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Abstract: The complexity of the modern space environment is increasing dramatically under the condition of 
informatization. Thus， it is difficult for ground operators to process a large amount of information and recognize the 
approaching intention of unknown objects in a short time. A dynamic Bayesian network model combined with fuzzy 
theory and experts’ experience is designed to help operators recognize the approaching intention quickly and 
systemically. Compared with the static Bayesian network （SBN）， the dynamic Bayesian network is more practical in 
recognizing the intention of multiple time slices and predicting the future trends through successive probabilities 
calculation， which is suitable for rapidly changing environment in space. Numerical examples show that the proposed 
method of intention prediction is feasible and effective.
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0 Introduction 

Space facilities are facing fatal dangers from 
various flight objects， space debris， and so on. If 
they carry out orbital maneuver every time they de⁃
tect danger， lots of fuel will be wasted and their or⁃
bital life can be shortened. Consequently， it be⁃
comes very important to recognize different inten⁃
tions of approaching trajectory of satellites， and 
dodge real dangerous objects further. And， classify⁃
ing approaching intention has come into being a hot 
topic.

Approaching intention refers to space flight 
planning which aims to achieve one specific goal， 
and it has great influence on operators’ analysis and 
decision-making. But recognizing the approaching in⁃
tention only by people is very subjective. Facing the 
large amount of orbit information in space， it is ur⁃
gent to come up with an intelligent method to classi⁃
fy different risk factors and convert them to probabil⁃
ity problem， so as to offer people data reference to 

evaluate the situation.
The existing research on intention recognition 

is mainly based on template matching， expert sys⁃
tem， Bayesian network， neural network， deep 
learning， evidence theory and so on［1］. Li et al.［2］ 
proposed a three-way decision-making model based 
on sequential intention recognition aiming at the 
temporal problem of air combat target intention rec⁃
ognition. Zhou et al.［3］ introduced the rectified linear 
unit （ReLU） activation function and the adaptive 
moment estimation （Adam） optimization algo⁃
rithm， and designed an intention recognition model 
based on deep neural network. Chen et al.［4］ estab⁃
lished a fuzzy system model based on integrated neu⁃
ral networks in which target property and the inten⁃
tion are used to train neural networks to obtain the 
degree of fuzzy membership and output functions of 
different intentions. Ou et al.［5］ proposed an auto⁃
matic tactical intention recognition model based on 
deep learning methods of stacked auto-encoder 
（SAE）. Cao et al.［6］ proposed a high-dimensional 
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data similarity model and used the obtained high-di⁃
mensional data similarity to sequentially recognize 
intentions by means of the theory of D-S evidence. 
Yang et al.［7］ analyzed the limitation of the multi-en⁃
tities Bayesian network（MEBN）in expressing prob⁃
abilistic transfer relation and sequence rule knowl⁃
edge， and proposed the construction method of tacti⁃
cal intention recognition model based on extended 
multi-entities Bayesian network （EMEBN）. How⁃
ever， the simulation results in Ref.［2］ only repre⁃
sented the types of intentions in different time peri⁃
ods， but could not describe the data changes of vari⁃
ous intentions over time. The methods in Refs.［3-4］ 
were easy to make mistakes when the training data 
were insufficient. Ref.［5］ was possible to make ac⁃
cumulated errors during the training of the model 
and affect the recognition effect because the input of 
the model contained the state information of the tar⁃
get at multiple times. Ref.［6］ might lead to wrong 
conclusions if there was a strong conflict between 
the evidence.

Aiming at the above possible problems， this pa⁃
per adopts the method of dynamic Bayesian network 
for intention recognition， which does not need a lot 
of empirical evidence input and training， and also 
simplifies the model establishing. Bayesian network 
is the product of the combination of probability theo⁃
ry and graph theory. It is an uncertain causal correla⁃
tion model［8］. It not only intuitively shows the rela⁃
tionship among various risk factors in the process of 
space target approaching with the language of graph 
theory， but also builds the structure of related prob⁃
lems according to the rules of probability theory to 
reduce the complexity of orbit reasoning and analy⁃
sis， which makes it especially suitable for solving 
the dynamic variability of space information.

At present， there are many literatures on recog⁃
nizing the approaching intention of air targets by 
Bayesian network， but most of the researches on 
space targets are related to threat assessment or situ⁃
ational awareness. In this paper， a dynamic Bayes⁃
ian network is used to achieve the intention recogniz⁃
ing of space targets in dealing with dynamic changes 
and unknown information of combat situation.

This paper adopts the method of combining 
fuzzy set theory and dynamic Bayesian network to 
process the data of the contemporary space battle⁃
field， which is rational and advanced to some ex⁃
tent. The dynamic Bayesian model established in 
this paper innovatively sets time transfer probabili⁃
ties on not only the parent node， but the child node 
whose values are not easy to obtain for data input. It 
ensures the authenticity and integrity of the satellite 
attributes determination and makes up for the situa⁃
tion that the membership function cannot be calculat⁃
ed. Through adding time element， the proposed 
method has the ability to update the recognition re⁃
sults in real time based on the successive orbital data 
and professional knowledge， and provide people 
with valuable combat operation references in proba⁃
bilistic form. Apart from the approaching intention 
recognition， this method can also provide new ideas 
for collision evasion of space debris， which offers 
the basic evaluation for orbit transfer.

The rest of the paper is organized as follows. 
Firstly， the problem statement is described in Sec⁃
tion 1. The scenario of target approaching is estab⁃
lished， where the parameters of satellites and orbits 
are pointed out. Intention recognition steps and ba⁃
sics of orbit prediction and dynamics are also pre⁃
sented. Subsequently， Section 2 focuses on the in⁃
troduction of Bayesian network， including various 
condition assumptions， use of membership function 
and probability transformation theory. Thirdly， a dy⁃
namic Bayesian network model is established ac⁃
cording to the research content of this paper， each 
risk factor and its corresponding conditional proba⁃
bilities are determined in Section 3. Finally， Section 
4 realizes the simulation of intention recognition 
over continuous moments by inputting the prior 
probabilities and evidence obtained from the orbital 
data.

1 Problem Description of Ap⁃
proaching Intention Prediction 

There are many possible intentions for an un⁃
known space target to approach a satellite with pre⁃
diction ability， as shown in Fig.1 by blue satellite 
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and red satellite separately. Several potential inten⁃
tions are included， such as on-orbit repairment， dis⁃
assembly， attack， interference， etc. Generally， ap⁃
proaching to satellite is implemented by means of or⁃
bital maneuver， and intention prediction takes ad⁃
vantage of orbital prediction and relative attributes 
among satellites.

To describe approaching intention prediction， 
some parameters need to be declared：

（1） dmin is the minimum distance between two 
satellites of prediction satellite （PSat） and unknown 
satellite （USat）， namely， the minimum distance be⁃

tween Orbit 1 and Orbit 2 in Fig.1.
（2） d ′min is the minimum distance between 

PSat’s orbit and USat’s new orbit that is generated 
from orbital maneuver at position M.

（3） Point M denotes the position where USat 
makes orbital maneuver.

（4） Point A denotes the position where the dis⁃
tance between Orbit 1 and Orbit 3 reaches the mini⁃
mum value.

（5） Orbit 1 represents the orbit of the PSat， 
and Orbit 2 and Orbit 3 represent the orbits of the 
USat before and after maneuvering， respectively.

The approaching intention prediction problem 
usually refers to determining the USat’s approach⁃
ing intention at the closest distance between two or⁃
bits and the position before and after maneuvering. 
These are the places where the intention is most ob⁃
vious and likely to change. The prediction proce⁃
dures are separated into five steps.

Step 1 Establish the motion model of satellite.
Step 2 Use the Runge-Kutta method to real⁃

ize orbital prediction based on the motion model.
Step 3 Analyze various risk factors that affect 

intention recognition and build dynamic Bayesian 
network.

Step 4 Choose proper membership function 
and conditional probability for reasoning.

Step 5 Realize the approaching intention rec⁃
ognition.

Orbit prediction is to predict the position and 
velocity of a space target through kinematics equa⁃

tion or mathematical analysis under its current 
state［9］. Its essence is the process of solving the dif⁃
ferential equation describing the motion of the space 
target.

When the perturbation force is not considered， 
the orbital dynamics model of the space target repre⁃
sents the two-body problem， which is shown as

r̈= - μ
r 3 r （1）

where r=[ x，y，z ]T is the position of satellite in the 
equatorial inertial coordinate，r= || r  the geocentric 
distance and μ the geocentric gravitational constant，
μ = 3.986 005 × 1014 ( m3 /s2 ).

When the perturbation force is considered， the 
motion equation is represented as

r̈= - μ
r 3 r+ a （2）

where a=[ ax，ay，az ] is the sum of the perturbation 
acceleration， which includes the acceleration caused 

Fig.1　Scenario of satellite approaching intention prediction
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by the earth’s non-spherical perturbation， the gravi⁃
tational perturbation of the third body （sun， 
moon）， the atmospheric drag perturbation， etc.

In this paper， the orbital dynamic model is es⁃
tablished based on J2-perturbed model， which 
means only the J2 perturbation is considered besides 
the gravity of the earth and is shown as
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where R e is the equatorial radius of the earth［10］.
The USat is selected as the space target that 

may maneuver potentially， and the fourth-order 
Runge-Kutta method is used to achieve orbit predic⁃
tion.

2 Description of Bayesian Network 

Bayesian network， also known as belief net⁃
work or directed acyclic graphical model， is a proba⁃
bilistic graph model which consists of nodes repre⁃
senting variables and directed lines connecting these 
nodes. The directed lines between nodes represent 
the relationship between them （from the parent 
node to its child nodes）. Conditional probability is 
used to express the relationship strength， and prior 
probability is used to express information if there is 
no parent node［11］.

The Bayesian network model of a single time 
slice is called the static Bayesian network （SBN）. 
The dynamic Bayesian network is based on SBN， 
on which the time factor is added to make the event 
reasoning process continuous and be able to calcu⁃
late the intention probabilities of multiple time slices.

Assume the time-varying node set is X =
{ X 1，X 2，…，Xn }， and Xi [ t ] indicates the state val⁃
ue of the ith variable at moment t， which is a ran⁃
dom variable of set X [ t ]. A dynamic Bayesian net⁃
work can be defined as ( B 0，B→ )，where B 0 repre⁃

sents the initial Bayesian network and B→ the trans⁃
fer network［12］.

It is assumed that the Markov chain model is 
satisfied in the whole change process， namely， that 
the state at moment t is only affected by that at mo⁃
ment t - 1， shown as

P ( X [ t + 1 ] |X [ 0 ],…,X [ t ] )=
P ( X [ t + 1 ] |X [ t ] ) （4）

And it is assumed that the whole process is stat⁃
ic， which means that the transition probability 
P ( X [ t + 1 ] |X [ t ] ) is independent of time t.

The joint probability distribution of dynamic 
Bayesian network on X [ 0 ]，X [ 1 ]，…，X [ t ] is

P ( X [ 0 ],…,X [ t ] )=

P ( X [ 0 ] ) ∏
t = 0

t - 1

P ( X [ t + 1 ] |X [ t ] ) （5）

It can be seen that the dynamic Bayesian net⁃
work can well reflect the time-series relationship 
among the characteristics of variables by establish⁃
ing a mathematical model［13］.

Bayesian network is based on the probability 
theory， so the probability values of different vari⁃
ables are the key to intention recognition. The tradi⁃
tional Bayesian network model generally only de⁃
scribes discrete random variables， and the state of 
variables is limited. However， the reasoning prob⁃
lem of continuous variables also needs to be consid⁃
ered in some cases. Therefore， the concept of fuzzy 
set is used to classify each variable， and the mem ⁃
bership function can be used to express the member⁃
ship degree to different state attributes of each con⁃
tinuous variable.

In the Bayesian network of intention recogni⁃
tion， each variable corresponds to a risk factor that 
affects intention recognition， and each risk factor 
can be classified to several state attributes according 
to a fuzzy set A. As for continuous variables， the ap⁃
proaching velocity of USat is chosen to be an exam ⁃
ple which can be fuzzily divided into two attributes： 

“fast” and “slow” and is assigned to a specific value 
in all research situations， namely， Xi [ t ]= x. By 
using the membership functions A ( x ) correspond⁃
ing to different attributes， the membership degrees 
to these two fuzzy subsets can be obtained［14］. The 
use of fuzzy set classifications can reduce the subjec⁃
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tive definition of standards in the process of artificial 
grading. As for discrete variables， whether to take 0 
or 1 as the probability value of their state attribute is 
completely determined by the observation results.

Commonly used types of membership function 
include Gaussian， triangular and trapezoidal. At 
present， there is no definite method to select the 
specific membership function， and no general theo⁃
rem or formula to follow. In practice， it is often se⁃
lected according to the characteristics of specific 
problems.

It is noted that the membership degree can not 
be directly applied to Bayesian network based on 
probability calculation. Therefore， it is necessary to 
introduce the probability conversion formula 
through which membership degree can be converted 
into probability value ［15］.

Assume U = { u1，u2，…，un } is a discrete finite 
set， and X is a variable in U. p ( ui ) represents the 
probability when X = ui， μA ( u ) is the membership 
function of the fuzzy set A and α indicates the satis⁃
faction degree of the consistency condition of proba⁃
bility conversion， 0 < α < 1［16］. Then the probabili⁃
ty conversion formula can be represented as

p ( ui )= μ ( ui )
1
α ∑

k = 1

n

μ ( uk )
1
α （6）

Therefore， for the observed values of continu⁃
ous variables， when the membership degree of each 
fuzzy set is obtained， it can be converted into the 
probability information that can be applied by Bayes⁃
ian network through the formula above， and the 
Bayesian network reasoning problem with continu⁃
ous variables can be solved.

3 Establishment of Dynamic Bayes⁃
ian Network 

The approaching intention of the USat is main⁃
ly determined by analyzing and judging various risk 
factors of the satellite in combination with the char⁃
acteristics of space situation and operational environ⁃
ment［17］. The approaching intentions of the USat 
mainly include hover， capture， attack， approach， 
etc.

The USat often shows different flight velocities 
when it conducts different space operations， so the 

relative velocity between USat and PSat is a factor 
that needs to be considered. In addition， the speed 
direction of USat， which stands for heading， and 
the relative distance between USat and PSat which 
reflects the flight trend jointly determine the relative 
position. In space environment， whether the posi⁃
tion of USat is within our threat range can exert a 
significant impact on the approaching intention rec⁃
ognition. Generally， if the USat is beyond our 
threat range， its intention will be more likely to be 
approach， otherwise， it is more inclined to attack or 
hover. Moreover， the maneuver situation of the 
USat is also a main influencing factor of its ap⁃
proaching intention. If one or more maneuver behav⁃
iors occur at a certain time， its intention will be like⁃
ly to change greatly， which may be manifested as 
approach and hovering. Therefore， combined with 
the experience of experts， the risk factors of this pa⁃
per mainly include： relative velocity， relative dis⁃
tance， heading， location and maneuver situation. In 
addition， considering that the approaching intention 
of the USat at the last moment will directly affect 
the judgement at the next moment， time is also re⁃
garded as a potential influencing factor in the dynam ⁃
ic Bayesian network.

According to the factors mentioned above， the 
established dynamic Bayesian network model is 
shown in Fig.2. In the dynamic Bayesian network 
model of intention recognition， the relative velocity 
node and relative distance node are regarded as con⁃
tinuous variables， while approaching intention 
node， maneuver node， heading node and location 
node are regarded as discrete variables whose state 
attributes can be classified in fuzzy set. For exam ⁃
ple， the maneuver situation is divided into maneu⁃
ver and non-maneuver， the location is divided into 
inside and outside of the threat range， and the head⁃
ing is measured by the angle between the speed vec⁃
tors of the USat and PSat ranging from 0 to 110 de⁃
grees and greater than 110 degrees. For continuous 
variables， the relative velocity is classified as “fast” 
and “slow”. Similarly， the relative distance is classi⁃
fied as “far” and “near”.
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In order to obtain the probability evidence of 
continuous variables at different moments， the first 
step is to substitute the observed values into the cor⁃
responding membership functions. Considering that 
the relative velocity and the relative distance both 
change continuously with time， Gaussian member⁃
ship function commonly used in fuzzy sets is selected 
to evaluate their state attributes， which is shown as

f ( x; ε,σ )= exp
é

ë

ê
êê
ê
ê
ê ù

û

ú
úú
ú- 1

2 ( )x - ε
σ

2

(7)

where ε represents the center of the membership 
function； and σ determines the width of the member⁃
ship function. The values of these two parameters 
vary with the selected state attributes. Substituting 
the observed values as x into the function， the mem⁃
bership degrees of different state attributes can be ob⁃
tained. Moreover， by using the probability conver⁃
sion formula in Eq.（6）， the membership degrees ob⁃
tained before can be converted into probability forms.

For discrete variables， whether there is orbital 
maneuver of the USat or not corresponds to the 
membership value of 1 or 0. Similarly， after moni⁃
toring the velocity vectors of the USat and PSat at a 
certain moment， the membership degree of heading 
can also be assigned the value of 1 or 0. These val⁃

ues can be directly used as probability evidence.
Besides， the selection of basic model parame⁃

ters is also the key to the intention recognition， which 
means determining the conditional probabilities of 
each node in the network and the state transition prob⁃
abilities between time slices， by means of sample 
learning， creating from the knowledge base or get⁃
ting advice from experts dedicated to related fields［18］. 
The conditional probabilities in the model reflect the 
dependence relationship of each variable and the 
state transition probabilities represent the probability 
changes of approaching intentions between succes⁃
sive time slices. In addition， since whether the USat 
will continue to maneuver in a short time after last 
maneuvering or not is unclear， this paper also sets 
another transition probabilities for the “maneuver” 
node， which is used to calculate the subsequent ma⁃
neuvering evidence of the USat. In this paper， the 
conditional probabilities and the transition probabili⁃
ties are presented by experts’ experience.

The conditional probabilities of different vari⁃
ables in the dynamic Bayesian network are shown in 
Table 1 and Table 2. The probabilities of state tran⁃
sition between successive time slices of dynamic 
Bayesian network are shown in Table 3［19］. And the 
transition probabilities for “maneuver” node are 
shown in Table 4.

Fig.2　Established dynamic Bayesian network model

Table 1　Conditional probabilities of different distance

Variable of nodes

Within the threat range
Outside the threat range

p (Heading/Location)
0°—110°

0.7
0.3

Greater than 110°
0.3
0.7

p (Relative distance/Location)
Far
0.3
0.7

Near
0.7
0.3

Table 2　Conditional probabilities of different states

Variable of nodes

Hover
Attack

Capture
Approach

p (Rel⁃velocity/Intention)
Fast
0.5
0.7
0.4
0.3

Slow
0.5
0.3
0.6
0.7

p (Location/Intention)
Within the threat range

0.8
0.7
0.6
0.7

Outside the threat range
0.2
0.3
0.4
0.3

p (Maneuver/Intention)
Maneuver

0.8
0.6
0.7
0.5

Non⁃maneuver
0.2
0.4
0.3
0.5
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Assume that there is no intelligence informa⁃
tion in advance， and the prior probability of each ap⁃
proaching intention is equal， which means that the 
probabilities of different approaching intentions at 
the initial moment are the same. When the probabili⁃
ty evidence of risk factors as well as the probabilities 
shown in the above three tables is substituted into 
the dynamic Bayesian network， the approaching in⁃
tention recognition can be performed by the GeNIe 
software. Fig.3 shows a flow chart of intention rec⁃
ognition when the USat is observed to be approach⁃
ing.

4 Simulation 

Assume that the position and velocity informa⁃
tion of the USat at a certain time is monitored in in⁃

ertial coordinate system and set this time as the ini⁃
tial moment t0. The orbital data of the USat at the 
subsequent moments can be predicted by the Runge-

Kutta method， shown in Table 5. Set the time inter⁃
val as five minutes and the satellite operation period 
as one month for data reference. Take some time 
points as examples. The PSat’s orbital data are 
known at the same time， as shown in Table 6. The 
relative velocity of two satellites at moment t0 is 

v0 = ( Δvx )2 +( Δvy )2 +( Δvz )2 = 0.003 67( km/s )

According to the selected membership function 
in Eq.（7）， when the state attribute of velocity is 

“slow” or “fast” respectively， set { ε，σ } as 
{ 0.000 10，0.013 99} or { 0.030 83，0.013 99}. The 
chosen values of ε are the minimum and maximum 
values that can be achieved by the relative velocity 
between the USat and PSat within the operation pe⁃
riod. The value of σ is the average relative velocity 
within the operation period. Therefore， by substitut⁃
ing the relative velocity between two satellites at 
moment t0 to the membership function， the member⁃
ship degrees of “slow” and “fast” are calculated as 
0.968 and 0.152， respectively.

Table 6　Orbital data of the PSat

Moment
x/km
y/km
z/km

vx/
(km·s-1)

vy/
(km·s-1)

vz/
(km·s-1)

t0

-37 821.3
18 640.7

38.720 51

-1.359 16

-2.757 91

-0.005 73

t1

-38 220.0
17 808.9

36.992 30

-1.298 51

-2.786 98

-0.005 79

t2

-38 600.4
16 968.5

35.246 39

-1.237 23

-2.814 72

-0.005 85

…
…
…
…

…

…

…

t10

-40 965.2
9 987.9

20.743 54

-0.728 23

-2.987 17

-0.006 21

Table 5　Orbit prediction results of the USat

Moment
x/km
y/km
z/km

vx/
(km·s-1)

vy/
(km·s-1)

vz/
(km·s-1)

t0

-37 799.2
18 685.7

38.814 34

-1.362 42

-2.756 22

-0.005 72

t1

-38 198.9
17 854.4

37.089 10

-1.301 80

-2.785 37

-0.005 78

t2

-38 580.3
17 014.5

35.346 12

-1.240 56

-2.813 18

-0.005 84

…
…
…
…

…

…

…

t10

-40 953.3
10 036.9

20.864 90

-0.731 76

-2.986 23

-0.006 20

Table 3　State transition probabilities

p(t+1/t)
Hover
Attack

Capture
Approach

Hover
0.7
0.1
0.1
0.1

Attack
0.1
0.7
0.1
0.1

Capture
0.1
0.1
0.7
0.1

Approach
0.1
0.1
0.1
0.7

Table 4　Transition probabilities for maneuver node

p(t+1/t)
Maneuver

Non⁃maneuver

Maneuver
0.3
0.7

Non⁃maneuver
0.7
0.3

Fig.3　Flow chart of approaching intention recognition
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Set the satisfaction degree α as 0.5 in Eq.（6）. 
The membership degrees of “slow” and “fast” can 
be converted into probability information for Bayes⁃
ian reasoning by probability conversion formula， 
which is 0.976 and 0.024， separately.

Similarly， the relative distance between the 
USat and the PSat at moment t0 is

r0 = ( Δrx )2 +( Δry )2 +( Δrz )2 = 50.134 0 ( km )
When the state attribute of distance is “near” 

or “far” respectively， set { ε，σ } as 
{ 0.044 9， 191.904 1 } or { 423.015 2， 191.904 1}. 
Similarly， the chosen values of ε are the minimum 
and maximum values that can be achieved by the rel⁃
ative distance of the USat and PSat within the opera⁃
tion period； the value of σ is the average relative dis⁃
tance within the operation period. Repeat the above 
progress， the membership degrees of “near” and 

“far” are calculated as 0.967 and 0.151， and the cor⁃
responding probability evidence is 0.976 and 0.024， 
respectively.

At moment t0， no maneuvering is detected by 
the USat from the ground station according to the re⁃
sults of orbit prediction and real orbital data， so the 
probability information of “maneuver” and “non-ma⁃
neuver” is determined as 0 and 1， respectively.

According to the velocity vectors of the USat 
and PSat at moment t0， the respective flight direc⁃
tions can be determined， and the angle between the 
velocity vectors of the two satellites can be calculat⁃
ed as follows

θ0 = arccos ( )vSat1 ·vSat2

|| vSat1 || vSat2
= 1( ° )

It can be seen that the headings of the two satel⁃
lites are nearly parallel， so the probability evidence 
of “0° —110° ” and “greater than 110° ” is set as 1 
and 0， separately.

Above all， the probability information of each 
risk factor at moment t0 is obtained， which is used 
as the evidence input of Bayesian network， as 
shown in Table 7.

From the initial moment， the USat is moni⁃
tored every five minutes， and the evidence input at 
different moments can be calculated using the above 
calculation process. The dynamic Bayesian network 
model is established according to Fig.2， as shown in 
Fig.4.

Assuming that there is no intelligence informa⁃
tion in advance， the prior probability of each ap⁃
proaching intention is equal. Substitute the prior 
probabilities and conditional probabilities of the state 
attributes to the dynamic Bayesian network model 
as the known conditions and input the evidence to 
determine its approaching intention probability val⁃
ues at every moment. Especially， once an orbital 
maneuver occurs， “maneuver” evidence should still 
be input as 1 at one or two moments after maneuver⁃
ing of the USat to ensure the continuity and authen⁃
ticity of data calculation. And then the “maneuver” 
evidence will be calculated and input according to 
Table 4 until the USat maneuvers in orbit again. 
Choose moment t0 to t25 as the monitoring period of 
simulation. The complete dynamic Bayesian net⁃
work is shown in Fig.5.

Table 7　Probability evidence of risk factors at the moment t0

Relative velocity
(Fast, Slow)
(0.024,0.976)

Relative distance
(Near, Far)

(0.976,0.024)

Maneuver
(Maneuver, Non⁃maneuver)

(0,1)

Heading
(0°—110°, greater than 110°)

(1,0)

Fig.4　Dynamic Bayesian network model
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According to the predicted orbital data of the 
USat and PSat at t0， if the two satellites follow orig⁃
inal orbits， the minimum value of relative distance 
dmin between them will be reached after two months. 
However， after continuous monitoring at fixed time 
points， assume that the orbital maneuver of the 
USat is detected at moment t13， when the approach⁃
ing intention of the USat is likely to change greatly 

and needs to be paid attention to. Probabilistic evi⁃
dence for intermediate moments is not presented 
here. The specific information before and after the 
maneuver moment is shown emphatically below.

The monitoring orbital data of the PSat and the 
USat at moment t12 are shown in Table 8. According to 
the above calculation process， the probability evidence 
at moment t12 can be obtained， as shown in Table 9.

The orbit prediction results of the USat and 
the orbital data of PSat at moment t13 are shown in 
Table 10. Re-predict the new orbit of the USat 
with moment t13 as the initial moment， re-select 

the parameters in the membership function and re⁃
peat the calculation process to get the probability 
evidence at moment t13， which are shown in Ta⁃
ble 11.

The partial recognition results of dynamic 
Bayesian network are shown in Figs. 6—8， includ⁃
ing the approaching intention at initial moment， the 
last moment， and the moments before and after the 
maneuver. The transition of “maneuver” evidence 
input can be seen in Fig.7 and Fig.8.

According to the recognition results of twenty-

five consecutive moments in Fig.5， the change 
curve of intentions of the USat during the approach⁃

ing process is obtained， as shown in Fig.9. The ab⁃
scissa is the continuous moments， where T repre⁃
sents the number of five-minute interval from the 
current moment to the initial moment， and the ordi⁃
nate is the probability values corresponding to every 
five-minute.

According to the recognition results， it can be 
seen that the main approaching intention of the USat 
has changed a lot before and after the maneuver. At 

Fig.5　Complete dynamic Bayesian network of the monitoring period

Table 8　Orbital data at moment t12

t12

USat
PSat

x/km
-41 353.1
-41 362.8

y/km
8 235.954
8 186.477

z/km
17.127 16
17.000 95

vx/(km·s-1)
-0.600 44
-0.596 87

vy/(km·s-1)
-3.015 39
-3.016 17

vz/(km·s-1)
-0.006 26
-0.006 27

Table 9　Probability evidence at moment t12

Relative velocity
(Fast, Slow)
(0.042,0.958)

Relative distance
（Near, Far）
(0.979,0.021)

Maneuver
(Maneuver, Non⁃maneuver)

(0,1)

Heading
(0°—110°, greater than 110°)

(1,0)

Table 10　Orbital data at moment t13

t13

USat
PSat

x/km
-41 521.8
-41 532.0

y/km
7 337.830
7 279.672

z/km
15.229 60
15.117 00

vx/(km·s-1)
-0.534 99
-0.530 75

vy/(km·s-1)
-3.027 76
-3.028 51

vz/(km·s-1)
-0.006 29
-0.006 29

Table 11　Probability evidence at moment t13

Relative velocity
(Fast, Slow)
(0.490,0.510)

Relative distance
（Near, Far）
(0.502,0.498)

Maneuver
(Maneuver, Non⁃maneuver)

(1,0)

Heading
(0°—110°, greater than 110°)

(1,0)

468



No. 4 CHEN Shibo, et al. Approaching Intention Prediction of Orbital Maneuver Based on Dynamic…

moment t12， the probability of “Approach” begins to 
decrease greatly， while the probability of “Hover” 
gradually increases until the moment t16 when the in⁃
tention of “Hover” becomes the main approaching 
intention after the maneuver of the USat. Compared 
with Tables 7， 9 and 11， it can be seen that when 
the chosen interval of each moment is short enough 

and no maneuver of satellite is detected， there are 
not big changes in the state attributes such as rela⁃
tive velocity， relative distance and heading， so that 
the approaching intentions of two consecutive mo⁃
ments are roughly the same， which can also be seen 
in Fig. 9. However， when the USat makes one or 
more maneuvers at some moments， the probability 
curve may fluctuate greatly， which indicates that its 
approaching intention starts to change. And then， 
when the maneuvering evidence input is completed， 
the variation of recognition results tends to be sta⁃
ble， in which stage the clear data reference can be 
offered to operators and the subsequent intention 
recognition can proceed. Therefore， taking multiple 

Fig.9　Approaching intention change curves of the USat

Fig.6　Recognition results of approaching intention of USat at moment t0 and t25

Fig.7　Recognition results of approaching intention of USat from moment t12 to t14

Fig.8　Recognition results of approaching intention of USat from moment t15 to t16
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time slices and proper time-step to monitor in dy⁃
namic Bayesian network is of great significance to 
the real-time update of the USat’s orbit and recogni⁃
tion results， which can provide ground operators 
with the latest and specific battlefield information to 
map out effective strategies.

5 Conclusions 

Aiming at the problem that the approaching in⁃
tention of unknown targets in space battlefield is dy⁃
namic and multifactorial， this paper introduces the 
prediction method of approaching intention using 
space relative motion model， and establishes a dy⁃
namic Bayesian network model for recognition. 
From the simulation results， different types of ap⁃
proaching intentions are given in probabilistic form 
and the change curve can be seen clearly， which are 
important references of decision-making for ground 
operators to carry out corresponding evasion opera⁃
tions. This method， which can be applied to the 
space battle scene to realize the tactical intention rea⁃
soning of enemy’s targets in continuous time slices， 
is verified to be feasible and effective.
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基于动态贝叶斯网络的轨道机动接近意图预测

陈士博 1， 李 军 2， 谢亚恩 1， 吴限德 1， 冷淑航 1， 杨若楚 1

（1.哈尔滨工程大学航空航天与建筑工程学院, 哈尔滨  150001, 中国；

2.中国船舶及海洋工程设计研究院, 上海  210110, 中国）

摘要：在信息化条件下，现代空间环境的复杂性急剧增加，地面操作人员难以在短时间内处理大量信息并识别未

知目标的接近意图。本文将模糊理论与专家经验相结合，设计了一种可以帮助操作者快速、系统地识别接近意

图的动态贝叶斯网络模型。与静态贝叶斯网络（Static Bayesian network， SBN）相比，动态贝叶斯网络在识别多

个时间片内意图和通过连续计算概率预测未来趋势两方面更加实用，适用于快速变化的空间环境。众多算例表

明，本文所提出的意图预测方法可行有效。

关键词：动态贝叶斯网络；轨道机动；模糊集；意图预测；卫星
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