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Abstract: This paper presents a real-time control method based on deep neural networks （DNNs） for the fuel-optimal 
rendezvous problem. A backward generation optimal examples method for the fuel-optimal rendezvous problem is 
proposed， which iterates through the dichotomy method based on the existing backward generation idea while 
satisfying the two integration cutoff conditions of the backward integration. We construct a DNNs structure suitable 
for the variable-specific-impulse model and divide the output control of networks into the thrust output and the specific 
impulse output. For the specific impulse output， a method is proposed that learns the optimal specific impulse first and 
then limits it according to its actual upper and lower limits. We propose the enhanced fault-tolerant deep neural 
networks （EFT-DNNs） to improve the robustness when approaching rendezvous. The effectiveness and efficiency of 
the proposed method are verified by simulations of the Earth-Apophis asteroid and Earth-Mars missions.
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0 Introduction 

Electric propulsion （EP） is a quite promising 
propulsion method for deep space exploration mis‑
sions， and there are already many examples of suc‑
cessful use of EP［1-4］. The thrust of EP is very 
small， usually less than 1 N， and it needs to be 
turned on continuously to get the work done［5］. The 
dynamic continuous low-thrust control poses great 
difficulties for trajectory optimization. Traditional 
methods for solving the low-thrust trajectory optimi‑
zation problems are direct methods［6‑7］ and indirect 
methods［8‑9］， and the combination of the above 
two［10］. The direct method is to solve the original 
problem by transforming it into nonlinear program ‑
ming （NLP） with discrete series， while the indirect 
method is to transform optimal control problems 
（OCPs） into a two-point boundary value problem 
（TPBVP） by constructing co-states. Deep space ex‑

ploration missions have a long period and long flight 
distance， with non-negligible communication time 
delay［11］. Considering the influence of uncertainty 
and other complex factors， the spacecraft needs to 
have the capability of autonomous trajectory optimi‑
zation and real-time control. However， due to the 
limitation of onboard computing capability， the di‑
rect and indirect methods are computationally inten‑
sive and cannot meet the requirements of onboard 
real-time control.

With the progress of artificial intelligence tech‑
nology， especially machine learning （ML）， in the 
field of spaceflight is gradually increasing， which 
provides the possibility of real-time control on‑
board［12］. Deep learning and reinforcement learning 
are currently the most popular ML techniques in the 
field of deep space exploration trajectory design and 
optimization. Deep learning is a kind of supervised 
learning. In the existing research， the optimal trajec‑
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tory information， including the initial values of co-

states， fuel consumption， transfer time， thrust， 
etc.， is often obtained by methods such as indirect 
methods， and subsequently， DNNs are trained to 
learn the mapping relationship between inputs and 
outputs. Deep learning enables fast estimation of 
transfer costs［13‑14］， fast optimization of trajectories 
and real-time control［15‑20］. For the problem of rapid 
estimation of low-thrust transfer costs， Zhu et al.［13］ 
achieved rapid assessment of low-thrust transfer ac‑
cessibility and optimal fuel consumption prediction 
by a multilayer perceptron （MLP） in the context of 
the seventh edition of the Global Trajectory Optimi‑
zation Competition （GTOC7）； Li et al.［14］ used 
neural networks to achieve optimal time prediction； 
Viavattene et al.［15］ applied neural networks to the 
rapid estimation of transfer times and costs for multi-
target asteroid missions. For the difficulty of guess‑
ing initial values of co-states， Yin et al.［16］ and Zhao 
et al.［17］ proposed initial guessing methods based on 
neural networks for the interplanetary transfer and 
asteroid landing problems， respectively. However， 
for the real-time control， a more accurate way than 
guessing the co-states initial value is to use neural 
networks to complete the state-control mapping［17］. 
Cheng et al.［18］ proposed a multiscale-DNN to 
achieve high accuracy transfer， and this network is 
for real-time control of the thrust direction angle. Li 
et al.［14］ studied the time-optimal real-time control 
problem based on neural networks； Izzo et al.［19］ 
solved the Earth-Venus fuel-optimal transfer prob‑
lem and compared control effects of value function 
and policy function networks. Unlike deep learning， 
reinforcement learning is performed by discretizing 
control into a finite number of actions and later mod‑
eling the OCPs as a Markov decision process 
（MDP）. Optimal actions are explored through the 
payoff function， which leads to real-time optimal 
control［20］. However， reinforcement learning is good 
for simpler OCPs， but can hardly solve complex 
strongly nonlinear problems. In addition， increasing 
the number of control actions to obtain a more con‑
tinuous control also makes the problem more diffi‑
cult to solve. In this paper， we choose a deep learn‑
ing approach to achieve OCPs of the spacecraft.

One of the important things of using deep learn‑
ing is how to get the optimal dataset efficiently. Da‑
tasets are often generated by solving traditional low-

thrust trajectory optimization problems， most com‑
monly using indirect methods to generate datasets. 
However， solving low-thrust problems one by one 
is very time-consuming， and it is worthwhile to in‑
vestigate how to improve the dataset generation 
rate. Considering the small difference between ini‑
tial values of co-states of adjacent trajectories， Yin 
et al.［16］ proposed a method based on the fast genera‑
tion of optimal nominal trajectories， which used ini‑
tial values of co-states of nominal trajectories as co-

states guesses of new trajectories. Liu et al.［21］ pro‑
posed a data generation algorithm based on the opti‑
mal trajectory continuation method to improve the 
success rate of initial value guessing. However， 
these two methods for fast dataset generation are 
still essentially guessing initial values of co-states 
and then solving the TPBVP. Izzo et al.［19］ proposed 
a method to satisfy the shooting equation for back‑
ward integration， which they called “the backward 
generation of optimal examples”， and successfully 
applied it to the fuel-optimal transfer problem. Since 
this method changes the solution time of the TP‑
BVP into one backward integration time， the solu‑
tion speed is greatly improved. Izzo et.al.［22］ applied 
this method to the constant acceleration time-opti‑
mal control problem. However， the shooting equa‑
tion for the fuel-optimal rendezvous problem is dif‑
ferent from both the fuel-optimal transfer and the 
constant acceleration time-optimal problem， so it 
cannot be applied directly. Therefore， this paper 
proposes a backward generation method of optimal 
examples for the fuel-optimal rendezvous problem.

At present， deep learning methods used in real-
time OCPs all aim at the fixed-specific-impulse 
problems［13‑14，18‑19］. In fact， the specific impulse of 
EP engines， including magnetic plasma rockets［23］， 
Hall effect［4］， and ion EP［1，3］， is variable. The vari‑
able-specific-impulse electric propulsion model is 
more in line with the engineering reality. In this pa‑
per， we consider the specific impulse as a controlled 
quantity that can be actively varied in the interval， 
where the engine input power is influenced by the 
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distance of the spacecraft from the sun［24‑25］. First， 
for the optimal trajectory generation， the introduc‑
tion of variable-specific-impulse will make the trajec‑
tory optimization problem more complicated to 
solve. Second， when using DNNs for optimal con‑
trol， it is worthwhile to find out how to perform the 
accurate control of the variable-specific-impulse. In 
the related literature［14，18‑19，22］ the control quantity of 
the deep neural network controller is one or two 
kinds of thrust direction and thrust size. The control 
quantity under the variable ratio impulse model is in‑
creased on this basis for the control of the ratio im ‑
pulse， and the more the number of control quanti‑
ties， the greater the possibility of error. How to im‑
prove and ensure the control accuracy is also worth 
considering. Based on the above research status， 
this paper studies the real-time OCPs of variable-

specific-impulse low-thrust rendezvous based on 
DNNs.

The contributions and advantages of this paper 
are mainly in the following three aspects. Firstly， to 
address the problem that the backward optimal tra‑
jectory generation method in existing studies［19，22］ 
cannot be used for fuel-optimal rendezvous trajecto‑
ries， an backward generation optimal examples 
method applicable to the fuel-optimal rendezvous 
problem is proposed to improve the efficiency of da‑
ta set generation. Secondly， since existing DNN-

based research［13‑14，18‑19］ is only for the fixed-specific 
impulse problem， not for the variable-specific-im‑
pulse problem， this paper proposes a DNN-based re‑
al-time control method for variable-specific-im‑
pulse， and constructs a real-time optimal control 
deep neural networks （RTOC-DNNs） to control 
the thrust and specific-impulse. For the thrust con‑
trol， the Monte Carlo simulation accuracy of thrust 
learning in Cartesian and orbital coordinate systems 
is compared. For the specific impulse control， 
DNNs are proposed to learn the optimal specific im ‑
pulse， and then the output is restricted by the upper 
and the lower bounds of the specific impulse. Final‑
ly， EFT-DNNs are proposed for enhancing the con‑
trol robustness and rendezvous accuracy of the 
spacecraft in the second half of the flight， and the ef‑
fectiveness of the EFT-DNNs are verified by simu‑

lations.
The structure of this paper is as follows. Sec‑

tion 1 introduces the variable-specific-impulse low-

thrust model along with the fuel-optimal rendezvous 
problems and the optimality conditions are derived 
using the indirect method. Section 2 presents the 
backward generation for the fuel-optimal control ren‑
dezvous problem. Section 3 presents the network 
structure. In Section 4， nominal trajectories and da‑
ta set generation are presented， followed by the 
RTOC-DNN and the EFT-DNN parameters selec‑
tion and construction of the networks. In Section 5， 
the proposed methods are applied to the Earth-Apo‑
phis asteroid and Earth-Mars rendezvous missions， 
and the effects of DNNs are verified using Monte 
Carlo simulations. Section 6 concludes the paper.

1 Low‑Thrust Trajectory Optimi‑
zation 

1. 1 Dynamical model　

We consider a spacecraft with a variable-specif‑
ic-impulse EP engine， and this spacecraft moves in 
the gravity of the Sun. In the Cartesian coordinate 
system， the dynamical equations with the spacecraft 
of mass m can be expressed as

ṙ= v (1)

v̇= - μ
r 3 r+ Tmax u

m
α (2)

ṁ = - Tmax u
Isp g0

(3)

where r= ( rx，ry，rz )T and v= ( vx，vy，vz )T are the 
position and the velocity vectors of the spacecraft， 
respectively； the spacecraft-sun distance is ex‑
pressed as r = r ； Tmax and α denote the maximum 
thrust and the unit direction vector of the thruster， 
respectively. The power throttle level is denoted as 
u， and u ∈ [ 0，1 ]. u = 0 and u = 1 mean that the 
thruster is in the off and fully on state. g0 and μ are 
the acceleration at ground level and the solar gravita‑
tional constant， respectively， and they take values 
of g0 = 9.806 65 m/s2 and μ = 1.327 124 400 18 ×
1011 km3/s2. The specific impulse of the engine is ex‑
pressed as

Isp‑ min ≤ Isp ≤ Isp‑ max (4)
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where Isp-min and Isp-max are the lower and upper limits 
of the specific impulse， respectively， and the specif‑
ic impulse Isp can change actively.

The amplitude of thrust is obtained as

Tmax = 2ηPmax

Isp g0
(5)

where Pmax is the maximum input power； and η is 
the engine input power utilization efficiency， which 
varies linearly with Isp.

η = β0 + β1 Isp (6)
where β0 and β1 are empirical coefficients of the ef‑
fect of specific impulse on engine efficiency. Our 
work takes performance parameters of NASA’s 
Evolutionary Xenon Thruster （NEXT） as a refer‑
ence［26］， so β0 = 0.291 6 and β1 = 0.962 4 × 10-4 s-1.

In the actual spacecraft work， in order to en‑
sure the normal operation of the system function， 
the electrical energy generated by the solar panel 
first supplies the equipment except the engine and 
then supplies the engine to produce the thrust. The 
output power of the solar panel is affected by the dis‑
tance between the spacecraft and the sun， and the 
specific relationship is as［27］

PSA = PAU

r 2 ( d 1 + d 2 r-1 + d 3 r-2

1 + d 4 r + d 5 r 2 ) (7)

where PSA is the solar panel output power； PAU the 
solar panel output power at 1 AU distance； the part 
in parentheses represents the empirical value of the 
solar panel efficiency changing with the instrumental 
day distance， where d1，…，d5 are the empirical coef‑
ficients. Further， the maximum input power of the 
engine Pmax can be listed［27］

Pmax =ì
í
î

δPP‑max                 PSA > PP‑max + PL

δ ( PSA - PL )    PSA ≤ PP‑max + PL  
(8)

where PP-max and PL are the maximum input power of 
the engine power processor and the total power re‑
quired by systems other than the engine system； re‑
spectively. δ is the duty cycle， which represents the 
power conversion efficiency.

1. 2 Indirect method for low‑thrust trajectory 
optimization　

We consider a fixed-time interplanetary rendez‑
vous problem with the performance metric of the fu‑

el-optimal control problem

J = λ0∫
t0

tf é

ë

ê
êê
ê ù

û

ú
úú
ú2ηPmax u

Isp
2 g0

2 - ε ln ( u - u2 )  dt (9)

where t0， tf and ε are the departure moment， the 
completion rendezvous moment， and parameter of 
homotopy， respectively.

In order to achieve the fuel-optimal control， it 
is necessary to minimize J. The functional J is cho‑
sen based on the work of Chi et al.［24］ In their work， 
the decoupling of the control quantity u and the con‑
trol quantity specific impulse Isp is completed， which 
makes the problem easy to solve. The indirect meth‑
od for solving OCPs introduces co-states with no 
specific physical meaning. Therefore， there is no 
clear guessing range in selecting initial values of co-

states， which greatly affects the efficiency of the so‑
lution. In this paper， we suggest the normalization 
of co-states according to the co-states normalization 
method in Ref.［9］. The initial values of eight co-

states， including λ0， are restricted to an eight-dimen‑
sional unit hypersphere. This can narrow the guess‑
ing range and greatly improve the guessing efficien‑
cy. Since the fuel-optimal control problem is diffi‑
cult to solve directly， a common approach is to in‑
troduce the homotopy parameter. First， solving the 
problem at ε = 1. After that， ε is gradually reduced 
from 1 to 0 using the homotopy method. When ε is 
0 corresponds to the fuel-optimal control problem. 
We can list the Hamiltonian function

H = λ0
2ηPmax u

I 2
sp g 2

0
- λ0 ε ln ( u - u2 )+ λ r ⋅ v+

λv ⋅ ( - μ
r 3 r+ 2ηPmax u

mIsp g0
α)- λm

2ηPmax u
I 2

sp g 2
0

(10)

where λ r， λv and λm denote co-states corresponding 
to position， velocity， and mass， respectively. Ac‑
cording to the Pontryagin’s minimum principle 
（PMP）［28］，if we want to achieve the optimal con‑
trol， we need to make the Hamiltonian function take 
the minimum value. That is λv ⋅ α takes the mini‑
mum value， at this time λv and α the direction oppo‑
site. Therefore， the optimal thrust direction is

α∗ = - λv

 λv

(11)
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According to the first order necessary condition 
we can write the Euler-Lagrange equation［24，29‑30］

λ̇ r = - ∂H
∂r = μ

r 3 λv - 3μr ⋅ λv

r 5 r-

2ηu
Isp g0 ( )λ0

Isp g0
-  λv

m
- λm

Isp g0

∂Pmax

∂r (12)

λ̇v = - ∂H
∂v = -λ r (13)

λ̇m = - ∂H
∂m

= - 2ηPmax λv u
m 2 Isp g0

(14)

where ∂Pmax

∂r  can be derived from Eq.（8）［27］.

Since the engine specific impulse varies active‑
ly in the interval， the optimal actual specific impulse 
I*

sp is calculated as

I ∗
sp =

ì

í

î

ïïïï

ïïïï

Isp‑max       Isp ‑opt > Isp‑max

Isp‑opt        Isp‑ min ≤ Isp‑opt ≤ Isp‑max

Isp‑ min       Isp‑opt < Isp‑ min

(15)

where optimal specific impulse Isp-opt is expressed as

Isp‑opt = 2m ( λ0 - λm )
 λv g0

(16)

For Eq.（9） with the modified logarithmic ho‑
motopy function， the optimal power throttle level is 
written as［24］

u∗ = 2λ0 ε

ρ log + 2ε + ρ2
log +( 2ε )2

(17)

Switching function for logarithmic homotopy 
method ρ log is

ρ log = 2λ0 ηPmax ρ
I 2

sp g 2
0

(18)

where ρ = - Isp g0 λv

λ0 m
- λm

λ0
+ 1.

The fuel-optimal control problem is trans‑
formed into a two-point boundary value problem 
（TPBVP） with a spacecraft with a fixed velocity at 
the beginning， end positions and a fixed mission 
time. If the end-state mass is free， the value of the 
co-state at the end is zero. The shooting equation is

ϕ= [ r ( tf )- r f,v ( tf )- v f,λm ( tf ), λ ( t0 ) - 1] (19)

where rf and vf represent the position and the speed 
at the rendezvous moment， respectively， and λ=
[ λ r，λv，λm，λ0 ]T.

2 Backward Generation of Fuel‑ 
Optimal Rendezvous Examples 

The essence of DNNs is to construct mapping 
relationships between inputs and outputs， which are 
often complex and nonlinear. In order to obtain such 
complex mapping relationships， DNNs must be 
trained based on existing datasets consisting of a 
large number of samples. However， generating a 
large amount of sample data is extremely time-con‑
suming. Izzo et al.［19］ proposed the method of back‑
ward generation of optimal examples in their work. 
The idea of this method is to assume that an optimal 
nominal trajectory has been obtained， to perturb the 
variables except for the constraint of the shooting 
equation and to carry out the backward integration. 
Although the new trajectory is different from the 
nominal trajectory， it is still optimal because it satis‑
fies the first-order necessary condition of optimality 
and does not change the shooting equation. Since 
the method of backward generation of optimal exam ‑
ples changes the TPBVP solving problem to numer‑
ical integration of trajectories， the speed of data gen‑
eration is substantially improved compared to solv‑
ing TPBVP directly. However， only the fuel-opti‑
mal transfer and the time-optimal rendezvous with 
constant acceleration have been solved［19，22］. For the 
fuel-optimal rendezvous control problem， the back‑
ward generation method cannot be used directly be‑
cause shooting equations are different. Therefore， 
this paper proposes a method for backward genera‑
tion of fuel-optimal rendezvous examples based on 
Ref.［19］.

In the shooting Eq.（19），  λ ( t0 ) - 1 is the co-

states initial value normalization condition， which is 
introduced to reduce the difficulty of guessing the 
initial value of the co-states. However， in the back‑
ward integration from the moment tf to the moment 
t0， it does not need to guess the initial value of the 
co-states. So it is not necessary to satisfy this condi‑
tion when performing the backward integration. The 
conditions are satisfied by the backward integral as

ϕ back = [ r ( tf )- r f,v ( tf )- v f,λm ( tf )]= 0 (20)
The position co-states， velocity co-states， and 
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mass at the rendezvous moment are not in Eq.（20）， 
so changing these variables has no effect on the 
shooting equation ϕ back and does not change the opti‑
mality of the solution. We define the equation

ì

í

î

ïïïï

ïïïï

λ r ( tf )= λ *
r ( tf )+ δλ r

λv ( tf )= λ *
v ( tf )+ δλv

mf = m *
f + δmf

(21)

where the superscript “  * ” indicates the value of the 
nominal trajectory； and δλr ， δλv and δmf denote 
perturbation values. The backward integration of 
λ r（tf）， λv（tf）， mf as initial conditions can obtain an 
optimal trajectory different from the nominal trajec‑
tory. The backward integral equation consists of 
the dynamical Eqs.（1—3） and the Euler-Lagrange 
Eqs.（12—14）.

For the rendezvous problem， there are two 
conditions for the backward integration cutoff. One 
for the initial mass m *

0  to be reached at the integra‑
tion cutoff， and the other for the integration time to 
be the spacecraft flight time t. When both integral 
cutoff conditions are satisfied， a new rendezvous op‑
timal trajectory can be generated in backward. In 
this work， we use flight time as the integration cut‑
off condition. After that ， we use the perturbed 
λ r（tf）， λv（tf） and mf as the initial condition for the 
backward integration and integrate the equation to 
solve for the initial mass m0. Then， We determine 
the difference between m0 and the nominal initial 
mass m *

0， and use the idea of dichotomy to gradually 
and iteratively select the value of mf. The iteration 
cutoff condition is

| m 0 - m *
0 |≤ σ (22)

where σ denotes the backward integration accuracy.
Now we turn the time to solve TPBVP once in‑

to the sum of multiple iterations of integration time. 
Trajectories solved after iteration have the same end 
state and different initial states as the nominal trajec‑
tory. New trajectories are still optimal since they do 
not change the shooting equation. The backward 
generation method of fuel-optimal rendezvous exam ‑
ples（Fig.1） is as follows：

Step 1 Calculate the nominal trajectory of 
λ*

r（tf）， λ*
v（tf） and m *

f ， and determine the amount of 
random disturbance δλ r and δλv.

Step 2 Set the initial mass iteration step mstep 
and the iteration precision σ.

Step 3 Backward integration with λr（tf）， λv（tf） 
and mf as the initial value of integration； and solve 
the initial mass m0.

Step 4 Calculate the absolute value of the dif‑
ference between the m0 and the nominal value m ∗

0 . If 
it is greater than the iteration accuracy σ， reduce the 
mass iteration step mstep by half and proceed to 
Step 3.

Step 5 If the absolute value of the difference 
between m0 and the nominal value is less than the it‑
erative precision， the iteration ends， and the opti‑
mal trajectory is output.

3 Deep Neural Networks for 
Real‑Time Optimal Control 

DNNs refer to the working mechanism of bio‑
logical neural networks and use multiple layers and 
connections between multiple neurons to achieve 
the mapping between input and output layers. With 
the increase in the number of neurons and the num ‑
ber of hidden layers of DNNs， DNNs can theoreti‑
cally achieve the mapping between any input and 
output. We use feedforward neural networks to 
learn the mapping relationship between states and 
control quantities of fuel-optimal control data sam ‑

Fig.1 Algorithm for backward generation of fuel-optimal 
rendezvous examples
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ples. Trained DNNs can provide optimal control in 
real-time based on the current state information.

We use the modified equinoctial orbit ele‑
ments［31］ x=[ p，f，g，h，k，L ]T and time as inputs to 
DNNs， as shown in Fig.2. The reason why r and v 
in the Cartesian coordinate system （CCS） are not 
used as the input of DNNs is that the six-state quan‑
tities are all fast variables， and the severe data 
changes are not conducive to the learning of DNNs. 
Modified equinoctial orbit elements have only one 
fast variable and it differs from classical orbit ele‑
ments in that modified equinoctial orbit elements are 
singularity-free at zero eccentricity and zero orbital 
inclination. Therefore， modified equinoctial orbit el‑
ements are more suitable for describing the space‑
craft state.

The output of the DNN is divided into two 
types： The thrust and the specific impulse. We use 
the Cartesian and orbital coordinate systems （OCS） 
to describe the thrust

TCCS = [Tx,Ty,Tz ] T
(23)

TOCS = [α,β,μ] T
(24)

where the thrust TCCS in the Cartesian coordinate 
system is represented by three components Tx， Ty 
and Tz； the thrust TOCS in the orbital coordinate sys‑
tem is described by the yaw control angle α， pitch 
control angle β， and μ.

For DNNs to learn the specific impulse control 
more accurately， we use the optimal specific im ‑
pulse Isp-opt of Eq.（16） as the output of DNNs. Sub‑
sequently， the actual optimal specific impulse I*

sp is 
obtained by limiting the DNN output specific im ‑
pulse Isp-opt using in Eq.（15）.

The loss function measures the difference be‑

tween the DNNs model and the real model. For re‑
gression problems， the mean-square error （MSE） 
is the most commonly used loss function. For outli‑
er-free data， MSE is a good measure of the error be‑
tween the predicted value and the true optimal val‑
ue. In this paper， MSE is still used as the loss func‑
tion. The reason why DNNs can accomplish very 
complex nonlinear mappings is the inclusion of a 
nonlinear activation function in the hidden layers. 
The choice of the activation function and other hy‑
per-parameters are discussed in the following sec‑
tions.

4 Network Training 

We use Fortran to code the optimal trajectory 
generation program， and Python for DNN training 
and simulation. The positions and velocities of 
Earth and Mars in the example are calculated by 
DE421. Asteroid status information is from the Jet 
Propulsion Laboratory Horizons system. All simula‑
tions are implemented on a desktop computer with 
Intel Core i7-8700K CPU @3.70 GHz.

4. 1 Nominal trajectory　

Two interplanetary rendezvous missions are 
considered in our work： The Earth-Apophis aster‑
oid 230 d rendezvous mission and the Earth-Mars 
600 d rendezvous mission. Assume that the space‑
craft in both missions use only one NEXT. Accord‑
ing to NEXT parameters， the adjustable specific im ‑
pulse range setting is as ［2 210， 4 100］s［27］. Other 
parameters are set as PAU=10 kW， PP-max=6.9 kW， 
PL=0.4 kW and duty cycle δ = 0.94. The part in 
parentheses d 1，d 2，…，d 5 in Eq.（7） are chosen 
as［32］：d1=1.106 3， d2=0.149 5， d3=-0.299 0， d4=
-0.043 2 and d5=0. The specific mission informa‑
tion is given in Tables 1，2.

By solving Eq.（20）， we can obtain the optimal 
control. After that， using the homotopy method， 
we iterate the program and gradually reduce the val‑
ue of the homotopy parameter ε to finally find the fu‑
el-optimal control. Fig.3 displays the power throttle 
level u for the two missions with different ε. When  
ε decreases from 10-2 to 10-6， u gradually approach‑
es the bang-bang control. We consider the fuel-opti‑

Fig.2　Network structure
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mal control is achieved for ε = 10-6. The fuel-opti‑
mal consumption for the Earth-Apophis asteroid ren‑
dezvous mission is 128.717 8 kg， and the fuel-opti‑
mal consumption for the Earth-Mars rendezvous 
mission is 157.886 0 kg.

4. 2 Database generation　

We use the backward generation method of fu‑

el-optimal rendezvous examples to generate the da‑
taset. It is worth noting that our dataset is generated 
based on the two nominal trajectories described 
above. The mass iteration step is set as mstep and the 
iteration precision as σ = 10-5. This parameter set‑
ting allows the initial mass of the generated trajecto‑
ry to be within 0.01 g of the nominal mass. For each 
task， we solve the fuel-optimal control problem on‑
ly once. The Earth-Apophis asteroid mission is cal‑
culated to take 28.125 s to generate 1 000 trajecto‑
ries using the backward generation method and 
683.766 s using the traditional homotopy method. 
The Earth-Mars mission takes 29.922 s to generate 
1 000 trajectories using the backward generation 
method and 1 367.906 s using the traditional homo‑
topy method. This shows the backward generation 
method of fuel-optimal rendezvous examples can 
greatly improve the speed of the dataset generation.

4. 3 DNN optimization　

4. 3. 1 Real⁃time optimal control networks　

The RTOC-DNNs implement the state-control 
mapping. For DNNs involved in this paper， we on‑
ly consider control in the spatial extent of the datas‑
et. The dataset spatial extent refers to the maximum 
extent in space that can be reached theoretically 
when the dataset is generated. The spatial extent of 
the dataset depends on the extent of perturbation of 
the position co-states δλ r and velocity co-states δλv 

Fig.3　Effect of homotopy parameter changes on the throttle

Table 1　Earth‑Apophis asteroid 230 d rendezvous mission

Parameter
Initial date(Coordinate time)

Initial position/km
Initial velocity/(km·s-1)

Final position/km
Final velocity/(km·s-1)

Initial mass/kg

Value
15 Apr. 2029 0:0:0.0

[-1.361 215×108, -6.320 800×107,4.633 328×103]
[1.206 830×10,-2.713 887×10, 2.276 979×10-3]
[6.482 640×107,1.807 479×108, -5.421 290×106]

[-2.174 530×10,1.020 122×10,-6.997 165×10-1]
500

Table 2　Earth‑Mars 600 d rendezvous mission

Parameter
Initial date(Coordinate time)

Initial position/km
Initial velocity/(km·s-1)

Final position/km
Final velocity/(km·s-1)

Initial mass/kg

Value
3 Mar. 2026 0:0:0.0

[-1.410 638×108, 4.569 714×107, -1.968 576×103]
[-9.658 780, -2.843 915×101, 2.909 212×10-3]

[-5.084 734×106, -2.180 468×108, -4.445 691×106]
[2.513 562×10, 1.521 453, -5.843 683×10-1]

1 000
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in the backward generation method. We set the δλ r 
and δλv perturbation range of the dataset for training 
the RTOC-DNNs at

ì
í
î

ïï

ïï

δλ r ∈ [ ]-0.5%,0.5% ⋅ λ *
r ( tf )

δλv ∈ [ ]-0.5%,0.5% ⋅ λ *
v ( tf )

(25)

For easy description， we refer to this range of 
perturbations as the 1% perturbation and also de‑
note the following perturbation range as such. Fig.4 
visualizes the range of data sets for both tasks.

For both missions， 10 000 trajectories are ran‑
domly selected in all training. A total of 1 001 points 
are taken for each trajectory at equal time intervals， 
for a total of 10 010 000 sample points. Where 80% 
of the dataset is used as the training set and 20% as 
the validation set. After our attempts， the activation 
function is hyperbolic tangent function （Tanh）， and 
the number of hidden layers is set to five， and each 
layer contains 256 neurons， which can often achieve 
better results. To ensure the output margin of the 
hyperbolic tangent activation function［33］， the range 
of the dataset normalization is set to ［-0.9， 0.9］. 
The Adam algorithm［34］ is chosen as the neural net‑

work optimization algorithm， and the Adam method 
is very efficient in optimization because it can cor‑
rect both the gradient descent direction and the 
learning rate lr during the optimization process. Pa‑
rameters of Adam’s method： The learning rate is 
set to lr = 0.001， and the parameters controlling 
the first-order momentum and the second-order mo‑
mentum are set to β1 = 0.9， β2 = 0.999. Because 
of the large number of training sets， we use the 
mini-batch gradient descent method and set the num ‑
ber of batches to 2 048 and the number of training 
sessions to 100. In addition， the optimization of neu‑
ral networks using GPUs for speed.
4. 3. 2 Enhanced fault⁃tolerant networks　

The RTOC-DNNs’ dataset has a small spatial 
distribution in the period close to the rendezvous. 
This creates a problem in that RTOC-DNNs barely 
allow for errors in the period close to rendezvous. 
Larger errors may cause the spacecraft to deviate 
from the training range of RTOC-DNNs， which in 
turn makes the error at rendezvous increase dramati‑
cally. To improve this situation， Izzo et al.［22］ adds 
larger perturbed data to the dataset and make the 
neural network learn its control mechanism. Al‑
though this approach makes it much less likely that 
the spacecraft will deviate from the range of the neu‑
ral network training set. However， it also increases 
the difficulty of neural network learning due to the 
introduction of larger perturbed data. For the rendez‑
vous problem， the data set under small perturba‑
tions for the flight start moment is sufficient for neu‑
ral network training， and data with larger perturba‑
tions are not needed.

In this paper， we propose the use of EFT-

DNNs for enhancing the control accuracy of neural 
networks in the second half of the flight time. EFT-

DNNs are independent of RTOC-DNNs， and EFT-

DNNs are used as a backup network to deal with 
the situation when the spacecraft deviates too much 
from the spatial extent of the training set of RTOC-

DNNs. For the Earth-Apophis asteroid mission， the 
dataset of EFT-DNNs uses a 20% perturbation. 
For the Earth-Mars mission， the dataset of EFT-

DNNs uses 8% perturbation. The spatial extent of 
the training data set for EFT-DNNs is shown in 

Fig.4　Range of RTOC-DNNs data sets
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Fig.5. There are 10 000 randomly generated data in 
the dataset， and 501 feature points are selected for 
each trajectory at equal time intervals， for a total of 
5 010 000 input and output data. Similarly， 80% of 
the dataset is used as the training set and 20% as 
the validation set. The hyper parameters settings are 

kept the same as those for training RTOC-DNNs.

4. 4 Network usage scheme　

As shown in Fig.6， the overall scheme for the 
real-time control using DNNs is divided into two 
parts： Offline training， and online real-time control. 
The offline training consists of two parts： Dataset 
generation using the backward fuel optimal trajecto‑
ry generation method and neural network. The 
weights and biases of each neuron in RTOC-DNNs 
and EFT-DNNs eventually obtained by offline train‑
ing are passed to the online real-time control mod‑
ule. The online real-time control module inputs the 
real-time spacecraft status and flight time into the 
DNN， which outputs real-time thrust and specific 
impulse control. Whether RTOC-DNNs or EFT-

DNNs are used for control is determined by the net‑
work switching module. The network switching 
module switches the network depending on whether 
the time of flight or the spacecraft state is to exceed 
the DNN training space range. The DNN outputs 
two parts of control， thrust and specific impulse. 
The thrust is used directly for real-time control and 
the specific impulse requires truncation based on the 
actual specific impulse limit range for real-time con‑
trol. The controlled spacecraft state is then used as 
input to the DNN to produce the control output. 
This process continues until the end of the flight.

5 Numerical Results 

In this section， we investigate the effect of the 
homotopy parameters on the training effect of 

DNNs. To test the effect of DNNs， we perform 
Monte Carlo simulations for two cases， and the 
number of Monte Carlo simulations is set to 1 500. 
Finally， the simulation results using RTOC-DNNs 

Fig.5　Range of EFT-DNNs data sets

Fig.6 DNN-based real-time control master plan
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and EFT-DNNs are analyzed.

5. 1 Exmple 1：Rendezvous from the Earth to 
Apophis　

5. 1. 1 Simulation analysis in deterministic envi⁃

ronment　

One way to determine whether DNNs are bet‑
ter at learning the optimal control law is to investi‑
gate the size of the loss function. Table 3 shows the 
values of the loss function of RTOC-DNNs in two 
coordinate systems with different homotopy parame‑
ters. From Table 3， it can be seen that the loss func‑
tion has a tendency to increase gradually as the con‑
gruence parameter decreases. This shows that the 
reduction of the homotopy parameter makes it more 
difficult for DNNs to learn the optimal control law. 
The smaller the homotopy parameter， the closer the 
control law is to bang-bang control. The bang-bang 
control is reflected in the sharp change of the three 
output thrusts in the CCS and in the OCS in the 
sharp change of the power throttle level u. The 
bang-bang control causes a large error between the 
predicted and the true values of the DNN near the 
switch， which in turn makes the loss function in‑
crease sharply and makes it more difficult for DNNs 
to learn the optimal control law. But with a some‑
what larger homotopy parameter， the power throttle 

level u becomes more smoothly with state and flight 
time， the loss function is lower， and DNNs are 
more likely to learn the optimal control law.

Another way to determine whether DNNs are 
better at learning the optimal control law is to per‑
form Monte Carlo simulations. We perform 1 500 
Monte Carlo simulations in which the departure po‑
sitions of the spacecraft are randomly selected out‑
side the training and validation sets. And the depar‑
ture positions are obtained by the backward genera‑
tion method with a perturbation of 1%. In this sec‑
tion and later simulations， the integrator uses the 
fourth-order Runge‑Kutta algorithm （RK4） with a 
fixed step size， and the number of integrations is set 
to 1 000. The fuel consumption deviation is defined 
as the difference between the DNN-controlled fuel 
consumption and the optimal fuel consumption. 
Fig.7 shows the Euclidean distance， velocity， and 
fuel consumption deviation between the arrival state 

Table 3　Training results (Earth‑Apophis)of RTOC‑DNNs

Case
A
B
C
D
E

Homotopy parameter
10-2

10-3

10-4

10-5

10-6

MSE(CCS)
1.075 0×10-5

3.070 9×10-5

3.208 9×10-4

5.051 9×10-4

8.112 4×10-4

MSE(OCS)
6.940 2×10-6

2.501 7×10-5

3.463 5×10-4

8.048 6×10-4

6.875 7×10-4

Fig.7　Monte Carlo simulation results (Earth‑Apophis asteroid)

588



No. 5 LIU Yuhang, et al. Real-Time Optimal Control for Variable-Specific-Impulse Low-Thrust…

and the target state for the Monte Carlo simulations 
of the Earth-Apophis asteroid mission. The horizon‑
tal coordinates A to E corresponds to cases with the 
homotopy parameter ε of 10-2， 10-3， 10-4， 10-5 
and 10-6， respectively. For the position deviation 
and the velocity deviation， there is a tendency for er‑
ror values to become larger as ε become progressive‑
ly smaller， and this tendency is more obvious in the 
OCS. For the fuel consumption deviation， case A in 
both coordinate systems has the highest fuel con‑
sumption， consuming on average more than 4 kg of 
fuel. while the B to E cases in both coordinate sys‑
tems consume less than 0.5 kg of fuel on average. 
The selection of a DNN suitable for real-time con‑
trol onboard requires not only making its rendezvous 
position and velocity deviations small， but also a 
comprehensive consideration of fuel consumption. 
We choose the network in the coordinate system B 
case with the smallest distance deviation as real-
time control DNNs for this mission. The average 
error of distance， in this case， is 5.064 9×10-4 
AU， and the average error of speed is 1.075 7×
10-2 km/s； the average consumption is 0.350 41 kg 
more than the optimal fuel consumption， which is 
about 0.272 2% of the optimal fuel consumption.
5. 1. 2 Simulation analysis in uncertain environ⁃

ment　

As the above mentioned， simulations are per‑
formed in a deterministic environment， while there 
are various uncertainties in the real flight environ‑
ment［20］， so we further investigate the performance 
of DNNs in a state-uncertain environment. It is 
worth noting that the dataset used for DNNs train‑
ing in this paper does not consider the uncertain en‑
vironment. So when considering uncertainty， theo‑
retically DNNs do not make the position and veloci‑
ty errors of end rendezvous less， and often all pro‑
duce larger errors than they in a deterministic envi‑
ronment. Although EFT-DNNs are used to com ‑
pensate for the spacecraft being out of the training 
range of RTOC-DNNs， EFT-DNNs will not stay 
out of the network training range in the case of large 
errors， ensuring the accuracy of the control.

We simulate both cases without and with EFT-

DNNs. Not using EFT-DNNs means that RTOC-

DNNs are used throughout the mission. For the 
Earth-Apophis asteroid mission， we use EFT-

DNNs case and set the flight time from 0 to 130 d 
use of RTOC-DNNs for control， and after 130 d we 
use EFT-DNNs for control. RTOC-DNNs and 
EFT-DNNs are selected for the Cartesian coordi‑
nate system B case. 1 500 Monte Carlo simulations 
are performed in a state uncertain environment satis‑
fying a Gaussian distribution σrx= σry= σrz=5 km， 
σvx=σvy =σvz=0.003 km/s. The simulation results ： 
The average position error is 1.107 5×10-2 AU； 
the average speed error is 0.446 9 km/s， and the av‑
erage fuel consumption error is -1.724 4 kg without 
EFT-DNNs； the average position error is 5.434 9×
10-3 AU， the average speed error is 0.112 0 km/s， 
and the average fuel consumption error is 1.535 0 kg 
with EFT-DNNs. After calculation， the percentage 
of position error less than 0.01 AU is 59.33% with‑
out the use of EFT-DNNs， and this percentage is 
increased to 89.20% with the use of EFT-DNNs.

Fig. 8（a） shows the thrust in the deterministic 
environment and the thrust in the uncertain environ‑

Fig.8　Variation curves of control quantities Earth-Apophis
asteroid (under conditions of environmental certainty 
and environmental uncertainty)
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ment for the nominal departure position condition of 
this task， and Fig.8（b） shows the corresponding 
specific impulse control. First， it can be seen that 
the thrust and specific impulse of the DNN output in 
the determined environment match well when ε =
10-3， indicating that RTOC-DNNs learn the opti‑
mal control well. The thrust and specific impulse 
curves after considering the state uncertainty are sig‑
nificantly different from those when the uncertainty 
is not considered. This also shows that the DNN 
outputs optimal thrust and specific impulse control 
based on the time and state of the current input.

5. 2 Exmple 2：Rendezvous from the Earth to 
Mars　

5. 2. 1 Simulation analysis in deterministic envi⁃

ronment　

We first analyze the training results （Table 4） 
of RTOC-DNNs. They are the same as the results 
of Example 1， and the loss function has a gradually 
increasing trend as ε decreases. This again validates 

our idea that a larger homotopy parameter ε will 
make it easier for DNN to learn the optimal control 
law.

Similarly， we perform a Monte Carlo simula‑
tion with the number of simulations of 1 500. The 
departure position of the spacecraft in the simulation 
is generated by the backward generation method 
with 1% random perturbation. Fig.9 shows the Eu‑
clidean distance deviation， velocity deviation， and 
deviation relative to the optimal fuel consumption 
between the arrival state and the target state for the 
Monte Carlo simulation of the Earth-Mars mission. 
The meaning of the horizontal coordinate is the 
same as those in Example 1. Under the CCS， the 
average position and the velocity errors of C are 
large， and those of A are the smallest of 3.448 7×
10-3 AU and 5.963 7×10-2 km/s. However， the 
deviation of fuel consumption of A in CCS is larger， 
11.457 7 kg， which is about 7.256 9% of the optimal 
fuel consumption. In the OCS， the average position 
and the velocity errors tend to become larger as ε be‑
comes smaller. The errors at the same ε are all larg‑
er than those under the corresponding CCS， so we 
only select the network at the output of the CCS. 
The deviation of the combustion consumption of A 
in the CCS is too large， and the average position 
and the velocity errors of C are large， both of which 

Fig.9　Monte Carlo simulation results (Earth‑Mars)

Table 4　Training results (Earth‑Mars) of RTOC‑DNNs

Case
A
B
C
D
E

Homotopy parameter
10-2

10-3

10-4

10-5

10-6

MSE(CCS)
5.771 9×10-6

1.938 4×10-5

2.194 5×10-4

2.689 4×10-4

4.183 4×10-4

MSE(OCS)
9.854 1×10-6

3.490 1×10-5

2.932 6×10-4

9.771 8×10-4

1.194 7×10-3
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are not selected. The network picks among the re‑
maining three， B， D， and E. We finally chose B， 
which has the smallest position and speed errors 
among these three. Although the fuel consumption 
error of B is larger than that of D and E， it is within 
the acceptable range. The average error in case B is 
4.092 2×10-3 AU， and the average error in speed 
is 7.141 3×10-2 km/s； the error in fuel consump‑
tion is 1.494 6 kg， which is about 0.946 6% of the 
fuel-optimal consumption.
5. 2. 2 Simulation analysis in uncertain environ⁃

ment　

For the Earth-Mars mission， we use EFT-

DNNs case and set the flight time from 0 to 350 d  
use of RTOC-DNNs for control， and after 350 d we 
use EFT-DNNs for control. RTOC-DNNs and 
EFT-DNNs are selected for the Cartesian coordi‑
nate system B condition. 1 500 Monte Carlo simula‑
tions are performed in a state uncertain environment 
satisfying a Gaussian distribution σ rx= σ ry= σ rz=
1 km， σvx=σvy=σvz=0.001 km/s. Simulation results： 
The average position error is 1.662 8×10-2 AU， 
the average speed error is 0.289 2 km/s， and the av‑
erage fuel consumption error of 1.342 1 kg with‑
out EFT-DNNs； the average position error is 
1.040 7×10-2 AU ， the average speed error is 
0.188 0 km/s， and the average fuel consumption er‑
ror is 2.167 1 kg with EFT-DNNs. After calcula‑
tion， the percentage of position error less than 0.01 
AU is 38.20% without the use of EFT-DNNs， and 
this percentage is increased to 57.47% with the use 
of EFT-DNNs. Both Example 1 and Example 2 
show that the use of EFT-DNNs can lead to a sig‑
nificant improvement in the rendezvous accuracy 
considering state uncertainty conditions.

Fig.10 shows the thrust in the deterministic en‑
vironment and the thrust in the uncertain environ‑
ment for the nominal departure position conditions 
of the Earth-Mars mission， and the corresponding 
specific impulse control is also shown. In this exam ‑
ple， RTOC-DNNs also learns the optimal control 
very well. The thrust and specific impulse curves af‑
ter considering the state uncertainty are more signifi‑
cantly different from those when the uncertainty is 
not considered. This is also the same as it in Exam ‑

ple 1， which shows that DNNs tend to control the 
spacecraft to reach the rendezvous position optimal‑
ly from the current state.

5. 3 Network speed　

The reason why DNNs are suitable for the real-
time optimal control of starboard is the fast computa‑
tion speed， which is shown in Table 5，for the 
DNNs we have chosen. The output time of the 
networks we use is about 0.000 23 s at a rate of 
4 000 Hz or more， which proves the advantage of 
DNNs for real-time control onboard.

6 Conclusions 

This paper presents a method to achieve real-
time optimal control of variable-specific-impulse 

Table 5　Speed of the networks

Mission
Earth‑Apophis 

asteroid

Earth‑Mars

Network

RTOC‑DNNs

EFT‑DNNs
RTOC‑DNNs
EFT‑DNNs

Time/s

0.000 234

0.000 227
0.000 243
0.000 231

Frequency/Hz

4 270.43

4 400.50
4 107.60
4 319.80

Fig.10　Variation curves of control quantities in the Earth-

Mars mission (under conditions of environmental 
certainty and environmental uncertainty)
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low-thrust rendezvous via DNNs. First， the method 
of backward generation optimal examples for the op‑
timal fuel rendezvous problem is proposed. The 
method generates datasets 24.312 times faster than 
the homotopy method for the Earth-Apophis aster‑
oid mission， and 46.814 times faster for the Earth-

Mars mission. Second， DNN structure is construct‑
ed for low-thrust model with variable specific im ‑
pulse， and the network output control is divided into 
the thrust output and the specific impulse output. 
For the specific impulse output， a method is pro‑
posed that first learns the optimal specific impulse 
first and then limits it according to its actual upper 
and lower limits. DNNs are trained using optimal 
datasets with different homotopy parameters. The 
results show that DNNs can learn the optimal thrust 
and the optimal specific impulse well， and that it is 
more difficult for the neural network to learn the 
control law as the homotopy parameter decreases. 
After that， we conduct Monte Carlo simulations in 
deterministic and uncertain environments. The simu‑
lation results show that the EFT-DNNs can effec‑
tively enhance the control range in the second half 
of flight and improve the rendezvous accuracy. Fi‑
nally， the network processing speed is calculated. 
The single processing time of the networks is 
about 0.000 23 s and the processing frequency is 
above 4 000 Hz， which is sufficient to show the po‑
tential of the proposed method for the real-time con‑
trol onboard.
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基于深度神经网络的变比冲小推力交会实时最优控制

刘宇航，杨洪伟
(南京航空航天大学航天学院，南京  211106， 中国)

摘要：针对燃料最优交会问题，提出了一种基于深度神经网络的实时控制方法。首先，发展了面向燃料最优交会

问题的轨迹反向生成方法，该方法基于现有的反向生成思想进行二分法迭代，以满足反向积分的两个截止条件。

然后，构造了一种适用于变比冲模型的深度神经网络结构，并将网络的输出控制分为推力输出和比冲输出。提

出了先学习最优比冲，然后根据比冲的实际上下限约束对其进行限制以获得比冲输出的方法。进一步，通过设

计增强容错深度神经网络以提高交会任务末端接近段的鲁棒性。最后，通过对地球至阿波菲斯小行星和地球至

火星的任务仿真，验证了所提方法的有效性和高效性。

关键词：轨迹优化；变比冲；燃料最优控制；间接法；深度神经网络
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