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Abstract: A machine learning-based monocular gaze-tracking technology for mobile devices is proposed. This non-

invasive， convenient， and low-cost gaze-tracking method can capture the gaze points of users on the screen of mobile 
devices in real time. Combined with the quadrotor’s 3D motion control， the user’s gaze information is converted into 
the quadrotor’s control signal， solving the limitations of previous control methods， which allows the user to 
manipulate the quadrotor through visual interaction. A complex quadrotor track is set up to test the feasibility of this 
method. Subjects are asked to intervene their gaze into the control flow to complete the flight tasks. Flight 
performance is evaluated by comparing with the joystick-based control method. Experimental results show that the 
proposed method can improve the smoothness and rationality of the quadrotor motion trajectory， and can introduce 
diversity， convenience， and intuitiveness to the quadrotor control.
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0 Introduction 

In our daily life， eyes are not only an important 
organ for us to obtain information， but also an im ⁃
portant source for us to transmit our thoughts and 
emotions to the outside world. Recently， the gaze-

tracking has been applied to the direct control of 
graphical interfaces.

Using machine learning techniques， the map⁃
ping relationship between eye images and gaze infor⁃
mation can be obtained. Among them， the method 
using convolutional neural network （CNN） is prov⁃
en to be effective. In this method， information such 
as human eye image and head pose is input into 
CNN， and the gaze vector is decoded at the last ful⁃
ly connected layer. Theoretically， the network can 
be trained as long as there is sufficient data［1-2］.

However， even using deep neural network for 

regression analysis， its accuracy is usually limited to 
about six to ten degrees with high interindividual 
variance. This is due to many factors， including 
sparse calibration data， differences in human eye 
anatomy， and the introduction of head posture to 
complicate the model［3］. In addition， unrestricted 
head motion is crucial for the generalization of gaze-

tracking， and gaze trackers that improve prediction 
accuracy by fixing the head tend to have a very nar⁃
row application in reality［4-5］.

Advanced machine learning techniques are ap⁃
plied to this field. Recently， Huang et al.［6］ used a 
residual network for feature extraction of eye images 
and treated the gaze difference as auxiliary informa⁃
tion to improve the prediction accuracy. Zhuang et 
al.［7］ proposed to use an attention mechanism to en⁃
hance the network effect and obtained excellent per⁃
formance in a multi-camera multi-screen system. 
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Nagpure et al.［8］ proposed a compact model to accu⁃
rately and efficiently solve the problem of gaze esti⁃
mation by using a multi-resolution fusion transform ⁃
er and improve the network performance. However， 
these large or complex inference process models 
make these technologies almost impossible to de⁃
ploy on edge processors and mobile devices. In addi⁃
tion， easy personalization of the model is necessary 
for the application scenarios corresponding to this 
paper.

The practical application of gaze-tracking tech⁃
nology has always been a vexing problem. Applica⁃
tions of this technology in fields such as psychology 
and cognition began more than a decade ago， but 
there are not many studies or products that use gaze 
information to drive mobile robots， especially in the 
field of eye-gaze driven quadrotors.

In an earlier study， Hansen et al.［9］ combined 
eye-gaze drive and a keyboard to control the quadro⁃
tor， but the gaze was only able to control two de⁃
grees of freedom （DOF） of the quadrotor， and it 
still could not get rid of the keyboard. Kim et al.［10］ 
combined gaze-tracking and brain-computer interfac⁃
es to control quadrotors and obtained good results， 
but this work can only control a single DOF of the 
quadrotor at the same moment， and complex wear⁃
able devices seriously limit the diffusion of this con⁃
trol method.

A novel object detection-based multi-rotor mi⁃
cro aerial vehicle （MAV） localization method in a 
human sensor framework has been proposed in re⁃
cent years， which uses gaze to assist the quadrotor 
for spatial localization， but does not directly control 
the motion of the quadrotor and still uses a head-

mounted gaze-tracking device［11］.
Wang et al.［12］ proposed GPA-teleoperation， 

an assisted teleoperation framework for gaze-en⁃
hanced perception that enables intent control and im ⁃
proves safety， but the wearing of VR glasses and 
the many requirements for quadrotor systems limit 
the application scenarios of this technology.

To enhance the role of eye-gaze drive in real 
life， we apply the proposed gaze-tracking network 
to mobile devices. Therefore， this research work 
aims to develop a simple， easy-to-use， non-wear⁃
able， and low-cost gaze-tracking platform that inter⁃
prets eye movements and enables real-time control 
of quadrotors in 3D environments.

Therefore， the contribution of this study is to 
address the limitations of previous systems in a sin⁃
gle system and provide the user with an additional， 
complete， and safe method of quadrotor control. 
The main contributions of this work are as follows：

（1）A machine learning-based monocular gaze-

tracking technique is proposed and deployed on mo⁃
bile devices to improve the application prospects of 
eye-gaze drive.

（2） An easy-to-learn and easy-to-use system： 
Users can convert their gaze information into control 
information for mobile robots in 3D space.

（3） A non-intrusive， portable， low-cost de⁃
vice： Users can plan the flight trajectory of the 
quadrotor by gaze.

1 System Overview 

In this section， we discuss the hardware com ⁃
ponents and software pipeline of our system. The 
system’s framework is shown in Fig.1， where the 

Fig.1　Illustration of controlling a quadrotor using gaze⁃tracking on mobile platform
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green， blue， and red coordinate systems represent 
the camera coordinate system， the head coordinate 
system， and the world coordinate system， respec⁃
tively. This system needs to deal with the relation⁃
ship between these coordinate systems.

1. 1 Hardware setup　

Our novel system is based on HONOR V7， an 
inexpensive Android tablet. This device is chosen 
because its front-facing camera is located in the mid⁃
dle of the long side of the screen for gaze-tracking. It 
has a MediaTek 1300T CPU that is capable of 
achieving the computing power needed for machine 
learning. The controlled object is DJI Mini2， a 
small quadcopter drone with a two-axis gimbal， a 
takeoff mass of less than 249 g， a maximum flight 
time of 31 min， support for satellite positioning and 
optical flow positioning， real-time image transmis⁃
sion at the maximum bit rate of 8 Mb/s.

1. 2 Algorithm pipeline　

As shown in Fig.2， we used the TNN infer⁃
ence framework provided by Tencent to provide a 
variety of different acceleration options for the mo⁃
bile terminals on the premise of ensuring uniform 
models and interfaces. The optimized adaptation of 
face recognition and head pose detection based on 
the single shot multibox detector （SSD） machine 
learning model is finally achieved， and the comput⁃
ing speed of 50 Hz is reached for 1080P images.

Using the OpenCV and OpenCL libraries， the 
human eye image is cropped and transmitted togeth⁃
er with the head pose and head position information 
to the gaze-tracking module. The Tensorflow li⁃
brary is used to build the gaze tracking module pro⁃
posed in this paper， and the TensorflowlLite library 
is used to convert it into a mobile device-compatible 
model （.tflite） for inference.

The result of the gaze-tracking model inference 
is an estimation of the user’s gaze point on the tab⁃
let screen at a rate of 25 Hz. And then the estima⁃
tion of the gaze point is input to the motion analysis 
program module to get the expected value of the 
quadrotor motion， and the result is input to the 
quadrotor control module to get the actual amount 
of flight control.

2 Method 

In this section， we describe the proposed meth⁃
od of gaze-tracking and the method for converting 
gaze information into a quadrotor control signal.

2. 1 2D monocular gaze tracking　

In this paper， a CNN model for free-head gaze 
point （2D） estimation is proposed. It has the charac⁃
teristics of low computational demand and fast com ⁃
putation， as well as good prediction accuracy， and 
supports free rotation of the head within a certain 
range. The model architecture is shown in Fig.3.

Before inference， the images captured by the 
front camera are processed by the face recognition 
model and the head pose detection model to obtain 
the left and right eye images， face frame and head 
pose. We flip one of the eye images horizontally and 
scale the two images to a size of 64 × 64. In particu⁃
lar， the coordinates of the upper left corner of the 
face frame in the image are used to indicate the posi⁃
tion of the face relative to the screen， which is de⁃
noted by [ xm，ym ]. The width of the face frame is 
used to indicate the distance of the face relative to 
the screen， which is denoted by w m. Finally， the 
eye images， face frame information， and head pose 
are fed into the three corresponding CNN channels 
of the network， and four fully connected layers are 
added at the end for obtaining the prediction results.Fig.2　Diagram of our control system architecture
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In addition， we test the model performance on 
a generic dataset. The accuracy of the model tested 
on the MPIIFaceGaze dataset is 5.23 cm. It is supe⁃
rior to ITracker［2］， Gaze-Net［13］ and Mnist［1］.

2. 2 User interface　

The user interface consists of eight parts， as 
shown in Fig.4， in which the view is returned by the 
on-board camera. The gimbal camera on the quad⁃
copter streams the video back through the image 
transmission module and displays it full screen on 
the monitor. The transmission delay is around 
200 ms， which is within the acceptable range.

There is a small box showing a face in the bot⁃
tom right corner of the interface， allowing the user 
to determine whether they have the tablet in a rea⁃
sonable position. We display the results of gaze-

tracking （the user’s gaze point on the tablet screen） 

as a blue dot in the interface. The role of the dis⁃
tance ring is to limit the effect of the eye-gaze drive. 
The user can realize eye drive when the estimated 
result of the gaze point is outside the distance ring， 
otherwise the control of the quadrotor will not be 
triggered.

Another prerequisite for starting eye-gaze con⁃
trol is that the activation button in the bottom left 
corner of the interface is pressed. To ensure the se⁃
curity of the control， the user needs to keep the but⁃
ton pressed. Note that the quadcopter’s DOF in the 
forward and backward directions are controlled man⁃
ually. The forward speed of the quadcopter is adjust⁃
ed by sliding up the green slider in the lower right 
corner， while sliding down the slider has the oppo⁃
site effect.

2. 3 Quadrotor flight control　

In this work， the predicted result of the gaze-

tracking model is the user’s gaze point ( x，y ) on the 
tablet display. Since 2D gaze-tracking is used， the 
quadrotor can only be controlled simultaneously by 
the human eye in two DOF of motion.

By summarizing previous research works， we 
find a better mapping logic： （1） The motion of gaze 
in the vertical direction maps to the motion of the 
quadrotor in the altitude direction. （2） The motion 
of gaze in the horizontal direction maps to the mo⁃
tion of the quadrotor in the yaw direction. We be⁃
lieve that such a mapping method is the most intui⁃
tive and more in line with the user’s operation hab⁃
its.

Fig.4　Components of the user interface

Fig.3　Our gaze point estimation network structure

550



No. 5 HU Jiahui, et al. Machine Learning⁃Based Gaze⁃Tracking and Its Application in Quadrotor Control on…

Because the motion of the quadrotor in the ver⁃
tical direction and its yaw have been determined by 
the gaze direction， other control methods are need⁃
ed to determine the motion of the quadrotor in other 
directions.

We use the roll angle of the head to determine 
the roll angle of the quadrotor， and use the slider on 
the interface to control the movement of the quadro⁃
tor in the forward and backward directions. The 
overall control method is shown in Fig.5.

We first introduce the implementation of gaze 
control of the quadrotor motion in the vertical and 
yaw directions. In Fig. 5（a）， the blue gaze point is 
located outside the distance ring with coordinates 
( x，y )， so it can trigger eye-gaze drive.

Let the radius of the distance ring be d 1， the 
distance from the gaze point to O s is d 1 + d 2， the 
distance from the gaze point to axis xs is set to dv， 
and the distance from the gaze point to axis ys is set 
to dy. Because O s is the midpoint of the screen and 
the resolution of the screen is 2 560 × 1 600， dv =
800 - yg and dx = 1 280 - xg.

The values of dv and dx reflect the user’s ex⁃
pectation on the direction of the quadrotor motion. 
The larger the dv， the larger the quadrotor motion 
in the vertical direction should be， and the larger the 
dx， the larger the quadrotor motion in the yaw direc⁃
tion should be.

We use Cv and Cy to represent the value of user 
control over the quadrotor in the vertical and yaw di⁃
rections， so when d 2 is larger than 0， Cv = θ1 dv and 
Cy = θ2 dx. The coefficients θ1 and θ2 indicate the 
control rate.

The movement of the quadrotor over the roll 
angle is controlled by the roll of the user’s head， 
which is denoted by rollh. The user’s head angle is 
detected by the SSD machine learning model. With 
the head tilted to the left， the quadrotor flies to the 
left， and the opposite to the right.

We use Cr to represent the value of user con⁃
trol over the quadrotor in the roll angle direction， so 
Cr = θ3 rollh. The coefficient θ3 indicates the control 
rate.

As mentioned above， we manually control the 
forward and backward of the quadrotor， and the slid⁃
er on the user interface helps us to achieve this pur⁃
pose. In this research， the quadrotor is controlled si⁃
multaneously by gaze， head pose， and manual. 
Fig.5（b） shows the functions achieved by each con⁃
trol method.

3 Experiments 

In order to conduct flight control experiments， 
an adequately large physical space is required. We 
set up the experimental environment in an open area 
of the school. Fig.6 illustrates the layout of the phys⁃
ical environment.

Fig.5　The overall control method

Fig.6　Test grounds with multiple obstacles
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3. 1 Experimental setup　

We place four types of obstacles in the field， 
six in total： three knife flags， a tunnel， a round 
hole， and an archway. Subjects are asked to turn 
their backs to the field and steer the quadcopter from 
the tarmac and back through each obstacle. They 
are not allowed to directly observe the field， and 
could only adjust the quadcopter’s flight conditions 
via video streams from the quadcopter’s onboard 
camera.

In this experiment， each subject is required to 
control the quadrotor using a joystick and the pro⁃
posed control method （eye-gaze drive）.

3. 2 Performance evaluation　

To evaluate the effect of eye-gaze drive quadro⁃
tors， we set up the following evaluation methods 
with Ref.［10］： Flight distance， total time， and 
smooth curve deviation. Our goal is to test whether 
the proposed system can adequately convert gaze in⁃
formation into control information for the quadro⁃
tor， improve the control of the quadrotor， and thus 
replace the traditional joystick with eye-gaze drive.

To compare the manipulation efficiency of the 
two control methods， we calculate the total time 
（TT） and flight distance （FD） of subjects for each 
completed task.

The smooth curve deviation （SCD） can reflect 
the smoothness of the quadrotor flight path， as 
shown in Fig. 7. By processing the real flight path， 
we can get the smoothed path. pi is the point on the 
real path at time i， p s

i  is the point on the smoothed 
path at time i. Therefore， the SCD is calculated as

SCD = 1
n ∑

i = 1

n

|pi - p s
i |

where n is the number of quadrotor trajectory 
points. The quadrotor records its position once ev⁃
ery 0.1 s.

4 Results and Discussion 

In this section， we analyze and compare the ef⁃
fectiveness of the two control methods. We collect 
data from five subjects， and for each control meth⁃
od， each subject has 20 opportunities. And the aver⁃
age test results are shown in Table 1.

For the TT， all ten sets of data are within 
2 min. The comparison reveals that all five subjects 
are faster in completing the flight task using the joy⁃
stick than using the eye-gaze drive with average of 
about 15.9%. Four of the subjects show little diver⁃
gence in the two control modes， but the fourth sub⁃
ject shows a significant difference in TT because 
this subject could not adapt to eye-gaze drive in a 
short time.

In our control system， the forward speed of the 
quadrotor is determined by the position of the slider 
on the screen. For safety reasons， we set the speed 
corresponding to the slider at the maximum position 
to be relatively small， which， we believe， is one of 
the reasons for the larger TT obtained by the eye-

gaze control relative to that obtained by the joystick.
Generally speaking， the shorter the flight 

time， the shorter the flight distance， but the experi⁃
mental results of FD are counter-intuitive. The FD 
obtained using the eye-gaze control is nearly 4.13% 
lower than the FD obtained using the joystick. Us⁃
ing eye-gaze control mode， the subject can control 
the UAV to complete the flight mission through a 
shorter flight distance. This phenomenon is difficult 
to understand， but combined with the experimental 
results of SCD， the reason can be found out.

Table 1　The summarized performance of two control 
methods

Subject

1
2
3
4
5

Joystick
TT/
min
0.97
1.46
1.21
1.37
1.17

FD/m

24.67
29.77
32.44
27.63
28.53

SCD/
m

13.65
16.21
21.13
15.63
19.68

Eye⁃gaze control
TT/
min
1.12
1.69
1.46
1.73
1.35

FD/m

23.02
27.31
30.22
30.19
26.39

SCD/
m

12.97
15.04
19.87
14.98
17.77

Fig.7　The smooth curve deviation
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Using the eye-gaze control， we can get lower 
FD and SCD， where SCD is reduced by almost 
6.57%， and SCD can reflect the degree of trajecto⁃
ry fluctuation. This shows that although the TT ob⁃
tained by this control method is larger， the flight tra⁃
jectory of the controlled quadrotor is shorter and the 
trajectory is smoother. Therefore， we can conclude 
to a certain extent that the eye-gaze control method 
is smoother and more controllable， and the quadro⁃
tor travels a more efficient trajectory.

In the experiment， we also find that by using 
the eye-gaze drive， subjects are able to plan their 
routes more proactively based on the obstacles. Be⁃
cause of the reduced reliance on hand movements， 
subjects could focus more on the route.

The results from this study show that using 
gaze movements and simple body motions is still 
sufficient to perform a challenging task： Controlling 
a quadcopter in 3D physical space. The self-devel⁃
oped software and hardware find that an inexpensive 
interface is possible.

We assign two DOF of the quadrotor to the 
eye to achieve intuitive gaze intervention. However， 
the other DOF of the quadrotor still requires limb in⁃
tervention， which is believed as an area in dire need 
of improvement.

In addition to using brain-computer interfaces 
or other bio-signals， we believe that with the inter⁃
face setup， the eye is capable of controlling the 
quadrotor flight alone.

5 Conclusions 

We present a mobile platform-based gaze inter⁃
action system that tracks eye movements while con⁃
verting gaze information into control information for 
a quadrotor. The proposed interaction enables the 
user to manipulate the quadrotor through the eyes to 
accomplish complex flight tasks in 3D space. With 
this low-cost and mobile device， people can control 
their flying machines naturally and easily in their dai⁃
ly lives. From the results of our study， we have suc⁃
ceeded in demonstrating the potential of this interac⁃
tion method. We believe that our solution can ex⁃

pand new ways of human-computer interaction and 
create a new dimension of quadrotor control.
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基于机器学习的视线追踪方法及其在移动端

四旋翼控制的应用

胡佳辉 1， 陆永华 1， 刘江伟 2， 严长凯 2， 刘 韬 1

（1.南京航空航天大学机电学院, 南京  210016, 中国； 2.中国航发控制系统研究所, 无锡  214000, 中国）

摘要：提出了一种基于机器学习的移动设备单目视线追踪技术。这种非侵入、便捷、低成本的注视追踪方法可以

实时捕捉用户在移动设备屏幕上的注视点。结合四旋翼飞行器的三维运动控制，将用户的视线信号转化为四旋

翼飞行器的控制信号，解决了以往控制方法的局限性，使用户可以通过视觉交互操控飞行器。为了明确该方法

的可行性，本文设置了一条复杂的四旋翼飞行赛道。受试者被要求将视线介入到控制流中，以完成飞行任务。

通过与基于操纵杆的控制方法进行比较，对飞行性能进行了评估。实验结果表明，本文方法能提高四旋翼飞行

器运动轨迹的平滑性和合理性，并能为四旋翼飞行器控制引入多样性、便利性和直观性。

关键词：视线追踪；无人机控制；机器学习；人机交互；眼球驱动
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