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Abstract: To improve the accuracy of traffic flow prediction under different weather scenarios in the terminal area， a 
terminal area traffic flow prediction model fusing multivariate time series and pattern mining （MTSPM） is proposed. 
Firstly， a multivariate time series-based traffic flow prediction model for terminal areas is presented where the traffic 
demand， weather， and strategy of terminal areas are fused to optimize the traffic flow prediction by a deep learning 
model CNN-GRUA， here CNN is the convolutional neural network and GRUA denotes the gated recurrent unit 
（GRU） model with attention mechanism. Secondly， a time series bag-of-pattern （BOP） representation based on 
trend segmentation symbolization， TSSBOP， is designed for univariate time series prediction model to mine the 
intrinsic patterns in the traffic flow series through trend-based segmentation， symbolization， and pattern 
representation. Finally， the final traffic flow prediction values are obtained by weighted fusion based on the prediction 
accuracy on the validation set of the two models. The comparison experiments on the historical data set of the 
Guangzhou terminal area show that the proposed time series representation TSSBOP can effectively mine the patterns 
in the original time series， and the proposed traffic flow prediction model MTSPM can significantly enhance the 
performance of traffic flow prediction under different weather scenarios in the terminal area.
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0 Introduction 

Terminal areas are the most crucial and com ⁃
plex parts of the air transportation system， which 
makes the study of traffic conditions in terminal ar⁃
eas particularly important. Traffic flow prediction in 
a terminal area aims to accurately predict the air traf⁃
fic flow within the terminal area over a period of 
time in the future. Accurate traffic flow prediction is 
vital for the management of airlines and airports as it 
enables decision-makers to develop more reasonable 
flight plans， optimize resource allocation， and effi⁃
ciently dispatch personnel， which can improve oper⁃
ational efficiency and cost control. However， since 

traffic flow in a terminal area is influenced by vari⁃
ous factors， including flight schedules， seasonal 
changes， passenger behavior， and unexpected 
events such as weather changes and flight delays， 
the prediction faces several challenges. The interac⁃
tion and variability of these factors make it even 
more difficult to achieve satisfactory predictions. 
Therefore， it is crucial to select appropriate models 
and algorithms for traffic flow prediction， consider⁃
ing the characteristics of flight operations and the ef⁃
fects of various factors.

In previous studies on traffic flow prediction， 
researchers primarily relied on non-machine learning 
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methods， such as moving average and exponential 
smoothing， which are based on historical data for 
statistical prediction［1-2］. However， these methods 
often incorporate subjective ideas and lack objectivi⁃
ty. With the advancement of machine learning， 
some researchers tried to use machine learning tech⁃
nologies for traffic flow prediction， including sup⁃
port vector machine （SVM）， random forest （RF）， 
contrast learning （CL）， active learning （AL）， and 
neural networks （NN）［3-4］. These algorithms can ef⁃
fectively handle nonlinear problems but require sub⁃
stantial amounts of data and appropriate feature engi⁃
neering. Researchers also predicted the traffic flow 
by treating traffic flow as an individual time series 
and disregarding the impacts of other factors on traf⁃
fic flow. In recent years， a few researchers have 
started to study the traffic flow forecasting problem 
from a multivariate time series aspect and achieved 
good results［5］. However， these methods lack the 
mining of the intrinsic patterns of the time series and 
thus fail to capture the trends information and deep⁃
er features of the time series.

In this paper， we attempt to construct a traffic 
flow prediction model based on multivariate time se⁃
ries and pattering mining （MTSPM） to tackle the 
complexity and high dimensionality of the terminal 
area traffic flow data. First， a multivariate time se⁃
ries fusion model is designed to use the related fea⁃
tures for prediction. Meanwhile， a time series bag-

of-pattern （BOP） representation based on trend seg⁃
mentation symbolization， TSSBOP， is designed to 
extract the intrinsic patterns from the original series 
and use them for prediction. Finally， the two predic⁃
tion results are fused and output. By considering 
both the effects of multivariate time series features 
and the intrinsic patterns of the original series， our 
method can give more accurate traffic flow predic⁃
tion in the terminal area.

The main contributions of this paper are sum ⁃
marized as follows：

（1） A multivariate time series fusion model is 
designed to predict the traffic flow in the terminal ar⁃
ea based on multiple influencing factors.

（2） TSSBOP representation method is pro⁃
posed to mine intrinsic patterns from the original se⁃

ries.
（3） A traffic flow prediction model fusing mul⁃

tivariate time series and pattern mining is proposed， 
and its effectiveness and superiority are validated on 
the historical traffic dataset of the Guangzhou termi⁃
nal area.

1 Related Work 

In the research field of traffic flow， many early 
researchers employed non-machine learning meth⁃
ods to make long-term or mid-long-term predictions 
under different weather scenarios. For example， 
Pan et al.［1］ used a gray prediction algorithm to pre⁃
dict air traffic flow， taking into account the complex⁃
ity， nonlinearity， and uncertainty of air traffic flow. 
Dmochowski et al.［2］ analyzed the features of air traf⁃
fic flow in terminal areas based on observational da⁃
ta. Liu et al.［6］ combined a gray GM （2， 1） model， 
regression model， and system dynamics for strate⁃
gic predicting of air traffic flow. However， most of 
these non-machine learning methods need to incor⁃
porate subjective ideas. Consequently， some re⁃
searchers began to apply machine learning methods 
for traffic flow prediction. For example， Chen et al.［3］ 
predicted traffic flow under similar scenarios by us⁃
ing active metric learning. Mao et al.［7］ quantified 
the impact of convective weather on traffic capacity in 
the terminal area from the aspects of airspace， traffic， 
weather， and proposed a capacity prediction model 
based on random forest algorithm. Chen et al.［4］ ad⁃
dressed different traffic flow prediction problems un⁃
der different scenarios by comparative learning 
methods. Additionally， Hossain et al.［8］ quantified 
the impact of convective weather on the terminal ar⁃
ea and proposed a novel traffic flow prediction mod⁃
el based on the weather impact traffic index. Wang 
et al.［9］ developed a stochastic dynamic model to pre⁃
dict traffic flow considering adverse weather condi⁃
tions.

Machine learning methods always require large 
amounts of data and proper feature engineering. 
Dealing with high-dimensional large data sets can af⁃
fect the training speed of the model， while unsuit⁃
able feature engineering can affect the accuracy of 
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the prediction. Therefore， some researchers tried to 
use time series mining methods for traffic flow pre⁃
diction. For example， Wang et al.［10］ used an im⁃
proved weighted first-order local method for air traf⁃
fic flow prediction. Yang et al.［11］ proposed a string 
segmentation algorithm based on regular expres⁃
sions， combined with an aviation vertical profile 
model， and validated the traffic flow prediction re⁃
sults using real aeronautical fixed telecommunica⁃
tion network （AFTN） message data. After that， 
they applied a time series prediction model based on 
the echo state network to predict traffic flow. Song 
et al.［12］ used the dynamic time warping （DTW） al⁃
gorithm to measure traffic flow correlation between 
sectors， constructed a dataset based on correlation， 
and developed an long short-term memory 
（LSTM） network prediction model for traffic flow 
prediction under different input conditions. Al⁃
though time series methods improved the prediction 
accuracy and efficiency， they primarily focused on 
individual traffic flow series without considering the 
influence of other factors on traffic flow. In recent 
years， researchers have attempted to address traffic 
flow prediction from the aspect of multivariate time 
series. They have achieved promising results by us⁃
ing deep learning models to incorporate multivariate 
features and predict traffic flow in the terminal area. 
For example， Lin et al.［13］ proposed a multi-input 
deep learning model to predict traffic flow in the ter⁃
minal area under convective weather. Yan et al.［14］ 
developed a deep learning-based traffic flow predic⁃
tion framework that can capture the spatial and tem ⁃
poral dependencies of historical traffic flows and pre⁃
dict inbound traffic flows. Peng et al.［15］ proposed a 
multi-input deep learning model of traffic flow pre⁃
diction for the terminal area under convective weath⁃
er. They all aimed to improve the accuracy and sta⁃
bility of terminal area traffic flow prediction by ex⁃
tending the weather features that affect the traffic 
state. However， these multivariate time series meth⁃
ods ignore the learning of the intrinsic patterns of 
the series itself and therefore fail to capture the 
trends and deeper features of the time series.

In order to mine the intrinsic patterns of the time 
series， an effective representation of the time series 

is the most critical step. Zhang et al.［16］ introduced a 
straightforward time series representation method 
called trend based symbolic aggregation approxima⁃
tion （TSAX）， which can capture the trend features 
of each segment to enhance representation accuracy. 
Lin et al.［17］ proposed a BOP representation that ex⁃
tracts substructures from the original series as high-

level features of the time series. These substructures 
are transformed using SAX enabling dimensionality 
reduction of the entire series while preserving local 
features. Ruan et al.［18］ proposed an enhanced sym ⁃
bolic representation known as TrSAX. Building up⁃
on the BOP representation， they combined SAX 
with the least squares method to describe the mean 
and trend information of the time series， which can 
further refine the substructures.

Inspired by all these researches， we attempt to 
study traffic flow prediction methods in terms of 
both multivariate time series and univariate time se⁃
ries， respectively. By exploring the intrinsic pat⁃
terns and dependencies existing in the traffic flow se⁃
ries， a traffic flow prediction model fusing multivari⁃
ate time series and pattern mining is constructed for 
the terminal area.

2 MTSPM Model 

In this section， we will propose the traffic flow 
prediction model MTSPM. The workflow of MT⁃
SPM is presented in Fig.1. As the figure shows， the 
MTSPM model has four parts： Data processing， 
multivariate time series fusing， univariate time se⁃
ries pattern mining and weighted fusion outputting. 
The details of each part are described in the follow ⁃
ing sections.

2. 1 Data processing　

For accurate prediction of traffic flow in the ter⁃
minal area under different weather scenarios， we 
first construct a traffic state dataset with weather， 
traffic demand， and control strategy as features and 
actual traffic flow as target values. Among them， 
the values of weather features can be calculated by 
ATMAP-CW from 3D weather avoidance area 
（WAF） data （containing both image and numerical 
forms） and regular weather report （METAR） da⁃

597



Vol. 40 Transactions of Nanjing University of Aeronautics and Astronautics

ta， such as convective weather impact index， visibil⁃
ity impact index， wind speed， gust， rainfall， thun⁃
derstorm， wind direction， accumulated rain， etc. 
The values of traffic demand feature can be calculat⁃
ed from the flight plan and flight log data for actual 
flow， planned flow， tolerance， inbound delay， out⁃
bound delay， cancelled flight volume， normal flight 
volume， cabin volume and normal flight volume， 
etc. The control policy feature can be obtained from 
mile-in-trail （MIT） data by calculating the average 
crossing interval limit， policy release intensity， 
crossing interval limit effectiveness， whether the 
policy is active or not， and the traffic flow affected 
by the policy. The actual traffic flow can be counted 
directly from the executed flight plans. In this datas⁃
et， both features and targets are time series and they 
are synchronized in time in any sample.

2. 2 Multivariate time series fusing　

In the part of multivariate time series fusion， 
we first use convolutional neural network （CNN） 
model to fuse the input multivariate traffic flow fea⁃
ture time series， including weather series， traffic de⁃
mand series and control strategy series， to extract 
the deep data features of each time series in the high-

dimensional embedding space. Then， the computa⁃
tional results of CNN model are input to gated recur⁃
rent unit （GRU） model for traffic flow prediction， 
which can simplify the computational complexity 
and cost while maintaining accuracy.

However， GRU can only treat a time series as 
a unit during the computation， and cannot effectively 
handle long series or pay attention to the complex re⁃
lationships existing in the time series. Therefore， 
GRU may not achieve the best results when dealing 

with sparse time series of traffic flow features. The 
attention mechanism is a technique widely used in 
deep learning to improve the performance of neural 
networks for processing time-series data. This mech⁃
anism helps the neural network to dynamically select 
and focus on the relevant parts of the input time se⁃
ries to extract useful information while reducing the 
reliance on irrelevant series， here we use GRUA to 
denote the GRU model with attention mechanism. 
Therefore， in this part， to improve the accuracy of 
traffic flow prediction， the attention mechanism is 
further utilized to focus on the traffic flow features 
and to form CNN-GRUA composite model for traf⁃
fic flow prediction.

2. 3 Univariate time series pattern mining　

In the previous section， we used three traffic 
flow features weather， traffic demand and strategy 
for traffic flow prediction. However， the actual traf⁃
fic flow itself is a time series with a strong cyclical 
trend. Therefore， in the univariate time series pat⁃
tern mining part， we will study the traffic flow time 
series itself and mine the variation patterns and time-

dependent structures existing in it to further predict 
the dynamic changes of the traffic flow series. In or⁃
der to analyze and predict a time series， we should 
first segment and represent it effectively to retain 
the maximum amount of useful information in the 
time series. This is the general step of time series 
mining. To this purpose， a time series BOP repre⁃
sentation based on trend segmentation symboliza⁃
tion， TSSBOP， is proposed in this paper to seg⁃
ment， represent and extract patterns from traffic 
flow time series. The process of TSSBOP is pre⁃
sented in the following sections.

Fig.1　Workflow of the traffic flow prediction model MTSPM
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2. 3. 1 Segmentation based on trend and sliding 

window　

In order to preserve the trend information of the 
time series as much as possible in the segmentation 
process， we propose a dichotomous iterative break⁃
point search method， as shown in Fig.2， where Sx 
（x=1，i，j，m，q，n，k） are points of the time series， 
Di （i=j，m） are the distances between Sx and the 
line joining the start and end points， the black 
dashed line represents the original series and the red 
solid line represents the obtained segment.

First， we find the point with the largest trend 
change within the time series as the breakpoint， and 
divide the series into two subseries. By continuously 
dichotomizing and iterating in subseries， a number of 
breakpoints are obtained. The whole time series is 
traversed using the sliding window mechanism， and 
in each window， the segmentation strategy of break⁃
points as the main and average segmentation as the 
secondary is adopted. ω - 1 breakpoints with the 
most trend information are selected to divide the se⁃
ries into ω segments. The adopted segmentation 
strategy makes the number of breakpoints in each 
subseries ω - 1. Let the number of breakpoints in 
each subseries be γ. If γ ≥ ω - 1， ω - 1 breakpoints 
with the most trend information are selected from 
them to make ω segments. If  ë û( ω - 1 ) /2 + 1 ≤
γ < ω - 1， the segments with the series length in the 
first ( ω - 1 - γ ) are bisected to form ω segments. If 
γ < ë û( ω - 1 ) /2 + 1， then ω segments are divided 
directly by average length， where ë û( ω - 1 ) /2 + 1 
means rounding down to ( ω - 1 ) /2.

Therefore， when there are few breakpoints， 
the overall segmentation process approximates the 
average segmentation and when there are enough 
breakpoints， the segmentation is performed by the 
iterative dichotomous trend segmentation. It can be 

seen that the segmentation strategy balances effec⁃
tiveness and efficiency.
2. 3. 2 Symbolic representation based on trend 

and mean　

After segmenting， we need to represent the 
segments in another way. In this paper， we design a 
symbolic representation based on trend and mean of 
a segment， so that each segment can be represented 
by two symbols， the trend and the mean， respec⁃
tively.

For the part of trend， we directly use the slope 
value of each segment， which takes a range of 
（-∞，+∞）. This range can be divided into five 
non-overlapping regions and each region corre⁃
sponds to a trend level and a capital letter， as shown 
in Table 1.

For the part of mean value， it simply describes 
the distribution of the values in a segment. For a giv⁃
en time series T and a subseries x =[ ti，⋯，t( i + l - 1 ) ] 
in T， then the mean value of x can be calculated as 
follows.

μx =
∑
j = i

i + l - 1

tj

l
(1)

Since the normalized time series approximates 
a Gaussian distribution， it can be divided into multi⁃
ple equal probability intervals， as shown in Table 2， 

Fig.2　Dichotomous iterative search of breakpoints Table 1　Symbolic representation of trends

Slope value
( - ∞, - 1)
( - 1, - 0.1)
( - 0.1,0.1)

( 0.1, 1)
( 1, + ∞ )

Trend
Sharp decline
Slight decline

Slight fluctuation
Slight rise
Sharp rise

Representation
A
B
C
D
E

Table 2　Breakpoints for equal probability intervals of a 
Gaussian distribution

α
β1

β2

β3

β4

β5

β6

β7

β8

β9

3
-0.43

0.43

4
-0.67

0
0.67

5
-0.84
-0.25

0.25
0.84

6
-0.97
-0.43

0
0.43
0.97

7
-1.07
-0.57
-0.18

0.18
0.57
1.07

8
-1.15
-0.67
-0.32

0
0.32
0.67
1.15

9
-1.22
-0.76
-0.43
-0.14

0.14
0.43
0.76
1.22

10
-1.28
-0.84
-0.52
-0.25

0
0.25
0.52
0.84
1.28
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where α is the number of breakpoints and β the inter⁃
val boundary value of a Gaussian distribution. The 
values in the same interval are represented by the 
same symbol， so that the means of all the segments 
are mapped to different symbols according to the 
Gaussian distribution， as shown in Table 3.

For each segment， it will finally be represented 
as multiple groups of words containing an uppercase 
letter and a lowercase letter in it. In this way， an 
original time series is symbolized as a string， retain⁃
ing its key trend information and value distribution 
information， while the length has been greatly re⁃
duced.
2. 3. 3 Bagging of pattern　

After symbolization， we can construct pattern 
“word lists” for the entire time series， where each 

word is a pattern. For example， for a symbolized 
time series S= ｛AaBaAc， AaBaAc， BcDaEb， 
DcDaEb， DcDaEb， DcDaEb， BcEaEb， AcDaEd｝， 
by using digitally reduced counting， S will be re⁃
duced to S' = ｛AaBaAc， BcDaEb， DcDaEb， 
BcEaEb， AcDaEd｝. Then， we construct the word 
list for each series as a histogram representation in 
the form： H：AaBbAc=2，BaDaEb=1，DcDaEb=
3，BcEaEb=1，AcDaEd=1. For a given segment 
Si， it is likely to be very similar to its neighboring 
subseries Si - 1 and Si + 1， especially if Si is in the 
smoothed region of the original time series. In this 
case， we may see many consecutive subseries map⁃
ping to the same word. To avoid storing these same 
words repeatedly， a counting method called number 
reduction is usually used. Specifically， for consecu⁃
tive occurrences of the same word， only the first oc⁃
currence of the word is chosen to be recorded until a 
different word is encountered. The purpose of this 

method is to find out the patterns that occur in the 
series and their number of occurrences to make a his⁃
togram representation. After obtaining the histo⁃
gram of each time series in the time series dataset， 

we constructed the word matrix M é
ë(φ*α) ωù

û[ s]， 

where φ = 5， α denotes the number of letters， ω 
the number of segments， and s the number of time 
series. Although the final number of matrices formed 
is huge， this matrix is sparse and most of the words 
are not mapped， so we can remove all the rows with 
value being of 0 to form the matrix M '[ · ] [ s]， thus 
ensuring that each word inside will appear once.

When we complete the above three steps， the 
various patterns present in an original time series are 
mined， which greatly reduces the computational 
complexity of subsequent time series prediction in 
terms of time and space while preserving the key in⁃
formation of the series.
2. 3. 4 Univariate time series predicting　

To facilitate the input of the subsequent mod⁃
el， we first convert the obtained word matrix into an 
embedding vector encoding using the Word2Vec 
model. Word2Vec is a commonly used word embed⁃
ding technique that maps words to a high-dimension⁃
al vector space and brings semantically similar 
words closer together in the vector space. Then， the 
vectors are fed into GRU model for prediction and 
the prediction results are converted into word matrix 
by the inverse operation of the Word2Vec model. 
Further， the word matrix of prediction results is con⁃
verted into predicted values of the same form as the 
original series by the inverse operation of the TSS⁃
BOP method to understand and analyze the predic⁃
tion results intuitively.

2. 4 Weighted fusion outputting　

In order to effectively fuse the two predictions 
from the multivariate time series prediction model 
and the univariate time series prediction model， in 
this section， we propose a weighted fusion method 
based on the performance of the two models on the 
validation set. The data we used in this paper is the 
actual traffic data from Guangzhou terminal area. 
From the data， we can find the convective weather 

Table 3　Symbolic representation of means

α

3
4
5
6
7
8

Mean range
( - ∞,β1), ( β1,β2), ( β2,+∞)

( - ∞,β1), ( β1,β2),⋯,( β3,+∞)
( - ∞,β1), ( β1,β2),⋯,( β4,+∞)
( - ∞,β1), ( β1,β2),⋯,( β5,+∞)
( - ∞,β1), ( β1,β2),⋯,( β6,+∞)
( - ∞,β1), ( β1,β2),⋯,( β7,+∞)

Representation
a,b,c

a,b,c,d

a,b,c,d,e

a,b,c,d,e,f

a,b,c,d,e,f,g

a,b,c,d,e,f,g,h

600



No. 5 ZHU Weiqi, et al.   Traffic Flow Prediction Model Based on Multivariate Time Series and…

has significantly impact on the traffic flow but it 
does not frequently occur. The overall regularity of 
the data will make the prediction results relatively 
stable. Therefore， to capture the diversity in predic⁃
tive accuracy as effectively as possible， we choose 
mean square error （MSE）， which has a wider range 
of values， as the evaluation indicator. Meanwhile， 
in order to reduce the impact of traffic flow outliers 
caused by severe convective weather on prediction 
performance， we choose mean absolute error 
（MAE）， which has a lower penalty for outliers as a 
complementary indicator. In summary， based on pri⁃
or knowledge of actual traffic data from the terminal 
area， we use the combination of MSE and MAE for 
calculating the weights in the fusion process for the 
final predictions.

Denoting MSE and MAE of the multivariate 
model as MSE1 and MAE1， and those of the univari⁃
ate model as MSE2 and MAE2， the specific weight 
assignment formula is shown as

W 1 = MSE2 + MAE2

MSE1 + MAE1 + MSE2 + MAE2
(2)

W 2 = MSE1 + MAE1

MSE1 + MAE1 + MSE2 + MAE2
(3)

Finally， we can get the final predicted value of 
traffic flow as

Y = W 1*Y 1 + W 2*Y 2 (4)
where Y 1 and Y 2 are the prediction results of the 
multivariate time series prediction model and the 
univariate time series prediction model， respective⁃
ly.

2. 5 MTSPM　

The main flow of the proposed MTSPM mod⁃
el is shown in Algorithm 1.
Algorithm 1  MTSPM
Input：Dataset TS, traffic flow TS i,epoch;
Output：Prediction Y;  // Multivariate time series 
fusing
(1) Initialize the hyper parameters of CNN, time 
step, hyper parameters of GRU, network weight, 
query Q, key K and value’s weight matrices V.
(2) For each epoch ∈ { 1,2,⋯,N } do
(3) Input dataset TS to multivariate TS prediction 
model.

(4) Call CNN to extract the multivariate features 
and save to O l.
(5) Call GRU to capture contextual information 
about a series and output hidden state series Zl.
(6) Call attention mechanism to learn weight assign⁃
ments and output predicted value Y 2// Univariate 
time series pattern mining.
(7) Input traffic flow TS i to univariate TS prediction 
model.
(8) For each sub in TS i:
(9) Call segmentation to calculate trend points and 
save to TP.
(10) Call symbolization of TP for symbolic represen⁃
tation.
(11) Feature pattern = TSSBOP ( TP )
(12) Call Word2Vec to encode Pattern and save to X
(13) Call GRU to predict and save to X '
(14) Y '1 = Conversion ( X ')
(15) Y 1 = Reflexion (Y '1 )// Weighted fusion output⁃
ting
(16) Y = W 1*Y 1 + W 2 *Y 2

3 Experiments and Analysis 

3. 1 Experimental setup　

3. 1. 1 Design of experiments　

In this section， the performance of the pro⁃
posed MTSPM model is verified through several 
comparative experiments. The experiments are di⁃
vided into four parts. Firstly， the ablation experi⁃
ment is carried out to verify the effectiveness of the 
weighted fusion of the two models. Secondly， com⁃
parative experiments of five time series feature rep⁃
resentations are carried out to verify the perfor⁃
mance of the TSSBOP method. Then， the compar⁃
ative experiment of seven deep learning models is 
carried out to verify the performance of CNN-

GRUA model. All of the above experiments are 
conducted to predict traffic flow in the terminal area 
under convective weather scenarios. The fourth 
comparative experiment focuses on the performance 
of the proposed MTSPM model under no convec⁃
tive weather scenario. Here， a convective weather 
scenario is one in which weather phenomena such as 
thunderstorms， rainfall or strong winds occur. A no 
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convective weather scenario is a scenario without 
these weather phenomena.
3. 1. 2 Implementation　

All experiments are run on the Guangzhou ter⁃
minal area traffic flow dataset， where the experi⁃
ments in Sections 3.2， 3.3， and 3.4 are carried out 
on the traffic flow dataset with convective weather 
scenarios， while the experiments in Section 3.5 are 
carried out on the traffic flow dataset without con⁃
vective weather scenarios. The dataset has 23 differ⁃
ent features of weather， traffic demand， and strate⁃
gy. The time series of each feature has 7 344 time⁃
stamps， each timestamp is 1 h. Since in the pre-tac⁃
tical stage， the lead time of flow control release is in 
hours， 1 h flow prediction is more relevant to the ac⁃
tual meaning. We use 80% of the data for training， 
10% for validation， and 10% for testing. We select 
five indicators， including MSE， MAE， root mean 
square error （RMSE）， mean absolute percentage 
error （MAPE）， and R2 （Coefficient of determina⁃
tion）， to evaluate the performance of the prediction 
models.

3. 2 Ablation experiments　

To simplify the representation， here we refer 
to the multivariate time series prediction model as 
Model 1 and the univariate time series prediction 
model as Model 2. To verify the validity of the 
weighted fusion of the prediction results of the two 
models， we compared the prediction results of Mod⁃
el 1， Model 2 and our model MTSPM （Model 1+
Model 2）， as shown in Table 4.

From Table 4， it can be seen that MTSPM 
model has the lowest MAE， MAPE， MSE， 
RMSE， and the highest R2 compared to Model 1 
and Model 2， which means MTSPM has the best 
performance. Fig.3 shows the traffic flow predic⁃
tions of three consecutive days. It can be seen from 

Fig.3 that the prediction of our MTSPM model is 
closer to the actual traffic flow， which proves that 
the weighted fusion model MTSPM can greatly im ⁃
prove the prediction accuracy by taking into ac⁃
count the influence of multiple features on traffic 
flow and the trend pattern of the traffic flow time 
series itself.

3. 3 Performance verification of TSSBOP　

To verify the effectiveness of the proposed 
TSSBOP method， we compared it with other four 
time series representation methods， including 
SAX， ESAX， TSAX， and TrSAX， in Model 1， 
while using the same Model 2 and weighted fusing 
model. The experimental results are shown in Ta⁃
ble 5.

From Table 5， we can see that although the 
improvement of TSSBOP on MAPE and R2 is rela⁃
tively small， there is a significant improvement on 
the remaining three indicators. Compared with other 
methods， TSSBOP can significantly downscale the 
features at the data level， so TSSBOP has the best 
representation ability. We present the predictions of 
three consecutive days， using five different represen⁃

Fig.3　Ablation experiment results of consecutive days

Table 4　Ablation experiment results

Model
Model 1
Model 2
MTSPM

MAE
5.26
5.07
4.70

MAPE
0.14
0.13
0.14

MSE
48.99
45.02
42.84

RMSE
6.99
6.70
6.54

R2

0.88
0.89
0.89

Table 5　Comparison of five representation methods

Method
SAX

ESAX
TSAX
TrSAX

TSSBOP

MAE
5.47
5.11
4.98
4.96
4.70

MAPE
0.16
0.14
0.15
0.14
0.14

MSE
53.16
47.45
43.32
42.94
42.84

RMSE
7.29
6.89
6.58
6.55
6.54

R2

0.87
0.88
0.89
0.89
0.89
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tation methods in Fig.4. As shown in Fig.4， the pre⁃
dictions using TSSBOP method is closer to the ac⁃
tual flow than the other four representation meth⁃
ods， which proves that the proposed TSSBOP 
method can extract the features of the traffic flow se⁃
ries in terms of both trend and mean， and use the 
word matrix to mine the patterns existing in the time 
series， thus effectively improving the prediction per⁃
formance.

3. 4 Performance verification of CNN⁃GRUA　

To verify the effectiveness of Model 1 pro⁃
posed in this paper， we compared the traffic flow 
prediction results of CNN-GRUA model with other 
six deep learning models， including CNN， LSTM， 
GRU， CNN-LSTM， CNN-GRU， and CNN-LST⁃
MA， while using the same Model 2 and weighted 
fusing model. The experimental results are shown in 
Table 6.

From Table 6， it can be seen that CNN-

GRUA model has the lowest MAE， MAPE， 
MSE and RMSE and the highest R2 compared with 
the other six prediction models， which indicates 

that CNN-GRUA model has achieved the best per⁃
formance in traffic flow prediction. We also present 
the predictions of three consecutive days， using 
seven different models in Fig.5.As shown in Fig.5， 
the prediction of CNN-GRUA model is closer to 
the actual traffic flow than the other six models， 
which proves that the proposed model for traffic 
flow prediction improve the performance by consid⁃
ering the long-term dependence and paying atten⁃
tion to traffic flow features during the deep learning 
process.

3. 5 Prediction under no convective weather 
scenarios　

The above experiments are all carried out on 
the terminal area traffic data under convective weath⁃
er scenarios. In order to verify the performance of 
the proposed MTSPM model under no convective 
weather scenarios， we constructed the traffic datas⁃
et of Guangzhou terminal without convective weath⁃
er， and carried out two comparative experiments. 
The experimental results are shown in Table 7 and 
Table 8. From Table 7 and Table 8， it can be seen 

Fig.5　Prediction results of traffic flow by seven deep learn⁃
ing models

Table 7　Comparison of five representation methods 
without convective weather

Method
SAX

ESAX
TSAX
TrSAX

TSSBOP

MAE
5.43
4.76
4.54
4.18

4.19

MAPE
0.16
0.13
0.18
0.11

0.12

MSE
50.06
38.90
35.15
29.28
26.77

RMSE
7.07
6.23
5.92
5.41
5.17

R2

0.87
0.90
0.91
0.92
0.93

Fig.4　Prediction results of traffic flow by five representa⁃
tion methods

Table 6　Comparison of seven deep learning models

Model
CNN

LSTM
GRU

CNN⁃LSTM
CNN⁃GRU

CNN⁃LSTMA
CNN⁃GRUA

MAE
7.75
6.32
6.16
5.65
5.05
5.06
4.70

MAPE
0.19
0.16
0.16
0.15
0.14
0.15
0.14

MSE
93.06
63.89
63.22
59.08
43.21
43.84
42.84

RMSE
9.64
7.99
7.95
7.68
6.57
6.62
6.54

R2

0.77
0.84
0.84
0.85
0.89
0.89
0.89
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that the prediction performances of all the represen⁃
tation methods and the deep learning models on the 
dataset without convective weather are better than 
those under convective weather scenarios， both in 
MAE， MAPE， MSE， RMSE and R2. This sug⁃
gests that convective weather has an important im ⁃
pact on traffic flow in the terminal area. In a smooth 
weather scenario， the terminal area traffic flow has 
a stronger periodic pattern and thus is more easily 
predicted accurately.

We choose three consecutive days to demon⁃
strate the prediction results of five different repre⁃
sentation methods and seven different deep learning 
models， as shown in Fig.6 and Fig.7. It can still be 
concluded that the prediction results of the proposed 
TSSBOP method for pattern mining are closer to 
the real traffic flow for different time series repre⁃
sentation methods. For different deep learning mod⁃
els， the prediction results of CNN-GRUA model 
are closer to the real traffic flow than the other mod⁃
els.

4 Conclusions 

To improve the accuracy of traffic flow predic⁃
tion in terminal areas under different weather scenar⁃
ios， this paper proposes a traffic flow prediction 
model based on MTSPM model. The model analyz⁃
es traffic flow in the terminal area from two perspec⁃
tives： Multivariate time series and univariate time 
series. To improve accuracy and reduce computa⁃
tional complexity， GRU model is used to incorpo⁃
rate fused multivariate time series features. Addi⁃
tionally， the attention mechanism is introduced to 
focus on key traffic flow features and reduce reli⁃
ance on irrelevant information. From the univariate 
time series perspective， this paper explores the min⁃
ing of feature patterns within traffic flow series to 
improve prediction accuracy. A BOP representation 
method of time series based on trend segmentation 
symbolization is proposed to identify trend points in 
each subseries and discretizes the subseries into bi⁃
nary representations. Then， the discretized sub⁃
series is counted into a word matrix， and each word 
represents a feature pattern in the series. The exper⁃
imental results on the historical dataset of the 
Guangzhou terminal area demonstrate the effective⁃
ness of the proposed representation in mining fea⁃
ture patterns. Moreover， the multivariate time-se⁃
ries-based traffic flow prediction model for the ter⁃
minal area significantly improves the accuracy of 
traffic flow prediction under different weather sce⁃
narios.

Fig.7　Prediction results of traffic flow by seven deep learn⁃
ing models without convective weather

Table 8　Comparison of seven deep learning models with⁃
out convective weather

Model
CNN

LSTM
GRU

CNN⁃LSTM
CNN⁃GRU

CNN⁃LSTMA
CNN⁃GRUA

MAE
7.49
6.30
4.88
4.42
4.31
4.31
4.19

MAPE
0.88
0.17
0.14
0.12
0.12
0.12
0.12

MSE
84.88
62.93
43.61
31.23
29.83
29.83
26.77

RMSE
9.21
7.93
6.60
5.58
5.46
5.46
5.17

R2

0.78
0.84
0.89
0.92
0.92
0.92
0.93

Fig.6　Prediction results of traffic flow by five representa⁃
tion methods without convective weather
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基于多元时序和模式挖掘的终端区交通流预测

祝玮琦 1， 陈海燕 1，3， 刘 莉 1， 袁立罡 2， 田 文 2

（1.南京航空航天大学计算机科学与技术学院，南京  211106，中国； 
2.南京航空航天大学民航学院，南京  211106，中国； 3.软件新技术与产业化协同创新中心，南京  210023，中国）

摘要：为了提高终端区不同气象场景下的交通流预测准确率，提出一种融合多元时序和模式挖掘（Multivariate 
time series and pattern mining， MTSPM）的终端区交通流预测模型。首先，给出了一种基于多元时间序列的终端

区交通流预测模型，通过深度学习模型 CNN⁃GRUA 将终端区的交通需求、天气和策略特征进行融合并用于交通

流 预 测 ；其 次 ，针 对 交 通 流 这 一 单 变 量 时 间 序 列 ，设 计 了 一 种 基 于 趋 势 分 段 符 号 化 的 时 间 序 列 BOP
（Bag⁃of⁃pattern）表示方法——TSSBOP，通过基于趋势的分段、符号化和模式表示来挖掘交通流序列中的内在

模式；最后，根据两个模型在验证集上的预测精度进行加权融合，得到最终的终端区交通流预测值。在广州终端

区的历史数据集上的对比实验表明，所提出的 TSSBOP 表示法能够有效挖掘出原始序列中的模式，所提出的基

于 MTSPM 的终端区交通流预测模型能有效提高不同气象场景下的交通流预测性能。

关键词：交通流预测；多元时间序列；时间序列表示；模式挖掘；深度学习
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