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Abstract: This paper proposes a super-resolution inversion and reconstruction algorithm for remote sensing images of 
unknown bands of interest. The proposed method utilizes a built-in spectral reflectance database and the existing multi-
spectral image to achieve the accurate classification of substances through the implementation of a Gaussian hybrid 
clustering algorithm and correlation distance method after radiation calibration and atmospheric correction. The image 
mixing algorithm based on the manifold space constraint obtains the distribution of ground substances， based on which 
the spectral reflectance image of the unknown band of interest is reconstructed. By employing the single-window 
algorithm， the temperature field of low-resolution ground substances is inverted through the far-infrared image， and 
the Shepard interpolation algorithm is used to interpolate the low-resolution temperature field to obtain a high-

resolution ground temperature field. According to the spectral reflectance and the temperature field of the ground 
substances， using the remote sensing link imaging model， the high-resolution remote-sensing image of unknown 
infrared band of interest is super-resolution inversion reconstructed. Experimental results show that the reconstructed 
infrared image of various scenes has a high similarity with the original scene image， which has great benefits for 
improving the ability of target detection and recognition.
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0 Introduction 

The reconstruction of high-resolution remote 
sensing images of unknown wave bands of interest 
can supplement the image data of wave bands that 
cannot be obtained by the detector load. “Stealth” 
targets can be effectively detected by using infrared 
band images. However， due to hardware and other 
limiting factors， it is difficult to obtain high-resolu‑
tion remote sensing images of infrared bands of in‑
terest. Consequently， accurately detecting and iden‑
tifying targets becomes a formidable task. There‑
fore， by reconstructing high-resolution remote sens‑

ing images of unknown infrared bands of interest 
based on the image data of existing bands of the de‑
tector load， the target can be accurately detected 
and identified.

From our investigation， at present there is lit‑
tle research literature on reconstructing high-resolu‑
tion remote sensing images of unknown bands of in‑
terest based on the inversion reconstruction of exist‑
ing bands image data， except for only one document 
published in 2009 by Xu et al［1］. In their study， a 
method was proposed to generate four infrared 
bands multispectral images from visible light and 
near-infrared band images. Although the far-infrared 
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band image can be effectively reconstructed， the im‑
age scene used in the experiment is too simple and is 
not a remote sensing image， and the accuracy of the 
generated image has not been verified. The vast ma‑
jority of existing literature has proposed the methods 
of super-resolution reconstructing of the high-resolu‑
tion remote sensing image of known bands of inter‑
est basing on the image data of known bands. The 
ideas of these algorithms are very instructive and 
can be applied to the research on the inversion and 
reconstruction of high-resolution remote sensing im ‑
ages of unknown bands of interest.

In 2011， Singh et al.［2］ proposed the iterative 
backward projection （IBP） algorithm. By calculat‑
ing the error between the simulated low-resolution 
image and the actual low-resolution image， a high-

resolution image that better represents the actual sit‑
uation was obtained via reverse iterative update. 
The IBP algorithm can effectively introduce the pri‑
ori image information and is no longer constrained 
by the motion model. However， problems such as 
checkerboard effects， high-frequency information 
loss， and local minimum are prone to occur during 
the convergence. In 2011， Tang et al.［3］ proposed a 
convex set projection method based on wavelet bicu‑
bic interpolation. This algorithm can combine any 
priori information to reduce the ringing effect near 
the edge of the image through bicubic interpolation 
and thus realizes the super-resolution reconstruction 
of the image. However， due to the ill-posed prob‑
lem of the algorithm， the algorithm lacks stability 
and the reconstruction result is not unique. In 2015， 
Xu et al.［4］ proposed a non-local self-similar priori 
image denoising method based on block groups，
which can reduce the error caused by low-frequency 
noise during super-resolution reconstruction. How‑
ever， the amount of calculation is large and the con‑
vergence speed is slow. In 2016， Cao et al.［5］ pro‑
posed a super-resolution reconstruction algorithm 
with adaptive regularization coefficients. This algo‑
rithm adaptively estimates regularization parameters 
for each image and combines the sparse representa‑
tion to perform regularized non-convex optimization 
of the image. As a result， it improves the image 
quality. In 2017， Nazren et al.［6］ proposed an im ‑
proved IBP algorithm. By introducing an anisotropic 

diffusion model， the edges of the image were en‑
hanced to make the image smoother， which effec‑
tively solved the problem of high-frequency informa‑
tion loss. Due to the instability of the anisotropic dif‑
fusion model， the algorithm has higher require‑
ments for parameter and threshold settings. In 
2017， Liu et al.［7］ proposed a super-resolution recon‑
struction algorithm that combines the similarity be‑
tween images and the self-similarity of the image it‑
self. This method can effectively reduce the error 
caused by noise. However， introducing the mutual 
similarity of image sequences as features for training 
requires a large amount of prior data as the training 
set， and the algorithm is thus less robust. In 2018， 
Huang et al.［8］ proposed an adaptive smooth percep‑
tual regularization factor based on low-resolution im ‑
ages， which iteratively updates and calculates high-

resolution images based on sparse representations. 
This algorithm can preserve the image edges and re‑
duce the error caused by noise to a certain extent. 
However， the algorithm’s robustness is compro‑
mised due to the increased computational require‑
ments associated with prioritizing edge retention. In 
2018， Zhang et al.［9］ proposed to use the layering 
function of the convolutional neural network to ex‑
tract dense local features to achieve image super-re‑
construction， but this algorithm only has good per‑
formance on specific data sets， hence it is less ro‑
bust. In 2019， Gao et al.［10］ proposed to reduce the 
computational complexity through several multi-
scale deep neural networks， but this method heavily 
relies on network design. In 2019， Jiang et al.［11］ 
proposed a GAN-based edge-enhanced network 
（EEGAN） for the reconstructing of high-resolution 
remote sensing images with clear edges， but a large 
remote sensing dataset is required for training. In 
2021， Xiao et al.［12］ proposed a time group projec‑
tion fusion strategy and precise alignment module 
for satellite video super-resolution to improve the ef‑
ficiency and accuracy of spatio-temporal information 
fusion. The following year， Xiao et al.［13］ designed a 
feature interpolation module that deeply couples op‑
tical flow and multi-scale deformable convolution to 
predict unknown frames， and use multi-scale spatio-

temporal transformers to aggregate contextual infor‑
mation in long-term video frames， improving tempo‑
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ral and spatial resolution； but neither can be applied 
to the generation of remote sensing images of un‑
known bands of interest.

This paper proposes a super-resolution inver‑
sion reconstruction algorithm for remote sensing im ‑
ages of unknown infrared band of interest. Accord‑
ing to the constructed spectral reflectance database， 
the Gaussian hybrid clustering algorithm and correla‑
tion distance method are used to classify and identify 
the substances in the scene spectral reflectance im ‑
age after calibration and atmospheric correction de‑
termination of multi-spectral image of known bands. 
The image unmixing algorithm based on the mani‑
fold space constraint is used to obtain the distribu‑
tion of the ground substances in the scene. Building 
upon the distribution of the ground substances， the 
spectral reflectance image of the unknown infrared 
band of interest is reconstructed by inversion. The 
proposed algorithm utilizes far-infrared images from 
known bands to perform temperature inversion and 
reconstruction of the high-resolution ground sub‑
stance temperature field distribution of unknown in‑
frared bands of interest. By incorporating the spec‑
tral reflectance information and temperature field in‑
formation of ground substances obtained through in‑
version， and leveraging the remote sensing imaging 
link model， a high-resolution remote sensing image 
of the unknown infrared band of interest is super-res‑
olution inversion reconstructed.

1 Algorithm Framework 

The algorithm flow of the super-resolution in‑
version and reconstruction of remote sensing image 
of unknown infrared band of interest is shown in 
Fig.1. It consists of two parts： The inversion recon‑
struction of the spectral reflectance of ground sub‑
stances and the inversion reconstruction of the tem ‑
perature field of ground substances.

The ground object spectral reflectance inver‑
sion reconstruction algorithm is as follows：

（1） Perform radiation calibration of the known 
high-resolution multispectral digital number （DN） 
value image to convert the DN image into a spectral 
radiance image［14］.

（2） Perform atmospheric correction on the cali‑
brated image［15］ to remove the influence caused by 
the atmosphere and transform it into a spectral re‑
flectance image with clear physical meaning.

（3） Use the Gaussian mixture clustering model 
to classify each pixel in the image， and inverse the 
ground substance category in the image by integrat‑
ing the constructed ground substances spectral re‑
flectance database.

（4） Through pixel unmixing， analyze the com ‑
ponents of the mixed pixels， identify the specific 
components of the ground substances in the image， 
and invert the ground substance distribution of the 
scene image.

（5） Once the ground substance categories in 
the image are determined， according to the abun‑
dance matrix of the ground substance distribution of 
the scene image， combined with the constructed 
ground substance spectral reflectance database， re‑
construct the ground substance spectral reflectance 
image of the unknown infrared band of interest.

The steps of the inversion and reconstruction of 
the temperature field of the ground substance algo‑
rithm are as follows：

（1） Perform radiation calibration of the known 
low-resolution far-infrared DN image to convert it 
into a spectral radiance image.

（2） Use the single-window method to invert 
the temperature information of each pixel in the im ‑
age， and obtain the low-resolution ground substance 
 temperature field distribution.

（3） The low-resolution ground substance tem ‑
perature field is super-resolution reconstructed using 
the Shedebe interpolation method to obtain the high-

resolution ground substance temperature field distri‑
bution.

By integrating the inversion-reconstructed 
ground substance’s spectral reflectance image and 
the high-resolution ground substance temperature 
field distribution of the unknown infrared band， 
along with the remote sensing imaging link model， 
a high-resolution spectral radiance image of the un‑
known infrared band is successfully reconstructed， 
thus achieving the super-resolution inversion recon‑
struction of the remote sensing image.
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2 Inversion and Reconstruction of 
Spectral Reflectance of Ground 
Substances 

Spectral reflectivity is an intrinsic property of a 
substance and it is determined by the type of sub‑
stance and the wavelength band it reflects. Using 
the ground substance spectral reflectance images of 
known bands and the spectral reflectance databases， 
the types and distribution of ground substances in 

the scene can be identified and inverted. Based on 
the types and distributions of ground substances in 
the scene and the spectral reflectance databases， the 
ground substance spectral reflectance image of an 
unknown band of interest can be reconstructed.

2. 1 Construction of spectral reflectance data‑
base　

The existing databases of ground substance 
spectral reflectance cannot comprehensively cover 
all substances. It is necessary to add the spectral re‑

Fig.1　Algorithm flow of super-resolution inversion and reconstruction of remote sensing image of unknown infrared band of in‑
terest
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flectance of the substance of interest， and at the 
same time supplement the bands of substances with 
a narrow wavelength range， so as to accurately de‑
termine the distribution of ground substances and in‑
vert the ground substance spectral reflectance of the 
unknown band of interest. In this article， a spectral 
reflectance database is constructed， consisting of 
three widely used digital ground substance spectral 

reflectance databases and a new database （NUAA 
database） created by the research team. The NU‑
AA database includes 22 types of substances， such 
as water bodies， artificial targets， and metal miner‑
als. Wavebands have been supplemented to this da‑
tabase based on the information from the three exist‑
ing databases. The spectral reflectance database is 
shown in Table 1.

2. 2 Distribution of ground substances　

Based on the ground substance spectral reflec‑
tance images of known bands， the types and distri‑
bution of ground substances in the scene can be iden‑
tified and inverted， and based on the accurate scene 
ground substance distribution， the ground substance 
spectral reflectance image of the unknown band of 
interest can be accurately reconstructed.
2. 2. 1 Ground substance classification and cate⁃

gory identification　

Through the ground substance classification， 
the types of ground substances in the ground sub‑
stance spectral reflectance image can be determined. 
There are numerous types of ground substances in 
the image. Therefore， this paper uses Gaussian mix‑
ture clustering to perform the ground substance clas‑
sification. The Gaussian mixture model［16］ can accu‑
rately quantify ground substances and decompose a 
ground substance into several Gaussian probability 
density functions， representing different categories. 
It is a commonly used model to describe the mixture 
density distribution. Multiple optimizations are per‑
formed to calculate the probability distribution of 
each pixel in the image belonging to a certain sub‑
stance category. When the probability density is the 
largest， the category is the “best” attribution of this 
pixel. The ground substance classification algorithm 

is as follows：
（1） Determine the number of categories S of 

the ground substance sample. After several experi‑
ments， this article sets S = 7 and a certain sample 
as s ( s = 1，2，⋯，S ).

（2） Determine the number of the Gaussian dis‑
tributions Q. If the number is too large， it will lead 
to increased computational complexity and there is 
prone to overfitting. If the number is too small， it 
will lead to a reduction in classification accuracy. Af‑
ter experimentation， the number of Gaussian distri‑
butions used in this paper is set to Q = 5， and a cer‑
tain Gaussian distribution is q (q = 1，2，⋯，Q ).

（3） For each Gaussian distribution q， random‑
ly assign the mean μq and variance σq.

（4） For each sample （every pixel x）， calculate 
the probability belonging to each category of sam ‑
ples under each Gaussian distribution.

f ( x ) q

s
= 1

2π σq

exp ( - ( )x - μq

2

2σ 2
q )  s = 1,2,⋯,S

q = 1,2,⋯,Q

(1)
（5） For each Gaussian distribution， the contri‑

bution of each sample （every pixel x） to the Gauss‑
ian distribution can be expressed by its probability 
f ( x ) q

s
. High probability means large contribution 

and vice versa. Take the contribution of the sample 

Table 1　Spectral reflectance databases

Source database

USGS（US Geological Survey）

JPL（NASA Jet Propulsion Laboratory）

JHU（Johns Hopkins University）

NUAA(Nanjing University of 
Aeronautics and Astronautics)

Number of substance

131

1 464

826

22

Wavelength /μm
0.2—3.0

0.4—14.0
0.4—2.5

0.4—25.0

0.4—14.0

0.4—14.0

Containing substance

Rock, mineral

Rocks, minerals, meteorite, moon

Vegetation, soil, water bodies, snow 
and ice, artificial targets

Water bodies, artificial targets, 
metal minerals
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to the Gaussian distribution f ( x ) q

s
 as a weight to cal‑

culate the new mean μq and variance σq of the Gauss‑
ian distribution by weighted sum of all samples （all 
pixels） to replace its original mean and variance.

（6） Repeat Steps （4） and （5） until the mean 
μq and variance σq of each Gaussian distribution con‑
verges.

（7） Use the converged mean μq and variance σq 
of each Gaussian distribution to calculate the proba‑
bility f ( x ) q

s
 of each sample （each pixel x） belong‑

ing to various categories of samples under the 
Gaussian distribution. Obtain the mean of all Gauss‑
ian distributions and calculate the probability that a 
pixel x belongs to various categories of samples.

f ( x )
s
= 1

Q
f ( x ) q

s
    s = 1,2,⋯,S (2)

（8） For each pixel x， classify it to the sample 
category corresponding to the maximum value of 
f ( x )

s
.

In this paper， the correlation distance is used to 
determine the categories of ground substances in the 
ground substances spectral reflectance image. The 
correlation distance is calculated between the spec‑
tral reflectance of a certain ground substance in the 
scene image and the spectral reflectance of each 
ground substance in the spectral reflectance data‑
base. When the value is the smallest， it is deter‑
mined that the ground substance in the image is the 
corresponding ground substance in the spectral re‑
flectance database that matches it. The correlation 
distance is shown as
ds,t = 1 -

X sX 't

( )X s - X̄ s · ( )X s - X̄ s
′ · ( )X t - X̄ t · ( )X t - X̄ t

′

(3)
where ds，t is the correlation distance between the 
spectral reflectance vector of a certain type of 
ground substance in the image and the spectral re‑
flectance vector of a type of ground substance in the 
spectral reflectance database； X s the spectral reflec‑
tance vector of a certain type of ground substance in 
the image； X̄ s the average value of X s； X t the spec‑
tral reflectance vector of a certain type of ground 
substance in the spectral reflectance database， and 

X̄ t the average value of X t.
2. 2. 2 Ground substance recognition　

In addition to pure pixels， the ground substanc‑
es’ spectral reflectance image also contains mixed 
pixels where multiple ground substance categories 
coexist. In this paper， an image unmixing algorithm 
based on manifold space constraints［17］ is used to cal‑
culate the proportion of different categories of the 
ground substances in each mixed pixel， that is， the 
abundance matrix.

The ground substance distribution of the spec‑
tral reflectance image is obtained from the abun‑
dance matrix of each pixel. By using the ground sub‑
stance spectral reflectance of the band of interest in 
the ground substance spectral reflectance database， 
the ground substance spectral reflectance image of 
the band of interest can be accurately reconstructed， 
shown as

Y= AX (4)
whereY ∈ R n represents the ground substances spec‑
tral reflectance image of the band of interest and n 
the number of pixels；A ∈ R p represents the ground 
substances spectral reflectance data of the band of in‑
terest and p the types of the ground substances in 
the scene；X ∈ R p × n represents the abundance ma‑
trix.

3 Inversion and Reconstruction of 
Ground Substance Temperature 
Field 

The temperature field distribution is an intrin‑
sic property of substance， which is determined by 
the type of substance and the thermal energy radiat‑
ed by it. The low-resolution ground substance tem ‑
perature field distribution in the scene can be invert‑
ed from the far-infrared image of the scene. Using 
this information， the high-resolution temperature 
field distribution of ground substances in the scene 
can be reconstructed through interpolation methods.

3. 1 Inversion of low‑resolution ground sub‑
stance temperature field　

The distribution of surface thermal energy can 
be extracted by the surface object temperature field. 
Therefore， it is feasible to invert the temperature 

477



Vol. 40 Transactions of Nanjing University of Aeronautics and Astronautics

field of low-resolution ground substance tempera‑
ture field through the low-resolution far-infrared im ‑
age［18］. This paper uses the single-window algo‑
rithm proposed by Tan et al.［19］， which is shown as

Ts=
{ }a ( )1-C-D +[ ]b ( )1-C-D +C+D T-D⋅T a

C
(5)

C = ε ⋅ τ (6)
D = ( 1 - τ ) [1 + τ ⋅ ( 1 - ε ) ] (7)

T = K 2

ln ( )1 + K 1 Lλ

(8)

where Ts is the ground substances temperature 
field； a， b are linear regression coefficients， where 
a = -67.355 351，b = 0.458 606；T a is the average 
temperature of the atmosphere， which can be calcu‑
lated using empirical formula； T is the brightness 
temperature received by the detector；ε is the specif‑
ic emissivity of the ground surface， which can be ob‑
tained by checking the table； τ is the atmospheric 
transmittance， which can be obtained by simulation 
using the Modtran software； Lλ is the spectral radi‑
ance of the far-infrared image；K 1，K 2 are both con‑
stants， determined before the detector payload is 
emitted， K 1 = 774.89 mW/( cm-2 ⋅ μm-1 ⋅ sr-1 ) and 
K 2 = 1 321.08  K［20］.

In this paper， we select the far-infrared image 
of Nanjing Jiangning in August from the Landsat 8 
data （10.9 μm band， 100 m resolution）， and obtain 
the results of T a = 16.011 0 +0.926 21 × 300 based 
on the mid-latitudes-summer mode. The low-resolu‑
tion ground substances temperature field distribution 
inverted by the single-window method is shown in 
Fig.2.

3. 2 Reconstruction of high‑resolution ground 

substance temperature field　

The continuous distribution of thermal energy 
radiated by ground substances allows for the recon‑
struction of the temperature field from low to high 
resolution using adjacent pixel interpolation. In this 
paper， the Shepard interpolation algorithm［21］ is em‑
ployed to interpolate the low-resolution temperature 
field distribution image of Nanjing Jiangning in Au‑
gust （Fig.2（c）） to a higher resolution， as depicted 
in Fig.3.

Fig.2　Landsat 8 far-infrared image and low-resolution 
ground substance temperature field distribution
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4 Super‑Resolution Inversion and 
Reconstruction of Unknown In‑
frared Band of Interest 

Based on the distribution of ground substances 

in the scene， the spectral reflectance image of the in‑
terested unknown band is reconstructed by inver‑
sion. Specifically， this paper focuses on super-reso‑
lution reconstruction of the infrared band. By lever‑
aging the high-resolution ground temperature field 
obtained from the reconstruction， we can accurately 
characterize the thermal energy radiated by the 
ground substances in the scene. This leads to a more 
comprehensive representation of the energy informa‑
tion of the ground substances， ultimately resulting 
in improved super-resolution accuracy of the un‑
known infrared band image of interest［22-24］.

Schott［25］ proposed a remote sensing link imag‑
ing model in 2007 that included light and thermal in‑
formation of ground substances. In this paper， we 
utilize that model to super-resolution reconstruct the 
spectral radiance image of an unknown infrared band 
of interest， which can be represented by

Lλ = { E 'sλ cosσ '⋅ τ1 ( λ ) ⋅ r ( λ )
π

+ ε ( λ ) ⋅ LTλ +

           F [ Edsλ + Edελ ]
rd ( λ )

π
+( 1 - F ) ⋅[ Lbsλ + Lbελ ] ⋅

           rd ( λ ) } ⋅ τ2 ( λ )+ Lusλ + Luελ (9)
where Lλ is the radiance of the remote sensing λ 
band received by the detector load； E 'sλ the solar irra‑
diance reaching the outer layer of the atmosphere， 
which is related to the azimuth of the sun； σ ' the so‑
lar zenith angle； r ( λ) the spectral reflectance of 
ground substances in the λ band；rd( λ) the diffuse re‑
flectance of ground substances； τ1( λ) the atmospher‑
ic transmittance of the sun to the ground， τ2( λ) the 
atmospheric transmittance of the ground to the de‑
tector load； F the sky shape parameter， and the val‑
ue is within the range of 0—1； ε ( λ) the specific 
spectral emissivity of the ground substances； LTλ 
the spectral thermal radiation brightness of the 
ground substances at temperature T； Edsλ the irradi‑
ance of solar radiation scattered by the atmosphere 
and reflected by the ground； Edελ the radiation irradi‑
ance of the atmospheric downward thermal radiation 
reflected by the ground；Lbsλ the radiation brightness 
of the sky background light reflected from the 
ground； Lbελ the background thermal radiation 
brightness reflected from the ground； Lusλ the radia‑
tion brightness of the sunlight scattered by the atmo‑

Fig.3　Reconstructed high-resolution ground substance tem ‑
perature field distribution
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sphere； Luελ the upward thermal radiation brightness 
of the atmosphere.

5 Experimental Results and Analy‑
sis 

To evaluate the effectiveness of the proposed  
algorithm， Landsat 8 data is used for experiments. 
The experimental results are then compared with 
the 30 m-resolution far-infrared spectral radiance im ‑
ages super-resolution reconstructed by NASA， 
which are obtained from the official website of 
Earthexplorer. Extensive research is conducted but 
no literature or algorithm related to the research con‑
tent is found. Therefore， no comparative experi‑
ment is included in this paper. The proposed algo‑
rithm’s robustness is verified through multiple ex‑
periments on various scene images of Landsat 8.

All experimental results are obtained on the 
same platform and hardware conditions. Experimen‑
tal environment： Matlab 2016. Experimental plat‑
form： 3.60 GHz， Intel i7 processor， 64-bit Win 7 
operating system， 8 GB memory.

5. 1 Experimental data　

In this paper， the super-resolution inversion re‑
construction algorithm is used to calculate the space-

based remote sensing image， which requires the ex‑
istence of multi-spectral image and at least one far-

infrared band image in the original data. At the same 

time， in order to verify the robustness of the pro‑
posed algorithm， a large number of original data for 
different scenes are needed for experimentation. In 
view of it， this paper uses the Landsat 8 satellite da‑
ta published by NASA for experiments. Landsat 8 
data includes spectral images across 9 visible light to 
near-infrared bands and 2 far-infrared bands， encom‑
passing a broad range that fulfills the experimental 
requirements of this study.

This paper takes two images of the Landsat 8 
satellite data as examples， as shown in Fig.4. These 
two images are true color images of the B4， B3， 
and B2 bands of two different scenes in the Nanjing 
area on 2014-06-11. The center wavelength and spa‑
tial resolution of each spectral band of these two im ‑
ages are listed in Table 2， and the data description 
is listed in Table 3. The input data for this study in‑
cludes B1， B2， B3， B4， B5， B6， B7， and B10 
band images， while the unknown band of interest 
for inversion reconstruction is B11 （far-infrared）.

5. 2 Evaluation index of experimental results　

This paper utilizes widely recognized quality 
evaluation indicators， namely signal reconstruction 

error （SRE）， peak signal-to-noise ratio （PSNR）， 
and structural similarity index measure （SSIM）， to 
assess the image quality of the inverted reconstruct‑

Fig.4　Landsat 8 satellite true color images of B4, B3, and 
B2 bands in two different scenes

Table 2　Landsat 8 satellite center wavelength and spatial resolution

Band
Center wavelength/μm

Spatial resolution/m

B1
0.443

30

B2
0.482 5

30

B3
0.562 5

30

B4
0.655

30

B5
0.865

30

B6
1.61
30

B7
2.2
30

B8
0.64
15

B9
1.35
30

B10
10.9
100

B11
12.0
100

Table 3　Description of the image data of two different scenes

Scene
Natural 

environment
Urban 

hydrological

Resolution/m

30/100

30/100

Scene location
Nanjing, Jiangsu 
Province, China

Nanjing, Jiangsu 
Province, China

Scene characteristics
The natural environment is dominant, including typical natural 

scenes such as woodland, grassland, and rivers
The urban environment is dominant, including urban buildings and 

some hydrological scenes
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ed super-resolution algorithms. The SRE is calculat‑
ed in dB and is derived from the reconstructed im ‑
age Ĥ and the scene ground truth H， as shown in 
Eq.（10）. A larger SRE indicates a smaller recon‑
struction error and a higher reconstruction accuracy.

SRE = 10 lg μ2
H

 H- Ĥ
2

l
(10)

where SRE is the signal reconstruction error， H the 
scene ground truth， Ĥ the super-resolution recon‑
structed image， l the number of bands of the input 
image， and μH the average of H.

As PSNR increases， the quality of the super-

resolution reconstructed image［25］ and the reconstruc‑
tion accuracy also improve， as demonstrated by

MSE = 1
M × N

 H- Ĥ
2

(11)

PSNR = 10 × lg ( L2

MSE ) (12)

where MSE is mean-square error；H the scene 
ground truth； Ĥ the super-resolution reconstructed 
image； M and N are the height and width of the im ‑
age， respectively； L the largest gray value in the 
gray level， and here L = 255.

The value of SSIM ranges from -1 to 1. The 
closer the SSIM is to 1， the closer the super-resolu‑
tion reconstructed image is to the real image. It is 
shown as

SSIM ( Ĥ,H )=
( 2μ Ĥ μH + C 1 ) ( 2σ ĤH + C 2 )

( μ2
Ĥ + μ2

H + C 1 ) ( σ 2
Ĥ + σ 2

H + C 2 )
(13)

C 1 = ( k1 L )2 (14)
C 2 = ( k2 L )2 (15)

where μ Ĥ， μH， σ Ĥ， σH and σ ĤH are the mean， stan‑
dard deviation and mutual covariance of Ĥ and H， 
respectively； k1 and k2 are constants， generally tak‑
en as k1 = 0.01 and k2 = 0.03.

5. 3 Algorithm effectiveness experiment　

This paper uses two images from Landsat 8 sat‑
ellite data as examples to analyze and illustrate the 
experimental results. These images depict different 
scenes in the Nanjing area on June 11， 2014. The 
first scene represents a natural environment， while 
the second scene portrays an urban hydrological 

landscape. In this paper， the B11 band （far-infra‑
red） is the unknown band of interest to be inversion 
reconstructed. The B1， B2， B3， B4， B5， B6， and 
B7 band images are used as input data to invert and 
reconstruct the ground substance spectral reflec‑
tance image. The B10 band image is used as input 
data to invert and reconstruct the high-resolution 
ground substance temperature field distribution im ‑
age. Based on the ground substance spectral reflec‑
tance image and the ground substance temperature 
field distribution image， the high-resolution infrared 
image （30 m resolution） of unknown B11 band of 
interest is inversion reconstructed. The SRE and 
PSNR are used as the quality evaluation indexes of 
the super-resolution inversion reconstructed image.
5. 3. 1 Experiments in a natural environment 

scene　

Experimental results for super-resolution inver‑
sion and reconstruction of a representative natural 
environment scene are depicted in Fig. 5. In Figs. 5
（a，b）， the infrared radiation brightness value is rep‑
resented by pseudo color from dark blue to dark 
red， which corresponds to brightness values from 
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low to high. Figs.5（a，b） show the same overall con‑
tours and geometric shapes， and the color distribu‑
tion is basically the same， indicating that the infra‑
red radiation brightness distributions of the two im ‑
ages are basically the same. For example， in Fig. 5
（a）， there is a large continuous dark blue area from 
the lower left to the upper right， a red-yellow area 
on the left side of the image， a blue-green area with 
a light blue lines and light yellow patches in the mid‑
dle of the image， a dense crimson area in the upper 
right corner， and a blue-green area with many con‑
tinuous short light blue lines interspersed with light 
yellow patches in the lower right corner. In 

Fig. 5（b）， the above-mentioned areas are basically 
consistent with those in Fig.5（a）. This shows that 
the infrared radiation brightness distributions of the 
two images maintain a high degree of consistency.

The curves in Figs.5（c，d） exhibit similar 
shapes and value distributions， indicating compara‑
ble infrared radiation brightness distributions of the 
two images. In Fig.5（e）， the absolute errors of 
Figs.5（c，d） fall within the range ［-0.1， 0.1］，pri‑
marily concentrated between ［-0.05， 0.05］，with a 
few exceptions beyond ［-0.1， 0.1］，but none ex‑
ceeding 0.15. Fig. 5（f） demonstrates that the rela‑
tive errors of Figs. 5（c，d） are distributed between 
［-1%， 1%］， mostly concentrated within ［-0.5%， 
0.5%］， with only a few points outside ［ -1%， 
1%］， but none reaching 1.5%. Thus， the infrared 
radiation brightness distributions of the two images 
are highly consistent.

The experiment results demonstrate that the al‑
gorithm effectively reconstructs the super-resolution 
B11 band infrared radiance image. It exhibits a 
strong consistency with the NASA super-resolution 
B11 band infrared radiance image obtained from the 
official website of Earthexplorer. The algorithm is 
particularly efficient in enhancing the resolution of 
natural environment scenes， including water bod‑
ies， grasslands， forests， and soil.
5. 3. 2 Experiments in an urban hydrological 

scene　

The super-resolution inversion and reconstruc‑
tion results of an urban hydrological scene are depict‑
ed in Fig.6.

In Figs. 6（a，b）， the infrared radiation bright‑
ness value is represented by pseudo color from dark 

Fig.5　Comparison of experimental results of super-resolu‑
tion inversion and reconstruction of natural environ‑
ment scenes
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blue to dark red， which corresponds to brightness 
values from low to high. Figs.6（a，b） have the same 
overall contours and geometric shapes， and the col‑
or distributions are basically the same， indicating 

that the infrared radiation brightness distributions of 
the two images are basically the same. For exam ‑
ple， in Fig.6（a）， there are large continuous dark 
blue areas from the lower left to the upper right as 
well as in the middle and lower parts of the image. 
Especially， in the middle of the image， there is a 
light blue rectangular shaped area surrounded by a 
dark blue area and interspersed with dark blue lines. 
At the lower right side of this rectangular area， 
there is a blue-green area interspersed by a large 
number of small yellow areas and some red areas. 
At the left side of the rectangular area， there are 
small yellow areas and red areas interspersed by 
some dark blue lines. At the upper right side of the 
rectangular area， there are many continuous light 
blue lines， as well as a large number of densely dis‑
tributed short light blue lines， with small yellow 
blocks in between. In Fig. 6（b）， the above-men‑
tioned areas are substantially the same as those in 
Fig.6（a）. Therefore， it can be concluded that the in‑
frared radiation brightness distributions in the two 
images exhibit a high level of consistency.

Figs.6（c，d） show similar curve shapes and nu‑
merical distributions， indicating that the infrared ra‑
diation brightness distributions of the two images 
are similar. In Fig. 6（e）， the absolute errors of 
Figs.6（c，d） lie within the range ［-0.1， 0.1］， with 
the majority falling within ［-0.05， 0.05］. A few 
points fall outside the range but none exceeds 0.15. 
In Fig.6（f）， the relative errors of Figs.6（c，d） are 
distributed within ［-1%， 1%］， with the majority 
falling within ［-0.5%， 0.5%］. A few points fall 
outside the range but none exceeds 1.5%. This im‑
plies a high level of consistency in the infrared radia‑
tion brightness distributions of the two images.

Experimental results show that the super-reso‑
lution B11 band infrared radiance image inverted 
and reconstructed by the proposed algorithm main‑
tains high consistency with the NASA super-resolu‑
tion B11 band infrared radiance image downloaded 
from the Earthexplorer’s official website. The pro‑
posed algorithm effectively enhances and recon‑
structs urban hydrological scene images， particular‑
ly improving resolution for water sources， concrete 
buildings， and asphalt roads.

Fig.6　Comparison of experimental results of super-resolu‑
tion inversion and reconstruction of urban hydrologi‑
cal scenes
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5. 3. 3 Algorithm effectiveness evaluation　

The quality of the super-resolution inversion re‑
constructed images is evaluated using the signal re‑
construction error， peak signal-to-noise ratio， and 
structural similarity index measure. Table 4 displays 
the calculated indexes of the super-resolution B11 
band infrared radiance brightness images in two 
scenes： The natural environment and the urban hy‑
drological scene.

From Table 4， it can be observed that the SRE 
values are higher than 25， the PSNR values are 
higher than 55 and the SSIM values are higher than 
0.9， indicating that the similarity between the recon‑
structed image and the original scene image is very 
high. Specifically， Table 4 shows that the SRE val‑
ues of the super-resolution inversion reconstructed 
images of the natural environment scene and the ur‑
ban hydrological scene are 8.25 and 10.45 higher 
than 25， respectively； the PSNR values are 15.39 
and 21.69 higher than 55， respectively； the SSIM 
values are 0.057 4 and 0.060 7 higher than 0.9， re‑
spectively. This paper presents super-resolution in‑
version reconstructed images that exhibit a signifi‑
cant resemblance to the original scene image. These 
results validate the algorithm’s efficacy.

5. 4 Algorithm robustness experiment　

This paper conducts multiple experiments on 
various scenes from Landsat 8 to validate the algo‑
rithm’s robustness. Five different scenes are taken 
as examples， and the calculation results for the qual‑
ity evaluation indices， namely SRE， PSNR and 
SSIM， of the super-resolution B11 band infrared ra‑
diation brightness images are presented in Table 5 
and Fig.7.

Based on Table 5 and Fig. 7， the SRE values 
exceed 25， PSNR values exceed 55， and SSIM val‑
ues exceed 0.9， indicating a significant similarity be‑

tween the reconstructed image and the original 
scene image. Specifically， Table 5 and Fig. 7 show 
that the SRE values of the super-resolution inver‑
sion reconstructed images of five different scenes are 
5.25， 12.13， 8.68， 6.08， and 9.61 higher than 25， 
respectively； the PSNR values are 13.45， 24.89， 
19.35， 16.36， and 20.26 higher than 55， respective‑
ly； the SSIM values are 0.030 4， 0.058 1， 0.055 5， 
0.045 9， and 0.056 0 higher than 0.9， respectively. 
The super-resolution inversion reconstructed images 
in this paper show a high similarity with the original 
scene image. Table 5 and Fig.7 demonstrate that 
the SRE values of the super-resolution inversion re‑
constructed images of five different scenes are all 
above 30， ranging between 30.25 and 37.13. The 
average SRE value is 33.35 with a fluctuation range 
of -3.10 to 3.78. The PSNR values are all above 
68， ranging from 68.45 to 79.89， with an average 
value of 73.86 and a fluctuation range of -5.41 to 
6.03. Similarly， the SSIM values are all above 
0.93， ranging from 0.930 4 to 0.958 1， with an aver‑
age value of 0.949 2 and a fluctuation range of 

Table 4　Quality evaluation of super‑resolution inversion 
reconstructed images

Scene
Natural environment
Urban hydrological

SRE /dB
33.25
35.45

PSNR/ dB
70.39
76.69

SSIM
0.957 4
0.960 7

Table 5　Quality evaluation of super‑resolution inversion 
reconstructed images of five different scenes

Scene
1
2
3
4
5

SRE/dB
30.25
37.13
33.68
31.08
34.61

PSNR/dB
68.45
79.89
74.35
71.36
75.26

SSIM
0.930 4
0.958 1
0.945 9
0.955 5
0.956 0

Fig.7　Quality evaluation indexes of super-resolution inver‑
sion reconstructed images of five different scenes
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-0.018 8 to 0.008 9. Therefore， the proposed algo‑
rithm has good robustness.

6 Conclusions 

The algorithm in this paper utilizes both light 
energy and thermal energy information from ground 
substances to better characterize the energy informa‑
tion in the scene， resulting in improved accuracy in 
super-resolution of unknown infrared band images. 
Experimental results indicate that the proposed algo‑
rithm effectively reconstructs high-resolution remote 
sensing images in an unknown infrared band. The re‑
constructed image closely resembles the original 
scene， thereby enhancing the capacity for target de‑
tection and recognition.

In this paper， the ground is regarded as a sim ‑
ple and uniform Lambert body in the study of super 
resolution inversion reconstruction of remote sens‑
ing image of fine spectrum， and the bidirectional re‑
flection distribution function （BRDF） is not consid‑
ered when the ground is non-uniform. Therefore， a 
crucial research direction and target for future stud‑
ies is to incorporate the BRDF of substance.
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感兴趣未知红外波段遥感图像超分辨率反演重构

闫钧华 1，2， 俞立谦 1，2， 夏翀翔 1，2， 章琪琪 1，2， 许祯瑜 1，2，
 张 寅 1，2， 范君杰 1，2

（1.工业和信息化部空间光电探测与感知重点实验室(南京航空航天大学)，南京  211106，中国； 
2.南京航空航天大学航天学院，南京  211106，中国）

摘要：提出了感兴趣未知波段遥感图像超分辨率反演重构算法。基于已有波段的多光谱图像，根据构建的地物

光谱反射率数据库，利用高斯混合聚类算法和相关距离法，对辐射定标和大气校正后的场景光谱反射率图像的

物质进行分类与类别判定。基于流形空间约束的图像解混算法得到场景图像的地物分布，据此，反演重构感兴

趣未知波段地物光谱反射率图像。基于已有波段的远红外图像，利用温度反演算法与插值算法，反演重构感兴

趣未知波段高分辨率地物温度场分布。根据地物光谱反射率信息和地物温度场信息，利用遥感链路成像模型，

超分辨率反演重构出感兴趣未知红外波段高分辨率遥感图像。实验结果表明，本文算法能够超分辨率反演重构

出感兴趣未知红外波段不同场景的高分辨率遥感图像，重构图像与场景实况图像的相似度很高，提升图像的目

标检测识别能力。

关键词：超分辨率反演重构；遥感图像；地物分布；光谱反射率字典；温度场反演重构
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