. 2. 1 Definition and description of the sym ‑

bols　

A Sun， A Earth and A Moon are the angles between 
the telescope pointing to and the directions of the 
the Sun， the Earth， and the Moon， respectively.

G = ⋃
nG

j = 1
gj denotes the set of periods when a 

satellite passes the ground station. gj =[ g s
j，g e

j ]∩ Z. 
g s

j  represents the start time of the jth period； g e
j  rep⁃

resents the end time of the jth period.

H= ⋃
nH

j = 1
hj is the set of periods when a satellite 

passes through the South Atlantic Anomaly （SAA）.
 hj =[ h s

j，h e
j ]∩ Z， where h s

j  represents the start time 
of the jth period， and h e

j  the end time of the jth peri⁃
od.

O i，j is a decision variable， which determines 
the relationship between clustered tasks Si and Sj in 
a schedule. If the next task of Si is Sj， then O i，j = 1； 
otherwise， O i，j = 0.

t mane is the attitude maneuver time of a satellite. 
The satellite must adjust its attitude before each ob⁃

servation. In order to simplify the calculation， the at⁃
titude maneuver time is taken as the maximum val⁃
ue， i.e.， t mane = 5.

T =[ t1，t2，⋯，tN ] denotes the observation start 
time of the clustered tasks， in which ti is the start 
time of Si.
1. 2. 2 Constraints for scheduling　

（1） Pointing of the payload
The observation will be impacted by sunlight， 

Earth’s occlusion， and lunar albedo. Consequently， 
the payload’s pointing must satisfy the following re⁃
quirements

ì

í

î

ïïïï

ïïïï

A Sun ≥ α
A Moon ≥ β

A Earth ≥ γ
（11）

The values of A Sun， A Moon and A Moon are calculat⁃
ed on the Satelite Tool Kit software. Referring to 
the given existing tasks， we set α = 95°， β = 20°， 
and γ = 77°.

If a clustered task Sk satisfies this constraint， 
then C k

4 = 1； otherwise C k
4 = 0.

（2） No attitude maneuvering when a satellite 
passes the ground stations

The satellite will downlink data as it passes the 
ground station. It should not perform attitude ma⁃
neuver μ minutes before and during the transit， i.e.

∀i:[ ti - t mane,ti ] ∩ ⋃
nG

j = 1
[ g s

j - μ,g e
j ] = ∅ （12）

where i = 1，2，⋯，N.
According to the performance of an astronomi⁃

cal satellite， μ is set to 6 empirically in the following 
simulation.

If a clustered task Sk satisfies this constraint， 
then C k

5 = 1， otherwise C k
5 = 0.

（3） No observation when a satellite passes the 
SAA

When passing SAA， the satellite deactivates 
the payload to prevent radiation damage， i.e.

∀i:[ ti,ti + ui ] ∩ H = ∅ （13）
where i = 1，2，⋯，N.

If a clustered task Sk satisfies this constraint， 
then C k

6 = 1， otherwise C k
6 = 0.

（4） Maximum number of attitude maneuvers 
per orbit

Due to limited energy， the satellite should per⁃
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form at most X times attitude maneuvers in an orbit 
period， i.e.

∀     i,k,⋯,l,j
X

= 1,2,⋯,N:

( tj - ti ≥ b ) ∧ (    O i,k⋯O l,j

X - 1

= 1 ) （14）

where b is the orbit period of the satellite.
We set X = 3［24］ in the simulation. If a clus⁃

tered task Sk satisfies this constraint， then C k
7 = 1， 

otherwise C k
7 = 0.

（5） Satellite observation capability
A satellite can only carry out one observation 

task at a given time， i.e.
∀i,j: [ ti,ti + ui ]∩[ tj,tj + uj ]= ∅ （15）

where i，j = 1，2，⋯，N， and  j ≠ i.
If a clustered task Sk satisfies this constraint， 

then C k
8 = 1， otherwise C k

8 = 0.
（6） Time of attitude maneuver
Before executing their next task， satellites 

need time to perform attitude maneuvers， i.e.
∀i,j = 1,2,⋯,N:

( ti + ui + t mane ≤ tj ) ∧ ( O i,j = 1 ) （16）
If a clustered task Sk satisfies this constraint， 

then C k
9 = 1， otherwise C k

9 = 0.
1. 2. 3 Multi‑objective function　

Short-term task scheduling aims to include as 
many tasks in the schedule as feasible. It further⁃
more endeavors to raise the average priority of the 
scheduled tasks to the highest possible level. The 
multi-objective function is designed as

f2 = α2 ∙fpri + β2 ∙fTC （17）
where fpri is the normalized priority of clustered 
tasks； fTC the meta-tasks’ completion； and α2 and 
β2 are the factors of fpri and fTC， respectively. They 
have the relationship α2 + β2 = 1 . In this paper， we 
set α2 = β2 = 0.5.

A task with a high priority is scientifically im ⁃
portant. The normalized task priority is determined 

according to the following equation

fpri =
∑
k = 1

N

λk ∙p'k

∑
k = 1

N

p'k
（18）

where λk = ∏
i = 4

9

C k
i ， k = 1，2，⋯，N.

More tasks scheduled result in a higher level of 
task completion rate and a greater likelihood of sci⁃
entific discovery. Therefore， the normalized task 
completion is calculated as 

fTC =
∑
k = 1

N

λk

N
（19）

where λk = ∏
i = 4

9

C k
i ， k = 1，2，⋯，N.

2 Modified ABC Algorithm 

The ABC algorithm［25］ is an intelligent optimi⁃
zation algorithm inspired by the cooperative behav⁃
ior of bee colonies when foraging for food. This al⁃
gorithm searches for the global optimal solution via 
the localized optimization of individual bees. Com⁃
pared with other intelligent algorithms， ABC has 
the advantages of fewer control parameters and 
stronger optimization ability. Therefore， this algo⁃
rithm has been widely used and applied in search 
tasks such as path planning［26-28］， disease identifica⁃
tion［29-30］， parameter tuning of controllers［31］， and car 
structure design［32］， etc.

2. 1 BasicABC algorithm　

Bees are highly social creatures. They play 
three roles： Employed bees， onlooker bees， and 
scout bees. As detailed in Table 1， each of these 
roles has distinct duties in the food collection pro⁃
cess. The collective goal of the bee population is to 
find the best food source.

Table 1　Performance comparison between the conventional microwave system and the microwave photonic system

Role
Employed bee

Onlooker bee

Scout bee

Division of labor in the bee population
Search for food sources and share the information with other bees

Receive information from employed bees; pick an employed bee and 
follow it to search for food nearby

Transformed from employed bees with depleted food sources and se⁃
lect food sources randomly

Functions in the algorithm
Explore excellent potential solutions
Utilize the information to search for 

better solutions

Jump out of the local optimal solution
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2. 1. 1 Population initialization　

The number of the population is N P. Each food 
source is a solution. These two terms will be used 
interchangeably. At first， there are only employed 
bees and onlooker bees. Their numbers each com ⁃
prise half of the population size and are noted as N S. 
The number of food sources is equal to the number 
of employed bees.

For an L-dimensional problem， the position of 
a food source is denoted as Xi =[ xi，1，xi，2，⋯，xi，L ]， 
where i = 1，2，⋯，N S. Each dimension of the initial 
food source is generated by

xi,j = Lj + rand∙(U j - Lj ) （20）
where Lj and U j are the lower bound and the upper 
bound of the dimension， respectively； rand is a func⁃
tion generating a random number within the 
range ［0，1］.
2. 1. 2 Employed bee phase　

Every employed bee randomly selects a dimen⁃
sion j of its food source to update according to 
Eq.（21）. The updated new food source is noted as V i.

vi,j = xi,j + φi,j ( xi,j - xk,j ) （21）
where φi，j is a random number within the range 
［-1，1］. Xk is a food source selected randomly， 
where k = 1，2，⋯，N S， k ≠ i.

Then， the employed bee chooses the better 
one between V i and Xi based on a greedy strategy. 
If the food source is updated， it makes the search 
count triali = 0 for food source Xi； otherwise， 
trial i = trial i + 1.
2. 1. 3 Onlooker bee phase　

When the employed bees return to their nest， 
they share information about food sources with on⁃
looker bees. Each onlooker bee chooses a food 
source to search for according to the probability cal⁃
culated by

pi = fi

fmax
（22）

where pi denotes the probability of food source Xi 
being chosen. fi the fitness value of food source Xi， 
fmax = max ( f1，f2，⋯，fNS ). After selecting an em ⁃
ployed bee， an onlooker bee searches in the neigh⁃
borhood of its food source. The onlooker bee uses 
the same search strategy as the employed bees by 

Eq.（21）.
Then， the onlooker bee chooses the better one 

between V i and Xi based on a greedy strategy. If the 
food source is updated， then it makes the search 
count trial i = 0 for food source Xi； otherwise， 
trial i = trial i + 1.
2. 1. 4 Scout bee phase　

At the end of each iteration， check if any food 
sources have been searched more than limilted 
times. If so， the related employed bee is converted 
to a scout bee and randomly generates a new food 
source by Eq.（20）.

2. 2 DirectABC algorithm　

A new solution in the basicABC algorithm is 
generated based on an old solution. Such a simple 
operation is suitable for local search， but it leads to 
the inability of good information to spread within the 
population quickly. Therefore， ABC has a limited 
global search capability and a slow convergence 
speed［33］.

As was previously stated， onlooker bees obtain 
information about the food source from the em ⁃
ployed bees. This distinction in search strategies be⁃
tween employed and onlooker bees is not considered 
in basicABC. Inspired by the elite search strategy［34］ 
and the quick ABC algorithm［35］， the ABC algo⁃
rithm with adaptive hybrid search strategies （Direct⁃
ABC） is proposed.
2. 2. 1 Employed bee： Adaptive elite global‑local 

search strategy　

In the elite-guided search strategy， a bee ran⁃
domly selects a solution in the population as the 
search center and then chooses a random elite solu⁃
tion to guide the search. This strategy not only en⁃
larges the search space but also improves the ability 
to explore optimal solutions and accelerates the con⁃
vergence speed of the algorithm. The equation of 
the search process is given as

vi,j = xk,j + φi,j ( x elite
l,j - xk,j ) （23）

where xk，j is the jth dimension of solution Xk， and 
the random search center， k = 1，2，⋯，N S. x elite

l  is 
the lth elite solution， where l = 1，2，⋯，N e. N e =

ë ûη∙N S ， where η denotes the elite rate and ë û∙  a 
round down function.
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This strategy accelerates the algorithm’s con⁃
vergence， but it introduces the premature conver⁃
gence problem， which implies that all individuals in 
the population are trapped in local optima. The 
ABC algorithm is expected to perform global explo⁃
ration in the early iterations and more local explora⁃
tion in the later iterations. An adaptive elite global-
local search strategy is proposed to improve the solu⁃
tion accuracy and overcome the premature conver⁃
gence issue. The improved strategy works as

vi,j = δ t
i,j[ xk,j + φi,j( x elite

l,j - xk,j) ]+

              ( 1 - δ t
i,j ) [ xi,j + φi,j ( xi,j - xk,j ) ]  （24）

where δ t
i，j is a strategy control factor. If rand ≥ ε， 

δ t
i，j = 1； otherwise， δ t

i，j = 0. ε = 0.5 ×( 1 +
cos ( ( t∙π ) Cmax ) )， where t is the current iteration； 
and Cmax the maximum iteration.
2. 2. 2 Onlooker bee： Adaptive variable neigh‑

borhood optimal search strategy　

Quick ABC （qABC） realizes the difference be⁃
tween onlooker bees and employed bees to improve 
the way onlooker bees search. The best solution in 
the neighborhood of the current solution is taken as 
the search center. Subsequently， updates are guided 
by a randomly selected solution by

vbest
Bi,j = xbest

Bi,j + φi,j ( x best
Bi,j - xk,j ) （25）

where Bi represents the neighbors of Xi and itself； 
and xbest

Bi
 the best solution among Bi.

The definition of Bi is given as
Bi = { l|d ( i,l ) ≤ σ∙d mean

i } （26）
where d ( i，l ) calculates the Euclidean distance from 
Xi to Xl， and l = 1，2，⋯，N S. d mean

i  is the average 
Euclidean distance between Xi and the rest of solu⁃
tions， i.e.

d mean
i =

∑
l = 1

NS

d ( i,l )

N S - 1 （27）

σ is the neighborhood radius， which controls 
the neighborhood size； σ ∈ [ 0，+ ∞ ). When σ = 0， 
xbest

Bi，j = xi，j， Eq.（25） is equivalent to Eq.（21）. When 
σ → +∞， Eq.（25） updates solutions with the glob⁃
al optimum as the search center. However， the per⁃
formance of qABC is affected by the parameters σ. 
It is anticipated that the algorithm should prioritize 
global exploration in the early iterations and local ex⁃

ploration in the later iterations. To this end， an 
adaptive variable neighborhood optimal search strat⁃
egy is proposed by introducing an adaptive operator. 
The modified strategy searches by Eq.（25）. But the 
operator σt and the neighbors are calculated by Eq.（28） 
and Eq.（29）， respectively.

σt = ( )t
Cmax

- 3
2

- 1 （28）

Bi = { l|d ( i,l ) ≤ σt ∙d mean
i } （29）

In Eq.（28）， Cmax is the maximum iteration， 
and t ∈ { 1，2，⋯，Cmax } denotes the current iteration. 
The operator σt approaches infinity at the start of the 
iteration， then decreases monotonically with itera⁃
tion and eventually converges to 0. Consequently， 
this method enables a transition from global search 
to local search.
2. 2. 3 Pseudocode of DirectABC　

The inputs of DirectABC are as follows： The 
number of population N P， the elite rate η， the maxi⁃
mum iteration Cmax， and the maximum search times 
limit. The detailed steps of DirectABC are provided 
as follows.

（1） //Initialization phase:
（2） Initialize the food sources(initial solutions) 

Xi by Eq. (20), where i = 1,2,⋯,N S.
（3） Calculate the fitness of solutions.
（4） Memorize the best solution
（5） t=0
（6） Repeat
（7） //Employed bee phase:
（8） For each employed bee:
（9） Search a new candidate solution V i accord⁃

ing to Eq.(24) and calculate its fitness.
（10） Apply the greedy strategy between V i 

and Xi.
（11） If there is an update, trial i = 0; other⁃

wise, trial i = trial i + 1.
（12） //Onlooker bee phase:
（13） For each onlooker bee:
（14） Select a solution Xi according to Eq.(22).
（15） Determine the best neighbor of Xi depend⁃

ing on Eqs. (25,28,29), and calculate its fitness.
（16） Apply the greedy strategy between V best

Bi
 

and X best
Bi

.
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（17） If there is an update, trialbest
Bi

= 0; other⁃
wise, trialbest

Bi
= trialbest

Bi
+ 1.

（18） Memorize the best solution found so far.
（19） //Scout bee phase:
（20）Check whether any solution has been 

searched for more than limited times. If it exists, 
abandon the solution, and replace it with a new one 
generated by Eq.(20).

（21） t = t + 1
（22） Until t = Cmax

The flowchart of DirectABC is provided in 
Fig.4.

3 Simulation and Result Analysis 

3. 1 Data details　

This experiment uses the simulation dataset of 
a satellite. The dataset contains long-term schedul⁃
ing results for 52 weeks （one year）， with a time pre⁃
cision of days. To verify the algorithm’s and frame⁃
work’s effectiveness， we selected weekly long-term 

scheduling results of different dimensions for simula⁃
tion. Table 2 shows the dataset-related information.

3. 2 Solution structure　

Fig.5（a） shows a clustering solution. The clus⁃
tering algorithm assigns a label li to each meta-task 
mi， which records the category that the meta-task 
belongs， where li ∈ [ 1，I ]， i = 1，2，⋯，I. Meta-

tasks with the same label consist of a clustered task. 
There are N different labels in total， which means it 
has N clustered tasks， where N ∈ [ 1，I ]. Fig. 5（b） 
demonstrates a solution for scheduling. The schedul⁃
ing algorithm allocates a start time tj for each clus⁃
tered task Sj， where tj ∈ ［1，10 080］ and j =
1，2，⋯，N.

3. 3 Experimental setting　

As shown in Table 3， six algorithm combina⁃
tions are experimentally evaluated. For each combi⁃
nation， the clustering algorithm runs five times and 
the scheduling algorithm runs ten times. Besides， 
two widely-used algorithms， the genetic algorithm 

Table 2　Statistics of datasets

Data⁃
set

Data⁃
set 1
Data⁃
set 2
Data⁃
set 3
Data⁃
set 4
Data⁃
set 5
Data⁃
set 6

Week

4

6

13

31

10

51

Num⁃
ber of 
meta⁃
tasks

104

201

310

411

509

592

Number 
of tasks 
with pri⁃
ority of 1

1

61

79

314

360

508

Number 
of tasks 
with pri⁃
ority of 2

20

67

73

42

65

49

Number 
of tasks 
with pri⁃
ority of 3

61

50

128

24

62

21

Number 
of tasks 
with pri⁃
ority of 4

22

23

30

31

22

14

Fig.4　Flowchart of DirectABC

Fig.5  Forms of the algorithm solution
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（GA） and the particle swarm optimization （PSO）， 
are also used for comparison in the clustering phase.

The common parameters are set as follows： 
N P = 200； limit = 100； Cmax is set to 1 000 in clus⁃
tering and 10 000 in scheduling. In DirectABC， the 
elite rate η = 0.1. In standard PSO， inertia weight 
w = 1， local acceleration factor c1 = 2， and global 
acceleration factor c2 = 2［36］. Standard GA has two ad⁃
ditional parameters： The probability of crossover 
pc and the probability of mutation pm. According to 
Pongcharoen’s setting in GA［37］， experiments are per⁃
formed for three parameter combinations： pc=0.3 
and pm=0.02， pc=0.6 and pm=0.1， and pc=0.9 and 
pm=0.18. The field of view of the payload v=15°.

3. 4 Performance index　

N： The number of clustered tasks. Each clus⁃
tered task contains several meta-tasks. The number 
of meta-tasks in all clustered tasks equals the num ⁃
ber of meta-tasks before clustering.

τ（%）： Task number reduction efficiency. The 
number of clustered tasks is lower with a higher τ.

τ = 1 - fcn (30)
TC（%）： Task completion rate. The ratio of 

the number of meta-tasks in the scheduling result to 
the one in that dataset.

TC =
∑
k = 1

N

λk ∙|Sk |

I
(31)

TC（p=k）（%）： Task completion rate of meta-

tasks with priority k.
ACS： Average clustering constraint satisfac⁃

tion. It demonstrates the ability of an algorithm to 
find solutions that satisfy the constraints. It is calcu⁃
lated by

ACS = C k
1 ∙C k

2 ∙C k
3

T run
(32)

where T run is the number of times that the clustering 
experiment runs.

Speed of convergence： If the algorithm con⁃
verges quickly， it should obtain relatively stable fit⁃
ness in a relatively small number of iterations.

3. 5 Results and analysis　

Scheduling arranges the clustered tasks onto a 
timeline measured in minutes. The scheduling algo⁃
rithm outputs the start time of each clustered task 
and task-related information. Due to the space limi⁃
tation， only a subset of the optimal experiment re⁃
sults for Case 1 on Dataset 5 are shown in Table 4.
3. 5. 1 Effectiveness of clustering　

The effectiveness of clustering is evaluated 
from two perspectives： Task number reduction effi⁃
ciency and task completion rate.

Table 3　Algorithm combinations for experiments

Case

1
2
3
4
5
6

Algorithm
Clustering

DirectABC

BasicABC

—

Scheduling
DirectABC
BasicABC
DirectABC
BasicABC
DirectABC
BasicABC

Table 4　Optimal partial scheduling results obtained by applying Case 1 on Dataset 5

Observing order

1
2

⋮

99

100
⋮

237
238
239

Set of target number

[159,175,253]
[119]

⋮
[492,347,505,384,

444]
[455,445]

⋮
[492,505,444,593]

[557,410]
[169,314,467]

ra/(°)

[208.82,215.66,233.75]
[169.28]

⋮
[208.82,215.66,199.99,

224.01,215.37]
[213.41,185.44]

⋮
[208.81,199.99,215.37,214.25]

[169.29,148.89]
[220.53,207.22,208.58]

dec/(°)

[56.21,58.03,53.34]
[20.24]

⋮
[56.21,58.03,52.59,

50.80,47.79]
[70.50,75.31]

⋮
[56.21,52.59,47.79,44.93]

[65.37,69.06]
[35.44,26.59,32.93]

Start 
time/min

111
155
⋮

4 323

4 378
⋮

9 957
9 982

10 037

End time/
min
131
175
⋮

4 343

4 398
⋮

9 977
10 002
10 057
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（1） Task number reduction efficiency
Fig.6 compares the average number of tasks be⁃

fore and after clustering with different algorithms.

DirectABC clustering reduced the average 
number of clustered tasks on Datasets 1—6 to 63， 
132.2， 165.5， 276.4， 281.4， and 351.8， respective⁃
ly. The average task number reduction efficiency τ=
39.72%. On Datasets 1—6， the BasicABC algo⁃
rithm generated an average of 79.4， 176.6， 165.5， 
276.4， 281.4， and 351.8 clustered tasks， respective⁃
ly. The average task number reduction efficiency τ=
18.60%.

Therefore， regardless of whether DirectABC 
or BasicABC is applied， a significant decrease in 
task numbers can be observed， proving the effective⁃
ness of the clustering model.

（2） Task completion rate
Fig. 7 displays the task completion rate for dif⁃

ferent algorithm combinations. 
When DirectABC is used for scheduling， the 

task completion rates with clustering （Cases 1 and 

3） are higher than those without clustering 
（Case 5）. 

Similarly， when BasicABC is used for schedul⁃
ing， the task completion rates with clustering （Cas⁃
es 2 and 4） are also higher than those without clus⁃
tering （Case 6） in general.

Clustering can therefore effectively improve 
task completion rates in scheduling.
3. 5. 2 Effectiveness of DirectABC　

The effectiveness of the DirectABC algorithm 
will be evaluated based on the following factors： 
Task number reduction efficiency， task completion 
rate， task completions with different priorities， and 
convergence speed. In addition， PSO and GA will 
be applied in the clustering phase to validate Direct⁃
ABC’s performance.

（1） Task number reduction efficiency
As discussed in Section 3.5.1， the τ-value of 

clustering with BasicABC is 18.60%， while that 
with DirectABC is 39.72%. As a result， the Direct⁃
ABC algorithm performs more effectively in the 
clustering phase.

（2） Task completion rate
Now compare DirectABC and BasicABC in 

the scheduling phase based on the same clustering 
results， as shown in Fig.7.

When using DirectABC in the clustering 
phase， the task completion rates with DirectABC 
scheduling are 0.17%， 0.09%， 1.25%， 18.32%， 
15.71%， and 13.93% higher than those with Basi⁃
cABC on Datasets 1—6，respectively.

When using BasicABC in the clustering phase， 
the task completion rates with DirectABC schedul⁃
ing are 0.66%， 0.18%， 13.25%， 15.15%， 
13.18%， and 11.99% higher than those with Basi⁃
cABC on Datasets 1—6，respectively.

When no clustering is used， the task comple⁃
tion rates with DirectABC scheduling are 0.81%， 
1.57%， 11.6%， 15.8%， 13.36%， and 12.65% 
higher than those with BasicABC on Datasets 1—6，
respectively.

Therefore， under the same clustering algo⁃
rithm， DirectABC consistently achieves a higher 
task completion rate in the scheduling phase than 
BasicABC.

（3） Task completions with different priorities

Fig.6 Comparison of the average number of tasks before 
and after clustering with different algorithms

Fig.7 TC of different algorithm combina-tions on different 
datasets

317



Vol. 40 Transactions of Nanjing University of Aeronautics and Astronautics

Fig.8 shows the average task completion rates 
of meta-tasks with different priorities. Except for Da⁃
taset 2 at p=4， where Case 1 had a marginally low⁃
er completion rate than that of Case 2， Case 1 had 

the best completion rate for both high and low-priori⁃
ty tasks. In addition， Case 1 has a lower standard de⁃
viation， indicating that DirectABC performs greater 
stably.

（4） Convergence speed
Fig. 9 demonstrates that both PSO and GA 

have difficulty in finding feasible solutions that 
fully satisfy the clustering constraints in 1 000 it⁃

erations. In contrast ， DirectABC achieves supe⁃
rior clustering results than GA and PSO ， find⁃
ing solutions that satisfy all constraints more 
quickly.

Fig.8　Average task completion by priority for different combinations of algorithms on different datasets

Fig.9 Average convergence curves of different algorithms for clustering on Dataset 5
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As shown in Fig.10， DirectABC also converg⁃
es more quickly during the scheduling phase. Case 
1， Case 3， and Case 5 always converge earlier with 

higher accuracy than their experimental counter⁃
parts， Case 2， Case 4， and Case 6， respectively， 
on different datasets.

4 Discussion and Conclusions 

This paper proposes a clustering-scheduling 
framework suitable for astronomy satellite task 
scheduling in the context of oversubscribed tasks. In 
the clustering phase， a multi-objective clustering 
model was established considering the constraints of 
the observation time window， payload’s field-of-
view， and task observation times. The purpose of 
clustering is to reduce the task scale by grouping 
several meta-tasks into a single clustered task， 
which is then observed simultaneously by the pay⁃
load. In the scheduling phase， we consider six con⁃
straints about the space environment， user require⁃
ments， and satellite resources and develop a multi-
objective scheduling model. The model aims to max⁃
imize the task completion rate and the priority of as⁃
signed tasks.

The ABC algorithm has few control parame⁃
ters. It is particularly effective at solving high-dimen⁃
sional problems. These characteristics make it an 
ideal candidate for the clustering-scheduling prob⁃
lem. However， BasicABC has a slow convergence 

speed and inadequate global search capabilities， 
which prompts the proposal of DirectABC. Direct⁃
ABC incorporates the adaptive elite global-local 
search strategy into the employed bee phase. This 
strategy causes the algorithm to focus on global ex⁃
ploration early on and mainly conduct local search⁃
ing later on. In addition， the onlooker bee phase ap⁃
plies an adaptive variable neighborhood optimal 
search strategy. This strategy takes the optimal solu⁃
tion in the neighborhood as the search center， with a 
random solution guiding the updates. The choice of 
neighborhood factor is crucial to the performance of 
the algorithm. Therefore， the δt operator is de⁃
signed to decrease monotonically with iteration， en⁃
abling an adaptive adjustment of the neighborhood 
from large to small.

The following conclusions are drawn from sim ⁃
ulations of datasets in six dimensions：

（1） The framework proposed in this paper is 
suitable for the oversubscribed task scheduling prob⁃
lem.

① The size of the tasks can be effectively re⁃
duced during the clustering phase. For instance， the 

Fig.10 Average convergence curves of different algorithm combinations for scheduling on different datasets
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DirectABC algorithm reduced 592 meta-tasks to 
351.8 clustered tasks on Dataset 6， with an average 
task number reduction efficiency of 40.57%.

② Clustering improves task completion rate in 
scheduling. For example， Case 1 and Case 5 both 
used the same scheduling algorithm. However， 
Case 1 with DirectABC clustering improved the 
task completion rates by 3.94%， 1.25%， 27.23%， 
25.68%， 39.31%， and 30.38%， respectively， on 
each dataset compared to Case 5 without clustering.

（2） The DirectABC algorithm has superior 
performance over BasicABC， PSO and GA.

① DirectABC obtains a better solution. Re⁃
garding clustering， the average task number reduc⁃
tion efficiency of DirectABC was 21.12% higher 
than that of BasicABC. In addition， DirectABC 
could find a solution that satisfies the constraints 
quickly. while GA and PSO were prone to fall into 
local optimal solutions leading to low efficiency. In 
terms of scheduling， taking Case 1 and Case 2 as ex⁃
amples， they both used the same clustering algo⁃
rithm. Regarding average task completion rate， 
Case 1 using DirectABC scheduling was 0.17%， 
0.09%， 1.25%， 18.32%， 15.71%， and 13.93% 
higher than Case 2 using BasicABC scheduling on 
each dataset， respectively.

② DirectABC performs more stably. Case 1， 
which used DirectABC clustering and scheduling， 
had a lower standard deviation than other cases in 
general.

③ DirectABC has a faster convergence speed. 
It can find a superior solution earlier. In the cluster⁃
ing phase of Dataset 5， DirectABC found feasible 
solutions after 300 iterations， while GA and PSO 
failed to show a significant convergence trend within 
1 000 iterations. In the scheduling phase， cases with 
DirectABC scheduling converged faster than cases 
with BasicABC based on the same clustering method.

The framework still needs to be improved. 
And clustering is only applied before short-term task 
scheduling. Whether clustering can be carried out 
before long-term scheduling is also a direction for fu⁃
ture exploration. Plus， all of the datasets used in 
this paper are deterministic tasks. When transient 
targets like gamma-ray bursts appear， users propose 

the observation requirements for these uncertainty 
tasks. These tasks usually have a higher priority and 
need to be observed immediately. Therefore， the 
framework should also consider dynamic reschedul⁃
ing of responding quickly to uncertain and interrupt⁃
ed tasks.
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超额订购下天文卫星短期任务的聚类规划方法

尹晓丹 1，2， 白 萌 1，2， 李卓恒 1

（1.中国科学院国家空间科学中心卫星测运控技术实验室, 北京 100190, 中国；

2.中国科学院大学, 北京 100049, 中国）

摘要：当用户的观测需求超过卫星的观测能力时，天文卫星的任务规划就成为一个超额订购的问题。对于该问

题，设计了一个包含聚类阶段和短期任务规划阶段的框架。首先建立了任务聚类模型，用于减少超额订购任务

的规模。其次，使用聚类的结果作为输入，建立了短期任务规划的数学模型。最后，提出了一种自适应混合搜索

策略的人工蜂群算法，在基本人工蜂群算法中引入了自适应精英全局⁃局部搜索策略和自适应变邻域最优搜索策

略，以求解聚类和短期规划问题。所提出的算法在实验中表现出更好的寻优能力和更快的收敛速度。此外，它

还有效地减少了聚类阶段的任务数量，提高了短期任务规划阶段的任务完成度。

关键词：天文卫星任务规划；超订购问题；任务聚类；短期任务规划；人工蜂群算法
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