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Abstract: It is necessary to evaluate man⁃hour （MH） before receiving the order to guide the quotation and forecast 
the delivery date for a manufacturing contractor. As an important part of assembled MH， it has important practical 
significance. Aiming at the characteristics of multi-specification and small-batch production， an assembly MH 
estimation model based on support vector machine （SVM） is proposed. Apart from single component attributes， 
assembly process， and historical MH data， we also consider the average of shortest path length （ASPL）， which 
quantifies the complexity of an assembly， as influencing factors of assembly MH. Furthermore， the auto calculating 
methods of these factors based on 3D models with Creo JLink are proposed. Through the comparison of several 
algorithms， SVM is chosen as the optimal algorithm for assembly MH modeling. Genetic algorithm （GA） is used to 
avoid the local solution and accelerate convergence when searching for the optimal parameters of SVM （c and g）. 
Finally， the proposed GA-SVM model is trained and applied to predict the assembly MH of the bionic leg for the 
radar device. Experimental results show that GA-SVM has higher prediction accuracy than other methods in this paper 
and the whole predicting process only takes about 3 min.
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0 Introduction

Delivery time， cost and quality are the primary 
challenges for companies today. The main goal of 
the company is to put the product on the market as 
soon as possible［1］. The manufacturer must estimate 
the time cost to ensure that the project is profit⁃
able［2］. For complex mechanical products， assembly 
man⁃hour（MH） account for almost 50% of the total 
MH， which is worth studying［3］.

This study is based on the fact that the product 
process has not been formulated. As a part of the 
overall MH， the predicted assembly MH can be 

used as a reference for product quotation and deliv⁃
ery time， but cannot be used to arrange production.

Taylor[4] proposed the modular arrangement of 
the predetermined time standard, which has become 
an important part of the predetermined time stan⁃
dard. Park et al. [5] applied the depth camera to MH 
measurement and realized the automatic measure⁃
ment of standard time. Mei et al.[6] proposed the idea 
of reasonably allocating labour in a single production 
to obtain the minimum working hours. Nitta et al. [7] 
has established a MH quota model, which can study 
errors according to the particularity of operators in 
the production process. Hanson et al. [8] studied the 
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effect of matching tools on the MH of hybrid model 
assembly systems[8].

After the exploration for 50 years， the factors 
affecting MH have been gradually discovered and 
enriched. The focus of MH has turned to models 
and related algorithms. The methods for calculating 
the MH quota include mathematical model， empiri⁃
cal calculation， analysis method， statistical meth⁃
od， chart method， and simulation method. Tseng et 
al.［9］ studied the case retrieval algorithm and the 
case modification technology， both of them be⁃
longed to the case-based reasoning technology and 
were applied to the calculation of MH in the process⁃
ing process later. Chen et al.［10］ used the expert eval⁃
uation method to conduct regression analysis on the 
similarity between the process and the correspond⁃
ing working hours， and obtained the calculation 
model of working hours of the new similar process. 
Liu et al.［11］ confirmed that the neural network algo⁃
rithm was superior to the linear regression algorithm 
in the hull assembly MH prediction. Qu et al.［12］ ana⁃
lyzed the factors affecting the assembly MH of ship 
sections and established the prediction model of as⁃
sembly MH by using neural networks. Yu et al.［13］ 
proposed a prediction model to estimate aircraft as⁃
sembly MH by using support vector machine
（SVM） optimized by particle swarm optimization.

In recent years， more and more experts model 
complex problems using algorithms. Song et al.［14］ 
proposed a dynamic hybrid mechanism-based differ⁃
ential evolution algorithm to effectively schedule 
railway train delay. Deng et al.［15］ proposed an en⁃
hanced MSIQDE algorithm for modeling complex 
problems. Zhao et al.［16］ applied continuous wavelet 
transform and Gauss convolutional deep belief net⁃
work to intelligent diagnosis. However， as far as we 
know， there are no studies using algorithms to pre⁃
dict assembly MH over the forecast period， as there 
is not known method to quantify the assembly com ⁃
plexity.

In terms of MH prediction algorithm， the linear 
regression algorithm is difficult to meet the highly 
nonlinear characteristics of MH. The neural network 
algorithm needs a large number of samples， which is 

difficult for enterprises marked as multiple varieties 
and small batches. SVM is used to small sample， 
nonlinear and multi value classification problems to a 
certain extent［17］. It overcomes the defects of “dimen⁃
sion disaster” and “excessive learning” in traditional 
machine learning methods such as neural net⁃
works［18］.

Based on the historical data of similar prod⁃
ucts， this paper studies the influence of assembly re⁃
lationship between parts of new products on assem ⁃
bly MH. The assembly attributes of products are ex⁃
tracted from the three-dimensional assembly model 
to solve the subjective uncertainty of workers. In ad⁃
dition， the shortest path method is used to quantify 
the assembly complexity and improve the assembly 
MH prediction model. Considering the problem of 
small historical samples and sparse data， the genetic 
algorithm（GA） is introduced to optimize the SVM， 
and the assembly MH prediction model is estab⁃
lished.

1 Impacts of Assembly Man‑Hours

There are many factors affecting assembly 
MH， including automation degree， component 
quality， assembly process， product structure， 
worker qualification， and product organization and 
management［19］. Therefore， the assembly MH quo⁃
ta belongs to a constrained mixed discrete non nu⁃
merical optimization problem［20］. On the premise of 
the same level of assembly automation and worker 
proficiency， we mainly focus on the influence of 
part attributes， assembly process， and assembly to⁃
pology.

1. 1 Part attributes and assembly process

1. 1. 1 The way of component connecting

In addition to welded parts， components are a 
group of related parts connected together by a large 
number of connectors and fasteners， such as 
screws， washers， nuts， studs， etc［21］. The time of 
grasping， positioning， and other operations in the 
assembly process largely depends on the characteris⁃
tics of the parts themselves.

The quality， surface area， volume and actual 
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size of parts are important parameters that affect the 
assembly time. In consideration of the computational 
complexity and redundancy， part quality and bound⁃
ing box size are selected as part attribute parameters 
that affect assembly MH. In the assembly process， 
the connection mode of components and the number 
of mating surfaces are mainly considered.
1. 1. 2 Identification of matching surface　

The information of matching surfaces includes 
the number， the type， and the size of the matching 
surface. The larger the number of matching surfaces 
and the more area of matching surfaces are， the 
more time the assembly demands.

Chang et al.［22］ presented a way to filter out the 
unrelated parts by determining whether two parts 
touched or intersected. Afterwards， assembly surfac⁃
es of parts that may have assembly relationships are 

matched. This paper proposes an assembly informa⁃
tion extraction method with higher accuracy than the 
above method. The constraint information from 3D 
model is used to search for the couple of parts that 
may have an assembly relationship. Afterwards， sur⁃
faces of the couple are matched to judge whether the 
assembly relationship exists in the couple.

1. 2 Assembly topology structure　

We take the advantage of the complexity of as⁃
sembly topology to quantify the difficulty of mechan⁃
ical product assembly. According to the research of 
Mathieson et al.［23］ and the lessons learned from 
graph theory， the assembled product can be ex⁃
pressed in the form of bipartite graph. Afterwards， 
the surfaces of the couple are matched to judge 
whether the assembly relationship is existed of the 
couple， and the process is shown in Fig.1.

Fig.2 is a three-dimensional model of piston-

connecting rod mechanism （PCRM） of motor， and 
Fig.3 is its form in bipartite graph.

Define a relational design structure matrix 
（rDSM）
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to mathematically express a product topology. Here 
n presents the total number of parts， and dij means 
whether part i and part j have a connection. If there 
are connectors between them， dij =1， otherwise， 
dij = 0. The rDSM of above PCRM is

D nn =

é

ë

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê
êê
ê
ê

ê

ê

ê

ê

ê

ê

ê

ê

ê ù

û

ú

ú

ú

ú

ú

ú

ú

ú

ú
úú
ú

ú

ú

ú

ú

ú

ú

ú

ú-    0     1     1     0     0    0      0     0
 0    -     1     1     0     0    0      0     0
 1     1     -    1     1     0    0      0     0
 1     1     1     -    0     1    0      0     0
 0     0     1     0     -    1    0      0     0
 0     0     0     0     1    -    1      0     0
 0     0     0     0     0     1    -     1     1
 0     0     0     0     0     0     1     -   0
 0     0     0     0     0     0     1      0   -

The shortest path length refers to the minimum 

Fig.1　Identification of screw connecting

Fig.2　3D model of PCRM

Fig.3 Bipartite graph of PCRM
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number of connections that an element passes to an⁃
other given element in the system. It reflects the 
tightness of connections between components in the 
system. For example， between the connecting rod 
and the piston， the alignment of the connecting rod 
bushing， the alignment of the bushing and the pis⁃
ton pin， and the alignment of the piston pin and the 
piston must be determined. The shortest path 
length between the connecting rod and the piston is 
three.

The shortest path length between assembly 
parts can be calculated by Dijkstra algorithm［24］. 
Supposing a given bipartite graph G = （V， E）， 
where V represents the assembly element and E the 
connection relationship， we make V = X +-

X and 
Pi ∈ X， i = 1， 2，…，n.

The basic idea of the algorithm is to first estab⁃
lish a set X to store points which have already calcu⁃
lated the shortest path and the set -X stores the re⁃
maining points. The specific practices are as fol⁃
lows：

Step 1 Put the source point p1 into X， and 
Pi ∈ X represents the remaining n-1 points.

Step 2 Calculate the shortest path length 
mij between pi （belongs to X） and pj （belongs to 
-
X）， then put pj into -X and mij into all-pairs short⁃
est path matrix （ASPM）.

Step 3 Make j+1 and repeat Step 2 until 
all the points in V are put into set X.

Step 4 Make i+1 and make sure i+j = 
n， repeating Step 2 and Step 3 until i=n.

The ASPM of piston-connecting rod mecha⁃
nism is
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The average of the shortest path length was used 
to quantify the complexity of a product， shown as

 D = 
∑

i

NE

∑
j

NE

D *
ij

N E( )N E - 1
(1)

where NE means the number of parts of a product 
and D the average value of the shortest path of 
PCRM.

The average value of the shortest path length 
reflects the degree of tightness between parts. Un⁃
der the premise of avoiding the complexity of the 
part itself， the higher the value is， the tighter the re⁃
lationship is between parts and the more difficult the 
assembly is. On condition that the number of parts 
is the same， as a result， the series structure has the 
largest average shortest assembly path value and the 
parallel structure has the smallest， which means 
that D has a certain range as follows

1 ≤ D ≤ 
∑
i = 1

n - 1

∑
j = 1

i

j

n ( n - 1 )
(2)

The average value of the shortest path length 
of Fig.2 is 2.67， that of Fig.4（a） is 1， and that of 
Fig.4（b） is 3.33.

2 Method for Predicting Assembly 
Man‑Hour

This paper takes a bionic-leg structure from a 
specific machine as an example. The MH estimation 
process is shown in Fig.5.

2. 1 Sample selection

Considering that the quality of the part is al⁃
ways proportional to the size of the part in the as⁃
sembly of the bionic⁃leg structure， only the quality 
of the part is considered when considering the influ⁃
ence of the part characteristics on the assembly 

Fig.4　Topology diagram of assembly
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time. According to the manufacturer’s standard， 
parts with a mass of less than 1 kg are defined as 
small parts， and those with a mass of more than 
25 kg are defined as large parts.

The bionic⁃leg structure is generally similar， 
usually using the same or similar assembly process. 
This paper selects 16 groups of historical data of 
bionic⁃leg assembly， and extracts the assembly in⁃
formation of new products in the three-dimensional 
model. The samples are shown in Table 1.

The quantities of small parts， medium parts， 
large parts and total parts are expressed as P1， P2， 
P3， and P4， respectively. Mass properties are de⁃

fined in the Creo model by designer. So that P1， P2， 
P3， and P4 can be auto extracted by the develop⁃
ment of the Creo Jlink application. A represents 
the number of assembly relationships and is auto 
calculated by extracting assembly info defined in 
the 3D model， and L the average length of the 
shortest path. C1， C2，and M represent the number 
of screws， pins， and adjacent relationships， which 
can also auto calculated by a Creo Jlink apploica⁃
tion. And T represents the assembly MH. The rela⁃
tionship between these variables can be described 
by the following mathematical expression as T =
 [ P 1， P 2， P 3， P 4， A， L， C 1， C 2， M ].

Assuming that each influencing factor performs 
a one-dimensional linear fitting to the assembly 
MH， and making y=ax+b， the correlation coeffi⁃
cient is as shown in Table 2.

As can be seen from Table 2， the simple linear 
fitting cannot meet the prediction modeling of as⁃
sembly MH as a result of the maximum R2 being 
0.4. The average length of the shortest path has the 
greatest influence on the univariate linear fitting co⁃
efficient of assembly MH because of the maximum 
absolute value a. The bigger the absolute value a is， 
the smaller the assembly MH is.

2. 2 Principle of SVM　

MH quota is a typical highly nonlinear prob⁃
lem. In order to deal with the nonlinear problem， 
kernel function is introduced and the input data is 
mapped into high-dimensional linear feature space. 

Treat the P1， P2， P3， P4， A， L， C1， C1， M as in⁃
put and T as output in SVM algorithm.

We describe the mathematical model T =
 [ P 1， P 2， P 3， P 4， A， L， C 1， C 2， M ] as y =
 [ x 1， x2， … ， xn ]， where n = 9.

Table 1　Sample set

No.
1
2
3
4

︙
13
14
15
16

P1

154
137
186
145
︙

181
156
128
142

P2

63
85
86
64
︙
95
73
63
51

P3

10
12
21
25
︙
20
12
24
13

P4

227
234
293
234
︙

296
241
215
206

A

266
379
328
342
︙

346
434
376
223

L

6.33
6.44
7.27
3.35
︙

9.23
3.95
7.34
8.32

C1

13
22
17
26
︙
32
20
12
11

C2

11
24
7

25
︙
12
41
19
22

M

15
39
19
14
︙
24
26
21
27

T/h-1

43
68
52
61
︙
48
53
35
42

Table 2　Unitary linearity regress

Element
a
b

R2

P1

0.15
32.17
0.14

P2

0.38
25.9
0.21

P3

0.40
48.88
0.03

P4

0.15
16.25
0.24

A
0.03

45.52
0.02

L
-3.85
79.63
0.40

C1

0.81
37.88
0.35

C2

0.25
49.24
0.05

M
0.51

43.61
0.12

Fig.5　Assembly MH predication process of bionic-leg structure
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Since there is no simple linear relationship be⁃
tween xi and y， the training data set is mapped to a 
high-dimensional space utilizing φ ( xi ) and the deci⁃
sion function turns to the following form

 y = ωT ⋅ φ ( xi ) + b (3)
where ω indicates the optimal hyperplane which 
classifies the factors affecting the assembly MH into 
different group and b the error offset. Mapping the 
input data into a high-dimensional linear space inevi⁃
tably leads to dimensional disasters， and the compu⁃
tational difficulty increases dramatically.

The solution of Eq.（3） is similar to the solu⁃
tion of a linear regression problem， which is equiva⁃
lent to solving

ì
í

î

ïïïï

ïïïï

minimize    12 ω
Tω

subject to     yi - ( )ω ⋅ xi + b  ≤ ε
(4)

where ε represents the allowable error of the fitting 
of MH， and when the constraint cannot be satis⁃
fied， the slack variable ξi，ξ*

i  are introduced.
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i = 1
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i
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yi - ω ⋅ φ ( )xi - b ≤ ε + ξi

ω ⋅ φ ( )xi  + b - yi ≤ ε + ξ *
i

ξi, ξ *
i ≥ 0

(5)

where c is the penalty coefficient indicating the de⁃
gree of punishment of the algorithm for the wrong 
classified sample. Using the Lagrangian multiplica⁃
tion and the KKT condition， Eq.（5） is further de⁃
duced as

f ( x ) = ∑
xi ∈ SV

( αi - α*
i ) K ( xi, xj ) + b (6)

where

b = 1
N NSV { ∑

0 < αi < C

é
ë
êêêêyi - ∑

xi ∈ SV
( αj - α*

j ) ·

ù
û
úúúúK ( xi, xj )- ε + ∑

0 < α*
i < C

é
ë
êêêêyi -

}ùûúú∑
xi ∈ SV

( αj - α*
j ) K ( xi, xj ) + ε (7)

where K （xi， xj） is the kernel function， introduced 
at reducing the amount of calculation directly and 
avoiding constructing a nonlinear mapping.

The common kernel functions used in SVM 
are polynomial functions， radial basis functions， sig⁃

moid functions， and so on. Gaussian functions are a 
common form of radial basis functions， in the form 
as

  K ( xi, xj ) =  exp((-x - y 2 ) /2σ 2 ) (8)
The Gaussian function is one of the most wide⁃

ly used and most excellent kernel functions because 
of its wide converge domain and versatility. As de⁃
scribed in Eq.（8）， if σ is bigger enough， the 
weights of high-dimensional features will decay 
quickly， as a result they are actually equivalent to a 
low-dimensional subspace. By contrast， if σ is 
small enough， data can be mapped to be linearly 
separable. Based on these characteristics of Gauss⁃
ian functions， it is chosen as the kernel function of 
SVM.

The model that is trained by SVM in this paper 
belongs to a multi-classification problem， in which 
different classifiers may have distinctive scales. For 
the purpose of solving this deficiency， the hyper⁃
plane with the largest interval and the corresponding 
b is calculated by Eq.（3）. The assembly MH be⁃
longs to continuous variables， and classifiers are not 
suitable to predict it. In this paper， Eq.（3） is used 
to estimate assembly MH. The assembly MH stud⁃
ied is small-volume production enterprises， the size 
of the sample is small， and the imbalance of training 
samples will inevitably cause errors of the classifier 
to some extent.

2. 3 Principle of GA‑SVM

Searching for the appropriate c and g （g equals 
the kernel function parameter σ） is the key of SVM 
optimization， further to obtain b. At present， the 
commonly used grid crossover algorithm and empiri⁃
cal algorithm usually let c and g take discrete values 
in a certain range， and adopt the parameters with 
the best classification accuracy of the test set. There 
are certain deficiencies in efficiency and accuracy of 
both the grid crossover algorithm and the empirical 
optimization algorithm. GA is a random search algo⁃
rithm which draws lessons from the natural selection 
and natural genetic mechanism of the biological 
world. It has the intrinsic characteristics of group 
search and heuristic random search， and it rarely 

505



Vol. 40 Transactions of Nanjing University of Aeronautics and Astronautics

falls into local optimum. The inherent parallel com ⁃
puting ability of GA can quickly find out the optimal 
values of c and g.

The input parameters should be normalized to 
eliminate the dimension and speed up the conver⁃
gence in prior of training. Specific practices are as 
follows

 y = ( ymax - ymin ) ( x - xmin )
xmax - xmin

 + ymin (9)

where xmin and xmax represent the minimum and maxi⁃
mum values of the input one-dimensional array. ymax 

and ymin represent the upper and lower limits of the 
normalized range of output MH， respectively. ymax = 
1 and ymin = 0 are usually stipulated. The accuracy 
and adaptability of the algorithm are quantified by 
mean squared error （MSE） and R2， respectively.

The normalized data are used as the input of 
LIBSVM， and the accuracy of cross validation algo⁃
rithm is used as the fitness value. And c， g are treat⁃
ed as the parameters to be optimized. The flow 
chart is shown in Fig.6.

3 Example Verification

3. 1 Results of examples　

The first 13 groups of data in Table 1 are used 
as training sets， and the latter 3 groups are used to 
test the model precision.

In this case， the upper limit of evolutionary 
times of GA is 500， the number of population is 20， 
c ∈  [ 0， 100 ]， g ∈  [ 0， 500 ]， and the termination 
condition is that the number of iterations reaches 
half of the upper limit and the root-mean-square er⁃
ror is lower than a specified value.

Due to the randomness of the GA result is ran⁃
dom， the performance of the algorithm cannot be 
fully illustrated by a single experiment. Repeated ex⁃
periments are carried out under the same condition， 
whose results are shown in Table 3. In the case of 
similar MSE， c and g in the group with the smallest 
penalty coefficient are selected as the best parame⁃
ters， and the mean value of the third group of data is 
taken. In the same accuracy rate， the smaller the 
penalty factor is， the stronger the prediction ability 
of the algorithm is.

As can be seen from Fig.7， the fitness is close 
to the present value and the algorithm has good con⁃
vergence.

In this paper， the mean impact value （MIV） is 
introduced into SVM based on GA. The main func⁃
tion of MIV is to rank the relativity between factors 
and outcomes.

We can conclude from Table 4 that the average 
shortest path has the greatest impact on the bionic-

leg assembly MH， and the value of the average 
shortest path is inversely proportional to the assem ⁃
bly time.

3. 2 Result analysis

Utilizing the established model and the third 
group data from Table 3 which means c=1.28，g=
0.60，the assembly MH is predicted and the results 
are shown in Fig.8.

Fig.6　Flow of GA selecting SVM parameters

Table 3　Parameters selected from GA‑SVM

No.

1
2
3
4
5
6
7
8
9

10

Penalty co⁃
efficient c

0.75
1.13
1.28
1.48
1.79
3.85
5.20
7.52

21.92
36.05

Kernel pa⁃
rameter g

0.27
0.16
0.60
0.60
0.61
0.61
0.60
0.61
0.61
0.60

MSE

0.066
0.064
0.069
0.069
0.069
0.069
0.069
0.069
0.069
0.069

Squared correla⁃
tion coefficient

0.916
0.908
0.999
0.999
0.999
0.999
0.999
0.999
0.999
0.999
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The MSE of the predicted bionic-leg assembly 
MH with GA-SVM is 0.036 and its square corre⁃
lation coefficient is 0.999. The experiment proves 
that the algorithm has good accuracy and adapt⁃
ability in predicting assembly MH with small sam ⁃
ples.

In this paper， the grid optimization algorithm 
and GA are both used to predict assembly MH as 

well as BP neural network（BP⁃NN） algorithm. The 
experimental results verify the superiority of GA-

SVM.
As shown in Table 5， the GA-SVM approach 

works best with the root mean square error of 
3.669. The maximum error of prediction is 9.78%， 
and the minimum error is -3.66%. This meets the 
requirement of enterprise that the error of assembly 
MH is less than 30%.

4 Conclusions 

For multi-specification and small-batch produc⁃
tion， it is the key point to improve the core-com⁃
petitiveness by reasonably estimating the cost and 
delivery time of products before subscribing an or⁃
der. The assembly topology complexity is taken in⁃
to account innovatively when estimating assembly 

Fig.7　Fitness curves of parameter selection

Fig.8　Predication result of algorithm

Table 4　Analysis with MIV

Parameter

MIV

P1

0.000 4

P2

0.019 2

P3

0.002 5

P4

0.006

A

0.001

L

0.042 6

C1

0.008 6

C2

0.004 8

M

0.031 1
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MH which perfects the prediction model. All the 
influencing factors of assembly MH are auto ex⁃
tracted by the development of a Creo JLink applica⁃
tion， and the whole predicting process takes only 
about 3 min. According to the scarcity and discreti⁃
zation of historical MH data， an assembly MH 
forecasting model is established by using GA-

SVM. Verified by an example of bionic-leg struc⁃
ture， the root mean square error of GA-SVM is 
smaller than that of others referred in this paper. 
The forecasting error of GA-SVM is within 10%， 
which meets the enterprise requirement of 30% re⁃
laxation of general MH. The experiment also 
shows that the square correlation coefficient of MH 
prediction is 0.999， meaning the method has great 
adaptability.
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基于 GA‑SVM 的多规格小批量生产的装配工时估算模型

徐 吉 1，2， 张丽萍 1， 李 露 3， 徐 锋 1， 郭 魂 2， 晁海涛 1， 左敦稳 1

（1.南京航空航天大学机电学院, 南京  210016, 中国； 2.常州工学院航空航天与机械工程学院, 常州  213032, 
中国； 3.上海航天精密机械研究所, 上海  201600, 中国）

摘要：对于制造承包商来说，在正式接收订单之前，为了指导报价和预测交货日期，有必要对工时（Man⁃hours， 
MH）进行评估。装配工时作为工时的重要组成部分，具有重要的实际研究意义。针对多规格、小批量生产的特

点，提出了一种基于支持向量机（Support vector machine， SVM）的装配工时估算模型。除了单部件属性、装配过

程和历史工时数据外，还考虑了可量化装配复杂性的最短路径长度平均值（Average of shortest path length， 
ASPL）作为装配 MH 的影响因素，并提出了基于 Creo JLink 三维模型的这些因素的自动计算方法。通过对几种

算法的比较，选择 SVM 作为装配体 MH 建模的最优算法。将遗传算法（Genetic algorithm， GA）应用于 SVM 中，

有利于在 SVM 中搜索最优参数 c 和 g 时避免了局部求解，加快了收敛速度。最后，对所提出的 GA⁃SVM 模型进

行训练，并应用于雷达装置仿生腿的装配工时预测。实验结果表明，GA⁃SVM 具有比本文其他方法更高的预测

精度，整个预测过程仅需 3 min 左右。

关键词：装配工时；多规格小批量；拓扑结构；遗传算法；支持向量机
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