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Abstract: In-flight icing is threatening aviation safety. The Lagrangian method is widely used in aircraft icing 
simulation to solve water collection efficiency， the development of which has been impeded by robustness issues and 
high computational cost. To resolve these disadvantages， two critical algorithms are employed in this study. The 
Monte Carlo integral method is applied to calculate collection efficiency， which makes the Lagrangian method 
unconditionally robust for an arbitrary situation. The backpropagation（BP） neural network is also implanted to make a 
rapid prediction of droplet impingement. Additionally， these two algorithms are deeply coupled in an asynchronous 
parallelism that allows un-interfered parallel for each procedure respectively. The current study is implemented in 
NNW-ICE software platform. The asynchronous solver is evaluated with a 3D GLC-305 airfoil and a jet engine nacelle 
model. The result shows that the BP network contributes a significant acceleration to the Monte Carlo method， saving 
about 27% running time to achieve equal accurate result. The study is a first attempt for coupling the neural network art 
and numerical simulation in aircraft icing， providing strong support for the improvement of Lagrangian method and 
aircraft icing.
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0 Introduction

The in-flight icing phenomenon is considered 
highly dangerous for aircrafts［1］. The supercooled 
droplets amongst high-altitude clouds will freeze on 
impact at the leading edge of wings， tail， engine na‑
celle， etc. The accretion of ice can lead to degrada‑
tion in aerodynamic performance， and in extreme 
cases， even catastrophic consequences［2-3］.

Numerical techniques had been studied during 
the past decades to simulate in-flight icing. Howev‑
er， the phenomenon of icing is complicated due to 
the participation of multiple physical processes. 
Therefore， a hypothesis is made that the in-flight ic‑

ing is a quasi-steady process. Such that the simula‑
tion is accomplished by four loosely coupled sub-pro‑
cesses： The simulation of airflow field， the simula‑
tion of droplets impingement， the simulation of en‑
ergy equilibrium of icing， and the grid adaption.

The simulation of droplet impingement is the 
foundation of further simulations. Simulation meth‑
ods are currently diverged into two primary branch‑
es， the Lagrangian method and the Eulerian meth‑
od［4］. The advantages of Lagrangian method are the 
fidelity of physics in simulation of droplets behavior 
and the convenience to couple with other physical 
models， like droplet thermal equation， the deform 
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and break-up model for supercooled large droplet 
（SLD）， and etc. The Lagrangian method has been 
branched by difference scheme and techniques. Typ‑
ically the bin method［5］ and the flow tube method［6］ 
are widely adopted in research and industry， but 
mostly in 2D cases. Recent progress in Lagrangian 
method， proposed by Wang et al.［7］， is to merge the 
features of Eulerian method and Lagrangian method 
by solving Lagrangian concentration differential 
equation（LCDE）. The Lagrangian parcel volume
（LPV） method was invented as a modification ver‑
sion of LCDE method， proposed by Triphahn［8］ and 
Mickey et al［9］. Presently， no industrial application 
has been found using LCDE or LPV methods， and 
they need further validation on various models.

The development of Lagrangian solver is high‑
ly constrained by the robustness issue and computa‑
tional cost in 3D cases. For years， the flow tube 
method was popularized with NASA’s LEWICE［10］ 
code. Leading that， a group of similar Lagrangian 
droplet solvers were developed around 2000［11］. But 
the limitation was reached when encountered by 
complex geometry. Trials have been conducted to 
overcome the robustness issue. Recent evidence 
shows that a new Lagrangian method involving sta‑
tistics was adopted in NASA’s next generation ic‑
ing code GlennICE［12］ and ONERA’s ONICE3D ic‑
ing software［13］. Obviously， the Monte Carlo meth‑
od［14］ is referred to make statistic integral on calculat‑
ing the surface collection efficiency. The Monte Car‑
lo Lagrangian solver is inherently capable of solving 
unsteady problems， coupling with SLD models， 
and most importantly adapting the complex geome‑
try. A Monte Carlo Lagrangian solver has been inte‑
grated in NNW-ICE software， developed by China 
aerodynamic research and development center 
（CARDC）.

On the one hand， the robustness issue is inher‑
ently solved by random statistics. On the other 
hand， the computational cost is further increased by 
using Monte Carlo Lagrangian solver. Therefore， 
the artificial neural network （ANN） technique is 
adapted to reduce the cost. The ANN shows huge 
aptitude for fast prediction and solving non-linear 

systems. Recently， the integration of computational 
fluid dynamics （CFD） and machine learning achieve 
great success in solving typical problems， indicating 
that a similar research approach is available for air‑
craft icing simulation. Ogretim et al.［15］ proposed an 
ice shape prediction model applying the generalized 
regression neural network （GRNN） and the multi‑
layer perception network （MLP）， respectively. 
The ice shape feature is transmitted by Fourier se‑
ries decomposition. Similar research followed by 
Zhang et al.［16］ contributed an improved ice shape ex‑
traction technique， and also by Chang et al.［17］ using 
wavelet packet transform instead of Fourier series 
decomposition to achieve better prediction on Glaze 
ice. Convolutional neural network（CNN） techniques 
were applied by He et al.［18］ and Strijhak et al.［19］ re‑
spectively， using ice shape images as samples. Re‑
cently， Yi  et al.［20］ established strong correlation be‑
tween ice shape feature and numerous numerical re‑
sults on NACA0012， using backpropagation （BP） 
neural network. Thereafter， Qu et al.［21］ expanded 
the prediction scope from single airfoil to arbitrary 
symmetric airfoil based on deep learning and multi‑
modal fusion technique. Applications of ANN on air‑
craft icing simulation currently focus on fast ice 
shape prediction. The quantity requirement on train‑
ing samples has limited the usage of ANN in 3D cas‑
es， since the experimental or numerical cost is huge.

In this paper， a Monte Carlo Lagrangian drop‑
let solver accelerated by a parallel BP neural net‑
work is introduced. The BP neural network is em ‑
ployed to reduce the redundant calculation of non-

impinged droplets in Lagrangian solver. The general 
idea of such asynchronous solver structure will be 
firstly discussed. Then the Monte Carlo Lagrangian 
method and its improvement with the BP neural net‑
work will be introduced. Lastly， the validations on 
Monte Carlo method， the BP network and the asyn‑
chronous solver will be presented.

1 Algorithms

The idea behind constructing an asynchronous 
solver is to enable un-interfered parallelism for both 
the Lagrangian solver and the BP network. On the 
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one hand， the Monte Carlo method is a statistical 
method， a great number of droplets are required for 
the algorithm to converge. On the other hand， the 
BP network can make impressively fast prediction of 
the droplet impingement result， but requires training 
by a great number of samples. The purpose of accel‑
erating Monte Carlo Lagrangian droplet solver with 
BP neural network should not be considered satisfy‑
ing if the procedure is “simulation first， prediction 
follows”.

Asynchronous parallelism is made by two 
groups of threads dealing with tasks individually. 
Two synchronization points are assigned for data 
transfer， one for the sample delivering from the 
Monte Carlo Lagrangian solver to the BP network 
and the other for the impingement prediction from 
the BP network to the Monte Carlo Lagrangian solv‑
er. The general idea is presented in Fig.1 and it will 
be discussed in detail later.

The asynchronous solver is made to overcome 
the disadvantage of Lagrangian method. In order to 
make better understanding of it， the Monte Carlo in‑
tegral method and the BP neural network will be 
firstly revealed in this chapter.

1. 1 Monte Carlo Lagrangian method　

1. 1. 1 Governing equation and discretization　

The governing equation of the Lagrangian 
method is established by the momentum law. The 
equation is solved with stationary airflow back‑
ground， and the interaction between droplets and air 
is ignored. Some important hypothesis is made that 
droplets with the diameter less than 40 μm are con‑
sidered as a rigid spherical body， the rotation and 
the collision of droplets are neglected because the ic‑
ing environment is the dilute flow. The governing 
equation is

dup

dt
= F ⋅ (up - u a)+ g

ρp - ρ a

ρp
（1）

where up is the velocity vector of the water droplet， 
u a the velocity vector of the airflow field， g the ac‑
celeration due to gravity， ρ a the density of air， ρp 
the density of the water droplet， and F ⋅ (up - u a) 
the aerodynamic force acting on the water droplet. F 
is the aerodynamic force coefficient given by

F = 18μ a

ρp d 2
p

C d Re r

24 （2）

where d p is the diameter of the droplet， C d the drag 
coefficient， Re r the relative Reynolds number based 
on the droplet diameter， and μ a the viscosity of air. 
C d is calculated by Schiller and Naumann’s equa‑
tion［22］

C d Re r

24 = ( 1 + 0.15 ⋅ Re0.687
r )        1 <  Re r < 800（3）

The governing equation is discretized by a sec‑
ond-order accurate Langrage exponential tracking 
scheme［23］

un + 1
p = un

p ⋅ exp(-Δt/τp )+ un
a ⋅ ( 1 - exp(-Δt/τp ) )

（4）
where τp is the relaxation time defined as

τp = ( 24/C d ⋅ Re r ) ⋅ ( ρp d 2
p /18μ a ) （5）

1. 1. 2 Calculation of collection efficiency　

Collection efficiency is a non-dimensional char‑
acter describing the amount of water collection. The 
collection efficiency is defined as the portion of actu‑
al mass flow rate on surface to that of the maximum 
flow rate.

β s = m̄ s

m̄ s,max
（6）

where the subscript “s” is an arbitrary unit surface 
element， and m̄ s the actual mass flow rate（kg/s） on 
the unit surface.

In the Monte Carlo method， on contrary to oth‑
er Lagrangian method where the mass rate is trans‑
mitted to impinged area or impinged numbers， the 
surface mass flow rate can be inherently calculated 
by assigning each droplet with certain mass rate. 
The Monte Carlo integral method is applied on sur‑
face to calculate the mass rate， and the collection ef‑
ficiency is therefore defined in Monte Carlo method 
as

Fig.1　Conceptual diagram for the asynchronous solver
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β s,MC = m̄ s

m̄ s,max
= M s /Δt

LWC ⋅ V ∞ ⋅ A s
（7）

where M s is the total mass collected during Δt time， 
LWC the liquid water content describing the water 
density in far field space， and A s the surface ele‑
ment area if using finite volume grid.
1. 1. 3 Solving procedure　

The solving procedure is presented in Fig.2. 
The droplets are solved with OpenMP parallel in 
NNW-ICE software.

The procedure is divided into several time seg‑
ments of random physical time interval. Random 
numbers of droplets at random positions are re‑
leased at each time segment. All segments are 
summed up to a targeted total time， and the drop‑
lets are summed up to a target number. Each droplet 
is assigned with equivalent mass flow rate which 
summed up to far field LWC condition. Droplets are 
solved during each time segment according to 
the governing equation with tiny time step dt in 
Eq.（1）， advancing the physical time till the end of 
current segment. Impinged droplets are used for 
Monte Carlo integral method according to Eq.（7） to 
calculate the collection efficiency. Droplets that are 
still moving pause until next time segment starts. 
The statistical convergence will be reached by re‑

peating such a procedure in each time segment suc‑
cessively.

1. 2 Backpropagation neural network　

1. 2. 1 The BP network structure　

The BP network used in this paper has three 
hidden layers， one input layer with three neurons 
and an output layer with single neuron， comprising 
a structure of 3×4×4×2×1， shown in Fig.3.

The hidden layers utilize the exponential linear 
unit （ELU） as activation function to avoid vanish‑
ing gradient problem. The ELU function allows for 
faster convergence and reduces the likelihood of an 
insignificant weight adjustment. Additionally， the 
function has a negative region that produces sparse 
activations， helping preventing overfitting problem. 
A sigmoid function is employed on the output layer 
to restrict the confines of network output to interval 
［0，1］. The network error is defined by mean square 
error （MSE） function.

The primary objective of this study is to predict 
whether or not a droplet released at a given spatial 
coordinate will impinge on the target surface. The 
constitution of such network will take a 3D coordi‑
nate as input and the probability of impingement as 
the output.

The gradient descent method is adopted for 
ease of BP training. The momentum BP method 
and the variable learning technique are used to im ‑
prove the convergence.
1. 2. 2 The gradient descent method　

The gradient descent method is a widely used 
optimization algorithm in the BP neural network. 
The objective for BP network is to minimize the er‑
ror function （or loss function） by adjusting the 
weights and biases of fully connected neurons. The 

Fig.3　Structure of the backpropagation neural network

Fig.2　Solving procedure of Monte Carlo Lagrangian method
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gradient descent algorism works by computing the 
gradient of error function with respect to each 
weight and bias， then updating them in the opposite 
direction to reach the minimum error along a quick‑
est path. The local gradient of output neuron p at 
current iteration can be solved by the chain rule of 
derivative as

δp = - ∂E
∂U p

= - ∂E
∂e

∂e
∂V p

∂V p

∂U p
= e ⋅ f ′p (U p )（8）

where E = 1/2e2 is the total error defined by MSE 
function， e = V *

p - V p the deviation to sample val‑
ue， U p the neuron input， V p the neuron output（or 
the activation level）， and fp the activation function. 
The time denote is neglected for simplification.

The local gradient is then calculated by forward 
linked neurons.

δj = - ∂E
∂U j

= ∑
k

K

δk wjk ⋅ f ′j (U j ) （9）

where K is the total number for current layer， and 
w jk the weight from neuron j to neuron k. Arbitrary 
weight adjustment can be then calculated by

Δw ij = -η
∂E
∂w ij

= -η
∂E
∂U p

∂U p

∂w ij
= ηδjV i (10)

where η is the learning rate. According to the chain 
rule of derivative， the bias adjustment is mostly the 
same to weights， only in absent of activation term.
1. 2. 3 Momentum BP method［24］　

The momentum BP （MBP） method is an ex‑
tension of standard BP algorithm. A momentum 
term is incorporated to accelerate the convergence. 
The adjustment for weights and biases are influ‑
enced by both the current error gradient and the ac‑
cumulated gradient from previous iterations. The 
momentum term enables the algorithm to move 
smoothly along the error surface and overcome local 
minima to reach the global minimum efficiently. 
The momentum term is applied as

Δw n
ij = -η ( 1 - α ) ∂E n

∂w ij
+ α ⋅ Δw n - 1

ij (11)

The superscript is denoted for training time 
step， and α the momentum term. The weight adjust‑
ment of current iteration N is weight balanced by the 
previous matrix and the current error gradient. The 
momentum term is set to 0.5 to make equivalent in‑
fluences from current and previous iteration.

1. 2. 4 Variable learning rate［25］

The variable learning rate algorithm is another 
modification of standard BP. This algorithm allows 
for variation during iteration， judged by certain fea‑
tures of the network. In this study， the most instinc‑
tive algorithm is employed by comparing the total er‑
ror of all validation samples at the current iteration 
and the previous one. When the total error decreas‑
es， it is indicated that the weight adjustment is cor‑
related to gradient path， thus increasing the learning 
rate to accelerate convergence. The total error in‑
creasement indicates overfitting， therefore the learn‑
ing rate is to be decreased for smoother conver‑
gence. The learning rate is set 0.01 initially and the 
variation is restricted in ［0.001，1］ range.

ηn + 1 =
ì
í
î

1.2ηn    E n + 1 < E n

0.8ηn    E n + 1 > E n (12)

Notion that the learning rate η is applied in 
Eq.（10） as a relaxation for gradient descent speed， 
and the total loss E is applied in Eq.（8）. Such relax‑
ation of variable learning rate in Eq.（12） is substitut‑
ed to Eq.（10） in each iteration.

2 Asynchronous Lagrangian Solver

The BP network can effectively predict the 
droplet impingement probability. A well-trained net‑
work can save considerable computation cost for cer‑
tain model. However， if the prediction always 
comes after the simulation， it is of little significance 
for industrial application. The NNW-ICE software 
aims to solve icing and anti-icing problems in avia‑
tion and other related industries. It is necessary to 
further enhance the integration between the BP net‑
work and the NNW-ICE code. Therefore， The 
asynchronous Lagrangian solver is proposed to par‑
allelize the Monte Carlo statistics and BP network 
training， thereby enabling faster predictions during 
simulation.

The asynchronous programing is conducted us‑
ing OpenMP API. The solving procedure is depict‑
ed in Fig.4. The solver starts with limited threads 
pool， which is then distributed to two paralleled 
tasks： The Monte Carlo Lagrangian solver and the 
BP neural network， respectively. The droplets’ 
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trajectories are solved in the Monte Carlo Lagrang‑
ian solver at each non-uniform random time seg‑
ment. Each time segment contains several time 
steps. The iteration of each droplet will stop at im ‑
pingement or pause at the end of current time seg‑
ment. The BP network starts training with samples 
from the Lagrangian solver. Samples will be updat‑
ed at end of time segment， and previous samples 
are not reserved. Once the droplets all stop or 
pause， the first synchronize point is met. The 
droplets information is delivered to BP network as 
a new group of samples for further training. A 
shared tag is activated to stop the undergoing train‑
ing， immediately， and the replace the outdated 
samples with new group. Before launching the 
next time segment， a group of droplets with ran‑
dom positions is generated. As long as the total er‑
ror of BP network descents to given threshold， 
the second synchronize point is met. The simula‑
tion and training halt， meanwhile the prediction is 
conducted for newly generated droplets. Droplets 
that are predicted as no impinging will be neglect‑
ed， only those with possibility of impingement 
will be calculated.

A confidence coefficient of 10% is selected for 
predicted probability， which means droplets with 

lower prediction result will not be calculated. This 
will label around 50% of droplets as “non-im‑
pinged” at relative rough training， and the labled 
number will grow up to 80% while the total error 
constantly decreases. The confidence coefficient 
could be adjusted as training converges. But the ad‑
justment requires pre-experience judgment and is 
not generally effective for different models.

The synchronize point is realized by implanted 
OpenMP parallel lock， which is mutually exclusive 
to ensure correct data exchange.

3 Validations on Numerical Method

3. 1 Validation on Monte Carlo Lagrangian 
solver

Numbers of cases have been validated by 
NNW-ICE， including classical 2D NACA65-415， 
MS317， GLC-305， and so on.， and 3D swept 
wing， engine nacelle and half-model airplane. The 
validation results are revealed partly in Figs. 5—7. 
All calculation conditions are annotated on graphics.

The 2D cases are all compared with NASA’s 
experimental result and the LEWICE numerical re‑
sult［26］. The error band of 10% is labeled on curves 
in 2D cases. The x-coordinate is non-dimensional 
length of curve distance to airfoil chord. The y-coor‑
dinate is collection efficiency.

Fig.5　Validation on 2D MS317 case

Fig.4　Running procedure for asynchronous Lagrangian solver Fig.6　Validation on 2D GLC-305 case
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The 3D case of a strait NACA0012 model is 
compared with various numerical results from the ic‑
ing prediction workshop （IPW） 2022［27］. The calcu‑
lation tools and excusive organizations are listed in 
the graph’s legend. NNW-ICE result is correlated 
with other results in most part of the curve， and 
shows slightly higher estimation for peak value.

The validations show that the NNW-ICE drop‑
let solver has equal accuracy to LEWICE and other 
simulation codes or softwares.

3. 2 Validation on BP network with small sam⁃
ples

The BP network is validated by a small num ‑
ber of samples （400）， of which 80% is used for train‑
ing and the remaining 20% is used for validation. 
The convergence of error function with iteration is 
shown in Fig. 8. The given spatial coordinate can be 
diagramed in Y‑Z coordinate， while the X coordinate 
dimension is considered as priori insignificant.

Fig.9 shows the predicted probability and error 
of each validation point. The network correctly pre‑
dicts all impinged location with at least 90% im‑
pinge probability， but makes some incorrect predic‑
tion close to the edge of impingement region. The 
result is considered satisfying because the impinge‑

ment region is mainly outlined. The error is accept‑
able to some extent for that the impingement proba‑
bility will be admissive in a relative low level during 
actual applications.

3. 3 Validation on asynchronous Lagrangian 
solver　

The validation on typical cases will be present‑
ed， including a GLC-305 swept airfoil model with 
root chord length 0.635 m and a nacelle model. The 
simulation conditions are shown in Table 1.

Validations are made on a X64 windows work‑
station， with Intel Xeon Gold 6142 CPU， 2.60 GHz. 
The convergence time is compared for Monte Carlo 
Lagrangian solver and asynchronous Lagrangian 
solver. A threads pool with 16 threads in total are 
used for comparison， of which 10 threads are as‑
signed to BP network， and others are assigned for 
droplet calculation in asynchronous solver to make 
balance computing load. In the test for Monte Carlo 
Lagrangian solver， all 16 threads are used for drop‑
let calculation.

Fig.8　Convergence curve for small samples

Fig.7　Validation on 3D swept NACA0012 case (IPW 362)

Fig.9　Prediction error for each validation point

Table 1　Simulation condition

Model

GLC‑305
Nacelle

v/
(m · s-1)

118
40

Tst/K

269
260

Pst/kPa

101
101

MVD/
μm
20
20

LWC/
(g · m-3)

0.5
0.5

572



No. 5 LIU Yu, et al. A Monte Carlo Lagrangian Droplet Solver with Backpropagation Neural Network for…

GLC-305 airfoil is meshed with about 1 million 
hexahedral grids， and the nacelle is meshed with 1.4 
million polyhedral grids. The surface meshes are 
shown in Fig.10. The total droplet number to reach 
statistical convergence of collection efficiency is 
1 million and 4 million， respectively. Each case is 
divided into 50 time segments.

Table 2 shows the convergence time cost for 
pure Monte Carlo Lagrangian solver and the asyn‑
chronous Lagrangian solver accelerated by BP net‑
work for validation cases. The asynchronous paral‑
lelism saves 26.8% and 24.5% computation time， 
respectively. It has proven that the Monte Carlo La‑
grangian method assisted by BP network is capable 
to make faster simulation. So far we have reached a 
satisfying acceleration and it will be hopefully opti‑
mized in further study.

3. 3. 1 GLC‑305 swept airfoil case　

The calculation result of GLC-305 airfoil is pre‑
sented in Fig.11. The collection efficiency of z=
0.7 m section is compared in Fig.12. The Monte 
Carlo Lagrangian solver and asynchronous Lagrang‑
ian solver result correlate well， indicating that accu‑
racy is not rejected by the prediction of BP network.

The convergence curves by time segment and 
global training iteration are presented in Fig.13 and 

Fig.14， respectively. The global training iteration 
refers to the iteration number summed up in each 
time segment. The error along global training itera‑
tion shows a general trend of decreasing， however 
oscillates when the sample changes. Particularly， 

Fig.12　Collection efficiency curve at z=0.7 m section on 
GLC‑305

Fig.10　Surface mesh for each validation case

Table 2　Time cost comparison for validation cases

Model

Monte Carlo Lagrangian solver/s
Asynchronous Lagrangian solver/s

Acceleration/%

GLC‑305

2 546
3 480
26.8

Nacelle

3 896
5 163
24.5 Fig.13　Convergence history by global iterations of BP train‑

ing for GLC-305 case

Fig.14　Convergence history by Monte Carlo time segments 
for GLC-305 case

Fig.11　Collection efficiency contour calculation result of 
GLC-305
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the total loss decreases extremely fast to 1E-8 in 
the first 40 000 iterations， which are all conducted 
in the same time segment since the samples served 
in such time segments are in size of hundreds or 
even fewer， resulting to a fully converged result. 
However， the BP network trained by such initial 
samples would not be used for prediction until cer‑
tain numbers of samples are reached. The total loss 
is raised as more samples joined in， meanwhile the 
prediction is adopted to accelerate the droplet solv‑
ing procedure. This leaves less time for BP network 
training to reach full convergence. Overall， the total 
loss decreases despite the oscillation caused by 
changing samples.

The convergence curve is smoother along time 
segments， which is considered as time averaged 
convergence history. The curve indicates that little 
features are offered by new samples for the BP net‑
work since the 10th time segment and afterward. To 
better improve the asynchronous parallelism， a dy‑
namic assignment of threads is preferred. However， 
the actual threshold is set to 1E-3 according to pre‑
vious BP network validation.
3. 3. 2 Nacelle case　

The calculation result of nacelle is presented in 
Fig. 15. A section at z = 0.0 m is sketched with 
white dot line， at which the collection efficiency is 
compared for Monte Carlo Lagrangian solve and 
asynchronous solver results. Fig.16 shows the col‑
lection efficiency comparison at section z = 0.0 m.

The convergence curve by global training itera‑
tions is also presented in Fig.17. The total character‑
istics for both convergence curves are the same to 

GLC-305 case. Noted that the oscillations are more 
vigorous to that of GLC-305 case， and the average 
value for total loss is around 1E-3 to 1E-4.

The convergence curve by time segments is 
presented in Fig.18. The convergence history for na‑
celle case shows a very unstable training result each 
time segment and the average total loss is at least 
one order higher compared to GLC-305 case. It is 
mentioned that the threshold for BP network conver‑
gence is set to 1E-3 in GLC-305， which is also ad‑
opted for nacelle case， somehow still valid. The 
convergence history indicates there is difficulty to 
make equal prediction for droplet impingement if the 
geometry complexity increases.

An analysis is conducted to reveal the differ‑
ence for convergence history of GLC-305 case and 
the nacelle case. The BP network is in fact building 

Fig.17　Convergence history by global iterations of BP train‑
ing for nacelle case

Fig.18　Convergence history by Monte Carlo time segments 
for nacelle case

Fig.15　Collection efficiency contour calculation result of na‑
celle

Fig.16　Collection efficiency curve at z = 0.0 m section on 
nacelle
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a binary classification based on the release posi‑
tions， which is basically distributed in a 3D plane. 
The classification on such plane can be depicted as 
Fig.19 according to priori experience. The topology 
of impinging area is significantly distinguished. The 
impinging area for GLC-305 is a typical single con‑
nected domain， while the nacelle case is multiply-

connected domain. Thus， the reason could be the 
simplicity of BP network. The features of sample 
data are not fully decomposed by limited neurons in 
such binary classification problem.

4 Conclusions

The work of this study can be concluded as fol‑
lows：

（1） An asynchronous parallelism is applied on 
NNW-ICE software to merge the Monte Carlo La‑
grangian droplet solver and the BP neural network 
as a synchronous solver for droplets. The Monte 
Carlo method is applied to obtain statistical mass 
flow rate and collection efficiency at the target sur‑
face. The backpropagation neural network is intro‑
duced to provide a quick prediction for droplet im ‑
pingement probability. The BP network is construct‑
ed with a 3×4×4×2×1 structure， with the ELU 
function for hidden layers and the sigmoid function 

for the output layer. The momentum BP method 
and variable learning rate technique are employed to 
achieve better convergence. To make the BP net‑
work universally applicable， an asynchronous La‑
grangian solver is developed， in which the Monte 
Carlo Lagrangian solver and the BP network train‑
ing are paralleled un-interfere， but only communi‑
cate at two synchronize points.

（2） A 3D GLC‑305 airfoil model and a jet-en‑
gine nacelle model are used to validate the asynchro‑
nous solver. The result shows significant accelera‑
tion for both cases， while the accuracy is not affect‑
ed by the BP network prediction. This study repre‑
sents the first attempt to deeply integrate the artifi‑
cial neural network with aircraft icing simulation 
method. The neural network technique shows a 
great potential in resolving the disadvantages of La‑
grangian method.

（3） The presented study will be developed in 
the upcoming works， with further optimization of 
the ANN architecture and the development of an 
adaptive strategy for Monte Carlo method based on 
network prediction.
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一种使用 BP神经网络加速的蒙特卡洛拉格朗日水滴求解器

刘 宇 1，2， 屈经国 1，4， 易 贤 1，2，3， 王 强 1，2，3

（1.中国空气动力研究与发展中心低速空气动力研究所，绵阳  610082, 中国； 2.中国空气动力研究与发展中心

结冰与防除冰重点实验室，绵阳  610082, 中国； 3.空气动力学国家重点实验室，绵阳  610082, 中国； 
4.西南石油大学计算机科学学院，成都 610500，中国）

摘要：结冰可能威胁飞行安全。拉格朗日方法被广泛应用于求解结冰过程中的水收集系数，但是其发展受到鲁

棒性问题和高计算成本限制。为了弥补拉格朗日方法的缺陷，使用蒙特卡洛积分法和反向传播（Backpropaga‑
tion， BP）神经网络分别用于解决鲁棒性问题和降低计算成本。基于蒙特卡洛方法的拉格朗日求解器可实现对

任意模型或计算条件的无条件稳定。构建了 BP 神经网络用于预测水滴撞击概率，通过筛除非撞击水滴减少计

算量。BP 神经网络不针对特定模型提前训练，使用异步并行策略使 BP 神经网络训练和水滴运动同时求解，建

立了广泛适用的异步拉格朗日求解器。使用 GLC‑305 后掠三维翼型和某型发动机短舱模型对求解器进行验证，

结果显示 BP 神经网络可以有效提升计算效率，对比没有神经网络辅助最多节省 27% 运行时间，同时保有同等计

算精确度。本文研究为首次尝试神经网络技术与结冰数值模拟融合，为进一步发展拉格朗日方法提供有力

支撑。

关键词：飞机结冰；拉格朗日方法；蒙特卡洛方法；BP 神经网络；异步并行
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