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Abstract: With the development tendency of energy saving and weight reduction of aerospace materials， high-

performance composite materials have been widely used in aircraft skins. However， the surface quality detections of 
composite skin parts are mostly carried out manually， leading to low detection efficiency and low accuracy. Visual 
detection has gained more and more attention in recent years， mainly because of its non-destructive detecting 
characteristics with high precision and flexibility. In view of the visual detection requirements of surface defects of 
composite skin parts， a robot-based detection platform was constructed， which innovatively integrated manipulator 
module， image acquisition module， laser ranging module， the deep learning module， and the complementary upper 
computer software. In order to ensure the efficiency and accuracy of detection， the detection algorithm of the system 
was developed based on YOLOv5. In addition， on account of the lack of raw composite skin parts， the dataset for 
training was expanded by employing the following three methods： Mirroring and rotating， translating， and adding 
noise. Experiments validate that the system can realize online， automatic， and accurate detections of various types of 
composite skin parts. The proposed system can complete detection of an image with a size of 5 496 pixel× 3 672 pixel 
in 0.744 s， and the detection accuracy reaches 96.35%， which meets the requirements for composite surface quality 
detection.
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0 Introduction 

In recent years， aviation materials have been 
developing in the direction of light weight and high 
strength. Due to their excellent properties， carbon fi‑
ber composite materials are more and more widely 
used in aircraft skins. Structurally， the composite 
materials exhibit good strength along the fiber axis， 
which also accompanies the characteristics of high 
temperature resistance， corrosion resistance， high 
hardness， and high strength. It is precisely because 
of the increasing application of composite materials 
in aircraft skins， their quality detection has attracted 
much attention.

Foreign scholars have applied machine vision， 

infrared thermal imaging， ultrasonic detection and 
other technologies to aircraft skins detection. Carne‑
gie Mellon University developed the skin detection 
robot ANDI （Automated non-destructive inspec‑
tor）， which drawn on bionics and used suction cups 
to crawl on the surface of the aircraft. The robot 
was equipped with four industrial cameras and an ed‑
dy current probe， which can be controlled remotely. 
The function of cameras is mainly to navigate the ro‑
bot’s motion and detect the surface defects of the 
aircraft skins. The eddy current probe used the phe‑
nomenon of electromagnetic induction to detect the 
dark seams and cracks that were difficult to find［1］. 
At present， the fourth-generation wall-climbing ro‑
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bot has been developed， equipped with more ad‑
vanced detecting equipments， and has a high degree 
of automation， reliability and efficiency［2-3］. NASA’s 
Propulsion Technology Laboratory researched and 
developed the multifunction automated crawling sys‑
tem （MACS） series of wall-climbing robots， which 
could be equipped with different equipments to 
move quickly on the surface of the aircraft to detect 
defects on the surface of the aircraft skins.

Due to the use of wired power supply， it can‑
not perform complete detection of the whole air‑
craft［4-5］. Domestic researches mainly focus on tradi‑
tional image processing algorithms and deep learn‑
ing algorithms. The traditional machine vision pro‑
cessing algorithms were used by Sheng［6］ to extract 
the texture of the aircraft skins with the grayscale co-

occurrence matrices， which achieved the detection 
of rusty rivets. Liu［7］ completed the recognition of 
aircraft surface skin defects and types by using the 
visual detection technologies of deep neural net‑
work， which finally significantly improved the effi‑
ciency and accuracy of detection. Yan［8］ combined 
support vector machines（SVMs） and machine learn‑
ing to process infrared images of aircraft skins， and 
compared the recognition results of symplectic 
group algorithms and SVM classification algorithms.

It is very easy for the human eyes to find the 
targets of interest in the image， but the computer 
can only obtain the pixel values of 0─255 in the im‑
age， so it is difficult to find the precise position of 
the targets of interest in the image. As shown in 
Fig.1， the traditional object detection process gener‑
ally includes three steps. The first step is region pro‑
posal. The purpose of region proposal is to find re‑
gions of interest （ROI） in the input image， which is 
the regions where objects may exist. Due to the dif‑
ferent sizes and positions of the targets， most tradi‑
tional methods apply sliding windows of different 
sizes to traverse the input image multiple times， 
thereby obtaining a large number of ROIs［6-8］. The 
second step is feature extraction. At present， many 
scholars have proposed some relatively mature fea‑
ture extraction algorithms， such as histogram of ori‑
ented gradient （HOG）［9］， scale invariant feature 

（SIFT）［10］， local binary pattern feature （LBP）［11］，

and so on. The third step is region classification and 
bounding box regression， which classifies the fea‑
ture vectors in the regions of interest and outputs the 
target detection results.

With the development of deep learning technol‑
ogies and computer hardwares， scholars have devel‑
oped more and more efficient and high-precision tar‑
get detection algorithms. Over‑Feat［12］ was a pio‑
neer in combining deep learning with object detec‑
tion， with the mean average precision （mAP） 
reached 24.3% on the ILSVRC2013 dataset. Short‑
ly after Over‑Feat was proposed，Girshick et al.［13］ 
came up with the R-CNN model， and the detection 
effect was greatly improved compared with 
Over‑Feat， which achieved 58.5% accuracy on the 
VOC2007 dataset. He et al.［14］ proposed the SPP-

Net algorithm， which introduced the spatial pyra‑
mid pooling （SPP） layer， and the average accuracy 
on the VOC2007 dataset reached 60.9%. Then the 
Fast R-CNN［15］ model was put forward， which used 
VGG16 instead of AlexNet， and the mAP reached 
70.0%. Compared with R-CNN， the training speed 
increased by 8.8 times， the detection speed in‑
creased by 213 times.

Liu et al.［16］ proposed Steel-Yolov3， surface 
defect detection algorithm for shaped steel based on 
deformable convolution and multi-scale dense fea‑
ture pyramid. The algorithm was used to detect de‑
fects such as scarring， peeling， scratches and inju‑
ries on the surface of section steel with a size of 
104 pixel × 104 pixel， with an accuracy of 89.24% 
and the detection efficiency of 25.62 f/s. Tian et al.［17］ 
proposed a steel surface defect detector， DCC-Cen‑
terNet. The experimental results show that on the 
NEU-DET steel defect dataset， the accuracy of 
DCC-CenterNet can reach 79.41 mAP， and the run‑
ning speed is 224.224 f/s when the input size is 
71 pixel×37 pixel. On the GC61-DET steel plate 
surface defect dataset， it runs at a speed of 93.10 f/s 

Fig.1　Steps of traditional object detection
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up to 31.47 mAP with 512 pixel×512 pixel input 
size. Huang et al.［18］ proposed an auto machine learn‑
ing（ML） model to detect cylindrical metal surfac‑
es， and the final detection accuracy was 95.5%. It 
follows that the detection accuracy is around 90% 
and the large pixel is about 30 f/s.

Theoretically， Zhu and Tian et al.［19］ provided 
a review of the main optical non-destructive testing 
（NDT） technologies and introduced the history and 
discussion of recent progress. Then， Yi et al.［20］ pro‑
posed the eddy current pulse-compression thermog‑
raphy to detect the impact damage and delamination 
possibly existing in aerospace composite materials. 
Similarly， Zha et al.［21］ completed the detection for 
groove sizes by using the traditional non-contact vi‑
sual algorithm， which showed that the absolute er‑
ror of measurement was 0.031—0.176 mm and the 
relative error was 0.2%—3.6%. Ma et al.［22］ pro‑
posed multiobject real‑time detection and classifica‑
tion model based on YOLOv3 to detect the tradi‑
tional advanced ceramic parts， with the mAP reach‑
ing 99.19%.

The visual detection object studied in this pa‑
per is composite skin part， which has a large exter‑
nal size with complex texture and the characteristics 
of scattering and reflection on the surface. In this pa‑
per， a visual detection method based on deep learn‑
ing was studied， and a high-precision visual detec‑
tion system was developed to detect the pits， 
scratches， mold release cloth marks and fiber tears 
on the surface of composite skins. It can eliminate 
the disadvantages of existing methods and improve 
the accuracy， stability and efficiency of the detec‑
tion. The main contributions of this paper are listed 
as follows：

（1） The visual detection system designed in 
this paper innovatively integrated manipulator mod‑
ule， image acquisition module， laser ranging mod‑
ule， and the deep learning module， which has a 
high degree of integration and the ability of flexible 
detection. The upper computer software was de‑
signed to precisely control every module to com ‑
plete specified actions.

（2） For the materials with textured features， 
the YOLO series of deep learning algorithms were 

innovatively used to extract and locate defect infor‑
mation. What’s more， the dataset for training was 
expanded for better training effect and finally output 
detection results in real time.

（3） For parts with radians， a distance adaptive 
control method of laser ranging sensors and manipu‑
lator was proposed to adjust the distance between 
the cameras and the surface of the part.

1 Visual Detection System Design 

Analyses of the shape of aircraft composite skin 
parts show that the sizes are large with the maxi‑
mum one reaching 1.4 m × 1.5 m. The parts are 
not completely flat， which may have different de‑
grees of radian， leading to diverse types and sizes. 
In order to meet the detection requirements， the de‑
sign of the detection system in this paper should con‑
sider the following aspects：

（1） The size of the detection object is large， 
therefore the structure of the visual detection units 
should be simple， compact， reliable， and maintain 
sufficient rigidity to minimize errors caused by fac‑
tors such as hardware vibrations.

（2） For parts with radians， the distance adap‑
tive control algorithm is needed to adjust the dis‑
tance between the cameras and the surface of the 
part， so as to ensure complete and clear images tak‑
en by cameras.

（3） Because of scattering and reflection phe‑
nomena on the surface of the parts， multiple sets of 
cross-examination tests are required for the lighting 
scheme to ensure that it can achieve the desired ef‑
fect on the entire surface and highlight the surface 
feature information.

（4） In order to achieve high detection accuracy 
and high stability， it is necessary to deeply study im ‑
age processing algorithms. What’s more， high-pre‑
cision micro-defect recognition algorithms are need‑
ed for different types of defects.

（5） The system includes multiple image acqui‑
sition units， manipulator motion control units， im‑
age processing units， and real-time detection result 
display units， requiring the multi-threaded， high-
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concurrency upper computer software to precisely 
control hardware modules to complete specified ac‑
tions.

According to the five points above， this paper 
proposed a detection scheme based on deep learn‑
ing. The manipulator was used to grab camera 
groups to capture surface images of parts， then they 
were transmitted back to the upper computer for im ‑
age recognition and the detection results would be 
displayed. The characteristics of high positioning ac‑
curacy and flexibility of the manipulator were used 
to realize the automatic detection of parts of differ‑
ent models and curvatures， with multiple sets of 
cameras shooting at the same time to improve the 
detection efficiency.

In the detection scheme， the hardware modules 
were divided into manipulator module， image acqui‑
sition module， and laser ranging module. The over‑
all layout is shown in Fig.2.

The operation process of the visual detection 
system for the surface quality of composite skin 
parts is shown in Fig. 3. The operating steps are as 
follows. （1） Run the manipulator program： Open 
the upper computer software and turn on the manip‑
ulator， and wait for the instructions after running 
the communication and control program of the ma‑
nipulator. （2） Lower computer communication： 
Turn on the laser ranging sensors， and establish 
socket communication with the manipulator. Then， 
adjust the parameters of cameras with the light 
sources on. （3） Place the current detection part： 
Place the length of the part along the X axis and the 
width along the Y axis at the origin of the workpiece 
coordinate system of the detection table. （4） Input 

part model parameters： Input the part model to be 
detected in the upper computer software， and the 
system will compare it with the database to acquire 
other parameters. （5） Start detection： After start‑
ing the detection program， the manipulator moves 
and carries the cameras shooting according to the 
calculated path. Then， the upper computer software 
detects and displays the real-time results of the de‑
tection. （6） Completing the detection of the current 
part， the results are saved to the defect statistics da‑
tabase with the manipulator automatically running to 
the detection zero point and waiting for the next de‑
tection. （7） After the parts are detected， close the 
upper computer software， and the connection will 
be automatically broke.

2 Construction of Detection Plat⁃
form

2. 1 Manipulator module　

Due to the certain curvature of the composite 
skin parts， the ordinary three-dimensional motion 
platform cannot meet the detection requirements. 
Therefore， the manipulator that could be precisely 
controlled by the upper computer software was se‑
lected as the motion control module， equipped with 
cameras for shooting.

2. 2 Image acquisition module　

The industrial camera with 20 million pixels 
and the resolution of 5 496（H）×3 672（V） was se‑

Fig.2　Overall layout of the hardware system Fig.3　Work flow chart of the detection system
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lected， which is small， light and has high reliability. 
The industrial len with 5 million pixels and the focal 
length of 8 mm was chose to coordinate with the 
camera above， then the object distance is calculated 
to be 114 mm. The depth of field of the cameras and 
the lens is 16.29 mm， hence the positioning accura‑
cy of the manipulator meets the range limit require‑
ments.

The maximum size of the detected parts can 
reach 1.4 m × 1.5 m， and the field of view of a sin‑
gle camera is 100 mm × 80 mm. So as shown in 
Fig. 4， a compact layout of 4 cameras horizontally 
combined was proposed to reduce the movements of 
the manipulator and improve the detection efficiency.

However， the interval between cameras in 
compact layout is 100 mm. In order to ensure the 
lighting effect， the outer diameter of the annular 
low-angle shadowless light source is 180 mm， 
which cannot be installed. Therefore， a staggered 
layout was proposed， as shown in Fig.5.

This staggered layout divides the original row 
of cameras into two rows with 80 mm row spacing 
and 100 mm column spacing between cameras. 
Compared with the compact layout， the staggered 
layout can ensure the installation space of the annu‑
lar low-angle shadowless light sources， and the cam ‑
eras can shoot the entire surface of parts without 
crossing or omission.

2. 3 Laser ranging module　

The laser ranging sensor with repeat measure‑
ment accuracy of ±1 mm and range of 0.05─40 m 
was selected to measure the distance between the 
cameras and the surface of the detected parts.

2. 4 Light source　

According to the laboratory test results， the 
surface defects of the detected parts were most clear‑
ly displayed under the annular low-angle shadowless 
light sources， and the uniform illumination could 
eliminate the interference caused by the uneven sur‑
face of parts. After the designs and selections of 
each module were completed， the components and 
hardware platform for the surface quality detection 
of composite materials were assembled， as shown 
in Fig.6.

3 Manipulator Motion Control Al⁃
gorithms 

Completing camera calibration and manipulator 
hand-eye calibration， the top angle of the part to be 
detected is aligned with the origin of the workpiece 
coordinate system. After placing the length of the 
part along the X axis and the width along the Y ax‑
is， the number of shots and the movement paths of 
the manipulator are automatically determined.

For flat composite skin parts， using the manip‑
ulator to move at a fixed distance above the part can 
ensure that the images captured by industrial camer‑
as are within the best imaging range. Thus， there is 
no need to control the manipulator to adjust the 
shooting distance between the cameras and the part.

As shown in Fig.7， there is an aircraft compos‑

Fig.4　Compact layout

Fig.5　Staggered layout

Fig.6　Physical diagram of hardware system
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ite skin part selected for detection， whose size is 
300 mm × 320 mm. It is part of a large composite 
skin part， and accordingly the shooting height of the 
cameras needs to be adjusted to capture high-quality 
surface images.

For composite skin parts with curvature， if the 
same manipulator movement method is used as for 
flat parts， the shooting distance may be outside the 
best imaging range when the cameras move to the 
highest or lowest point of the cambered surface. 
Therefore， this paper proposed a distance adaptive 
control method of laser ranging sensors and manipu‑
lator. The laser ranging sensors were installed on 
both ends of the expansion board of the manipulator 
end effector， and the posture of the manipulator is 
adjusted by the distance value returned by the sen‑
sors to achieve the acquisition of high-quality imag‑
es.

The mathematical model of the distance adap‑
tive control method for detected parts with radians is 
shown in Fig.8， where L is the distance between 
the two laser ranging sensors； di the measured val‑
ues of laser ranging sensor， i=1， 2； d the standard 
distance between cameras and the parts； R the radi‑
us of curvature of the part.

The depth of field of cameras is 16.29 mm， 
which guarantes the sharpness of shooting within a 
certain range. In order to simplify the calculation， 
we only adjusted the angle around Y axis of the ma‑
nipulator end effector， and the translation adjust‑
ments along X axis and Z axis remain the same， 
which are called θY， ∆X， ∆Z， respectively.

The calculation of θY is

θY = arctan d 1 - d 2

L
(1)

where the range of θY is [ - π/2，π/2].
The calculations of ∆X and ∆Z are

ì
í
î

ïïïï

ïïïï

ΔX = -dsinθY

ΔZ = dcosθY - d 1 + d 2

2
(2)

Every time the manipulator moves to a new de‑
tection point， the distance adaptive adjustment is 
performed according to Eqs.（1，2） to ensure the 
clarity of the shooting.

4 Surface Defect Detection of Com⁃
posite Materials Based on YOLO

4. 1 YOLO network　

The full name of YOLO is you only look once， 
and its author Joseph Redmon has released three 
versions of YOLO： YOLOv1［23］ ， YOLOv2［24］ ， 
YOLOv3［25］. The core idea of YOLO is to directly 
output the BBox location information and category 
information through the neural network of the entire 
image. YOLO will divide the picture into S×S grid 
cells. If the real defect target center is in a certain 
cell， this cell is responsible for detecting the defect.

4. 2 Experiment of YOLOv3 algorithm　

YOLOv3 was proposed in 2018， mainly for 
small target detection， which has good robustness. 
With multiple independent logistic classifiers for 
classifications and Darknet-53 being its basic net‑
work， it clusters nine anchor boxes， and predicts 
three BBoxes for each scale， whose advantages are 
high performance， low background false detection 
rate， and strong versatility. The algorithm frame‑
work of YOLOv3 is shown in Fig.9.

Fig.7　Surface composite skin part with curvature

Fig.8　Mathematical model of manipulator adaptive adjust‑
ment
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First of all， it is necessary to establish sample 
images of the surface defects of the parts. In actual 
manufacture process， the probabilities of defects on 
the surface of the part are very small， leading to not 
enough defects obtained for training. Therefore， we 
need to expand the surface defect dataset with data 
augmentation. Expanding the dataset has the follow‑
ing two functions：

（1） Increase the number of surface defect sam ‑
ples and improve the accuracy of model detection.

（2） Resist noise interference at the detection 
sites and maintain the stability of detection.

By using the following three dataset expansion 
methods： Mirroring and rotating， translating， and 
adding noise， we obtained a total of 1 851 images 
with the size of 512 pixel × 512 pixel. After that， 
with the deep learning dataset labeling tool named 
LabelImg， we used rectangular boxes to select the 
defects and label the types. Finally， the labeled data‑
set was scrambled and sent to the model for learning 
in random order. The number of iterations was 300， 
and the dataset was divided into training set and test 
set according to the ratio of 9∶1.

For most defects， the detection results were 
good and the confidence was high. However， by 
studying the prediction results of the test dataset， it 
was found that there were still some problems with 
the training weights of YOLOv3：

（1） For samples with a large proportion of de‑
fects in the image， the detection confidence was 
low. As shown in Figs.10（a， b）， the scratch area 

accounts for 45% and 40% of the image propor‑
tion， and the confidence level is only 0.29 and 0.53， 
respectively. By analyzing the detection results of 
the test set， the larger the proportion of defects in 
the image is ， the lower the confidence is.

（2） The detection confidence is low for the in‑
conspicuous mold release cloth marks. As shown in 
Figs.10（c，d）， the confidence levels of the mold re‑
lease cloth marks here are only 0.30 and 0.20， re‑
spectively. Compared with the traditional algo‑
rithms， the deep learning algorithm has been able to 
detect the defects here， but it is still necessary to 
make appropriate adjustments to improve the detec‑
tion confidence.

Fig.9　Frames of YOLOv3 algorithm

Fig.10　Problems in detect results
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4. 3 Improved test based on YOLOv5　

The experimental results of the YOLOv3 train‑
ing model have many shortcomings. Therefore， the 
dataset and model were adjusted to achieve better 
detection effects.

The YOLOv5 network is the latest network of 
the YOLO architecture series. It was proposed by 
Ultralytics in May 2020， whose fastest detection 
speed can reach 140 f/s with the advantages of high 
detection accuracy and strong real-time perfor‑
mance. At the same time， the weight file size of 
YOLOv5 network model is nearly 90% smaller 
than that of YOLOv4 published by Alexey Boch‑
kovskiy in April， so it is very suitable for being de‑
ployed on embedded devices for real-time detection. 
Different from YOLOv3， YOLOv5 abandons the 
main structure of Darknet‑53 and uses BackBone as 
the main network， which is mainly responsible for 
abstracting the input images into features. Its model 
structure is shown in Fig.11.

In Section 4.2， 1 851 images with size of 
512 pixel×512 pixel were produced by means of the 
augmented dataset. However， through the analysis 

and detection results， it was found that the size of 
some defects was too large， which led to that the 
images of 512 pixel × 512 pixel could only display 
part of scratches or mold release cloth marks. There‑
fore， referring to the method of making dataset in 
Section 4.2， the surface defects were reintegrated 
and expanded， and a new dataset was made. The 
comparison between the new dataset and the origi‑
nal dataset is shown in Table 1.

By setting the same parameters and using the 
deep learning models of YOLOv3 and YOLOv5 to 
train the original dataset and the new dataset， re‑
spectively， we could compare the results in terms of 
defect detection difference.

4. 3. 1 Training efficiency　

For the training of YOLOv3 and YOLOv5 
models， the same training parameters were used： 
The number of training iterations （epochs） is 500， 
while the number of samples for one training 
（batch_size） is 4， and the training time is shown in 

Table 2.

Table 1　Comparison between new and original dataset

Parameter

Image size/(pixel×pixel)
Pit/sheet

Scratch/sheet
Mold release cloth mark/sheet

Fiber tearing/sheet
Sum/sheet

Original 
dataset

512×512
25

759
1 037

30
1 851

New dataset

1 024×1 024
649

1 010
2 848
579

5 086

Fig.11　Model structure of YOLOv5

Table 2　Comparison of training time

Algorithm

YOLOv3

YOLOv5

Original dataset/h

3.7

2.1

New dataset/h

5.9

4.1
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As can be seen from Table 2， because the new 
dataset is superior to the original dataset in terms of 
image sizes and image richness， the training time is 
longer. Comparing the training time of YOLOv5 
and YOLOv3， it can be seen that the training effi‑
ciency of YOLOv5 has more advantages.
4. 3. 2 Training accuracy　

The precision-recall（PR） curve and mAP are 
used to evaluate the effect of training. TP， TN， FP 
and FN are the abbreviations of true positive， true 
negative， false positive， and false negative， respec‑
tively. Positive and negative indicate the result ob‑
tained by the prediction. True and false indicate 
whether the predicted result is the same as the real 
one.

The formula for calculating the accuracy rate is 
shown below， indicating the percentage of correctly 
identified samples in all identified samples.

Precision = TP
TP + FP (3)

The formula for calculating the recall rate is 
shown below， indicating the percentage of correctly 
identified samples in all samples.

Recall = TP
TP + FN (4)

The PR curve is shown in Fig.12， where 
Fig.12（a） is the training PR curve of the original da‑
taset， and Fig. 12（b） the training PR curve of the 
new dataset. As can be seen from the figure above， 
the PR curve in Fig.12（b） can completely wrap that 
in Fig.12（a）， so the training effect of the new datas‑
et is better than that of the original one.

5 Analysis of Detection Results 

5. 1 Comparison of different algorithms　

In order to demonstrate the superiority of the 
YOLOv5 detection algorithm， it was compared 
with the traditional visual processing algorithm and 
the YOLOv3 algorithm. The results are shown in 
Table 3.

Experimental results show that the YOLOv5 
detection algorithm used in this paper has good per‑
formance： The detection accuracy is better than that 
of other detection algorithms and the detection ef‑
fect of each type of defect is relatively average.

5. 2 Detect efficiency of YOLOv5　

The YOLOv5 model was used to train the orig‑
inal dataset and the new one， respectively. Then， 
the two weights obtained from the training were 
used to detect the defect sample images of the corre‑
sponding size. By comparing the detection efficien‑
cy， the average detection time and detect efficiency 

of the two weight files are shown in Table 4.

The size of the original image captured by in‑
dustrial cameras is 5 496 pixel×3 672 pixel， which 
is used as the standard image format to analyze the 
detection efficiency of the model. After the image is 
split， the slider-type detection is performed. When 

Fig.12　PR graphs

Table 3　Comparison of detect results %

Algorithm

Traditional visual processing algorithm
YOLOv3
YOLOv5

AP
Pit

72.32
83.26
94.29

Scratch
50.16
74.38
100

Mold release cloth mark
46.96
71.45
93.75

Fiber tearing
48.29
84.79
96.43

mAP

54.43
78.47
96.35

Table 4　Comparison of detect time and detect efficiency

Image size/
(pixel×pixel)

512×512
1 024×1 024

Detect time/s

0.017
0.031

Detect efficiency/
(f·s-1)

58
32
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the cell size is 512 pixel×512 pixel， each image 
needs to be detected 88 times， and it takes 1.496 s 
to detect a standard image. When the cell size is 
1 024 pixel×1 024 pixel， the detect times of each 
image is 24， and a standard image takes 0.744 s. It 
can be seen that the detection model trained by the 
new dataset has a large image size and a long single 
detection time， but the complete detection of a stan‑
dard image is more efficient， which is about twice 
as high as that of the original dataset.

5. 3 Detect accuracy of YOLOv5　

In order to verify the detection accuracy of the 
surface quality detection system for composite skin 
parts designed in this paper， and to verify the gener‑
alization performance of the deep learning model at 
the same time， new defects were created for the lab‑
oratory part samples. For the mold release cloth 
marks that caused by improper operation in the man‑
ufacture process and cannot be replicated， the sam‑
ples that have not been used for training were select‑
ed as the validation set. A total of 137 new defects 
were selected to be shooted and detected by the soft‑
ware system， and the detect results were analyzed.

The typical defect detection results are shown 
in Fig.13， and the total results are shown in Table 5. 
In Table 5， the defect number are the actual number 
of four types of defects： Pits， scratches， mold re‑
lease cloth marks， and fiber tearings. The total num ‑
ber of samples whose detection result categories are 
consistent with the real categories and whose confi‑
dence level is higher than 60% are defined as cor‑
rect detections. Those whose detection result cate‑
gories are inconsistent with the real categories are 
considered as misdetections. Defects that are not de‑
tected are regarded as missed detections.

The accuracy rate was used to evaluate the de‑
tect results which refered to the ratio of the number 
of targets accurately detected to the total number of 
verification datasets. The accuracy rate of the detec‑
tion is 96.35%， which meets the accuracy require‑
ment for the detection of composite skin parts. 
Among the misdetected defects， a fiber tearing was 
mistakenly identified as a scratch. These two de‑

Fig.13　Typical defects of composite skin parts

Table 5　Detect results

Parameter

Defects 
number/

sheet
Correct 

detection/
sheet

Misdetection/
sheet

Missed 
detection/

sheet

Pit

35

33

0

2

Scratch

42

42

0

0

Mold release 
cloth mark

32

30

0

2

Fiber 
tearing

28

27

1

0

Sum

137

132

1

4

496
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fects have a certain degree of similarity at a specific 
angle， while fiber tearings mostly occur at the edge 
of the surface of the part and scratches mostly ap‑
pear in the center. Among the missed identification 
defects， two cases of pits and two cases of mold re‑
lease cloth narks were missed. Such defects have 
stricter lighting requirements， so the missed detec‑
tion rate is higher than that of the other.

6 Conclusions 

In addition to the high efficiency of non-contact 
detection， the novelty of the detection method pro‑
posed in this paper is rapidity， flexibility， and accu‑
racy. It takes 0.744 s to complete detection of an im ‑
age with a size of 5 496 pixel × 3 672 pixel， with 
the detection accuracy reaching 96.35%. And it can 
detect composite skin parts with different curvatures.

Based on the carried out studies， we obtain the 
following conclusions.

（1） According to the detection scheme， the de‑
tection platform was built. In order to improve the 
detection efficiency， the manipulator was equipped 
with four sets of industrial cameras and light sources 
to capture the surface images of the composite mate‑
rials， and the laser ranging sensors and the manipu‑
lator were used to detect the curved surface of the 
composite material skin parts.

（2） The complementary upper computer soft‑
ware was developed at the same time. During the 
detection process， the detection information could 
be displayed in real time on the upper computer， 
and finally saved into the database.

（3） Due to the lack of raw composite skin 
parts， the dataset for YOLOv5 network was ex‑
panded by employing the following three methods： 
Mirroring and rotating， translating， and adding 
noise.

（4） The YOLOv5 deep learning method was 
used in this paper， with the mAP reaching 0.978 
when the IOU threshold is 0.5， and the detection ef‑
ficiency reaches 32 f/s. Thus， the plantform meets 
the requirements of composite surface quality detec‑
tion and can be applied to the detection of actual 
composite skin parts.

As for the future work， the detection system 
can be improved in the following aspects.

（1） Further improve the adaptive distance con‑
trol algorithm： The composite skin parts can be 
modeled in 3D modeling software， and the manipu‑
lator can be controlled more precisely through the 
analysis of the model. Particularly， the special-
shaped composite parts with more complex shapes 
can be detected with high efficiency and accuracy.

（2） Further improve the accuracy of the de‑
fects detection： Other target detection algorithms 
can be tested to further improve the accuracy of the 
system， such as region-CNN （R_CNN）， single 
shot multiBox detector， etc. What’s more， the ex‑
isting algorithms can be modified to make it more 
suitable for the detection of composite skin parts.
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基于深度学习的复材表面缺陷检测方法

陆永华 1， 黄 钰 1， 徐嘉骏 1， 冯 强 2， 周利华 2

（1.南京航空航天大学机电学院, 南京 210016, 中国； 2.国营锦江机器厂, 成都 610043, 中国）

摘要：随着航空航天材料节能减重的发展趋势，高性能复合材料在飞机蒙皮中得到了广泛的应用。然而，对复合

材料蒙皮零件的表面质量检测多由人工方式进行，检测效率低，精度低。近年来，视觉检测越来越受到人们的关

注，主要是因为它的高精度和高灵活性的无损检测特性。针对复合材料蒙皮零件表面缺陷的视觉检测需求，本

文搭建了基于机器人的检测平台，该平台创新性地集成了机械手模块、图像采集模块、激光测距模块、深度学习

模块以及配套的上位机软件。为了保证检测的效率和准确性，本系统基于 YOLOv5 开发了检测算法。此外，由

于缺乏原始复合材料蒙皮零件，系统通过镜像旋转、平移和添加噪声 3 种方法对训练数据集进行扩展。实验证

明，该系统能够实现对各类复合材料蒙皮零件的在线、自动化和准确地检测。该系统可以在 0.744 s 内完成尺寸

为 5 496 像素× 3 672 像素的图像检测，且检测精度达到 96.35%，满足复合材料表面质量检测的要求。

关键词：复材蒙皮；视觉检测；YOLO；目标检测；机械手
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