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Abstract: Aircraft wing icing detection is a crucial task during high-altitude flights because ice accumulation on the 
leading edge of wings can change their aerodynamic shape and reduce lift capacity. This paper proposes a rotated 
object detection method called RA-CenterNet， based on the CenterNet model， to overcome the limitations of existing 
icing detection approaches that either rely on operator experience or require high engineering implementation and 
hardware development costs. To address the specific icing area directions presented in wind tunnel experimental 
datasets， a novel angle prediction branch network that enables precise calibration of rotated targets is designed. 
Additionally， the convolutional block attention module （CBAM） is incorporated to enhance the feature extraction 
ability of the neural network for ice-shaped boundaries. Comparative experiments are conducted to validate the 
performance of the proposed method against other rotated object detection approaches and the baseline network. The 
results demonstrate that our RA-CenterNet method has a significant competitive advantage over the mainstream 
rotation-based object detection algorithms.
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0 Introduction 

Ice formation is common when an aircraft is fly‑
ing at high altitudes and comes into contact with wa‑
ter vapor or condensation in the air. The ice primari‑
ly accumulates on the windward surface of the air‑
craft， including wings， front windshield， engine air 
inlet， and tail. However， the wings， responsible for 
providing 60% to 80% lift to the aircraft， are partic‑
ularly susceptible to ice accumulation. Ice accumula‑
tion on the wings changes their aerodynamic shape， 
leading to a decrease in lift and an increase in drag. 
Uneven ice accumulation on the wings or ice accu‑
mulation at different locations can also change the 
aircraft’s center of gravity， thereby affecting its con‑
trol stability and even causing structural freezing and 
loss of control. As such， detecting ice on aircraft 
wings is crucial for ensuring safe flight.

Currently， two commonly used methods for de‑
tecting icing on aircraft wings are visual and elec‑
tronic detection［1］. Wing visual detection relies on 
the observation of the crew under spotlights illumi‑
nation， which lacks sufficient accuracy and depends 
on observer experience. Electronic detectors are typ‑
ically single-point detection structures and are not 
suitable for detecting regional icing， which requires 
multiple icing sensors to be installed. Although ar‑
ray sensors can detect regional icing， they entail 
high engineering implementation and hardware de‑
velopment costs［2］. Furthermore， from the perspec‑
tive of wing structural and system design， the posi‑
tion of the wing fuel tank limits the coverage of all 
important components positions by the icing detec‑
tion device［3］. In addition， the installation of most ic‑
ing detection equipment requires changes to the air‑
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craft’s structural shape， which further complicates 
equipment installation［4］. These limitations highlight 
the need for a new and effective wing icing detection 
system capable of automatically locating icing re‑
gions. Such a system would essentially involve ob‑
ject detection， and computer vision is perfectly suit‑
able to this task.

The development of an icing detection system 
involves the design and experimentation of the sys‑
tem in a wind tunnel， where the experimental wings 
are subjected to the same environmental conditions 
as real flights. Unlike typical horizontal object detec‑
tion tasks， the analysis of the concentrated icing re‑
gion’s target shape in wing icing experiments exhib‑
its distinctive characteristics. Firstly， the region dis‑
plays a high length-to-width ratio， with experimen‑
tal data indicating that icing regions primarily form at 
the wing’s leading edge and shaped as vertically or 
diagonally elongated rectangles. Secondly， due to 
the wing’s inclination angle， icing regions attached 
to its surface display a certain inclination angle.

Based on the aforementioned characteristics， 
conventional methods for detecting horizontal 
frames tend to capture more redundant background 
information， which is suboptimal for precise target 
calibration. To address this issue， this paper propos‑
es a new approach called RA-CenterNet， which is a 
rotated target detection method based on Center‑
Net［5］. RA-CenterNet predicts the position of the 
target’s center point， as well as its width， height， 
offset， and the rotation angle of the detection box. 
By utilizing this approach， our detection achieves 
more accurate identification and calibration of wing 
icing targets.

This paper presents two significant contribu‑
tions. Firstly， to overcome the issue of specific icing 
area directions presented in wind tunnel experimen‑
tal datasets， we propose a novel angle prediction 
branch network. This network allows for precise cal‑
ibration of rotated targets， thus addressing the afore‑
mentioned challenge. Secondly， to overcome the 
challenge of background noise affecting target fea‑
ture information during the convolution process， 
and the difficulty in identifying the blurred icing 
boundary of the wing， we introduce the convolution‑

al block attention module （CBAM）［6］ into the back‑
bone network. This significantly enhance the feature 
extraction ability of the network’s output feature 
map. Finally， we apply skip connections to the fea‑
ture maps with the same resolution， which provides 
more detailed and effective feature information for 
the icing target detection task without compromising 
the network’s prediction performance.

1 Related Work 

1. 1 Aircraft icing detection technology　

Currently， there are several methods common‑
ly used for detecting aircraft icing， including me‑
chanical， optical， and neural network approaches［7］. 
A notable example of a mechanical icing detector is 
the flat film resonant sensor developed by the Vibro-

Meter Company in Sweden［8］. Meanwhile， the opti‑
cal method has been extensively researched， with 
the fiber optic icing sensor operating by detecting 
the energy loss resulting from the reflection and scat‑
tering of infrared energy by ice. This allows the sys‑
tem to determine the extent of icing based on chang‑
es in signal amplitude. With its small size， high sen‑
sitivity， and wide measurement range， the fiber op‑
tic icing detection system can be conveniently in‑
stalled in various parts of an aircraft， making it a 
competitive new generation of icing sensors［9］.

Improving the detection performance of single-

point sensors is undoubtedly important， but the de‑
tection of icing surfaces over a large area and region 
is also a critical area of research in aircraft icing de‑
tection［10］. At present， the visual method［11］ is com‑
monly used because of its low cost and convenience 
for the crew to check the windshield and wing icing 
conditions using wing searchlights and icing probes. 
However， this method relies on empirical judgment 
and lacks a scientific basis. To address this issue， 
Ref.［12］ proposed a machine learning method 
based on hyperspectral and multispectral images for 
detecting ice shapes on the aircraft surface. Their re‑
search demonstrated the effectiveness of machine 
learning in recognizing wing icing， which represents 
an exciting development in this field.
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1. 2 Object detection technology　

Prior to the emergence of deep learning， tradi‑
tional algorithms played a significant role in the field 
of object detection， and many outstanding algo‑
rithms were proposed. Viola and Jones［13］ were the 
first to combine Haar features and cascade structure 
for extracting features and detecting faces in real-
time， which solved the inefficiency problem caused 
by sliding window. Dalal and Triggs［14］ proposed 
gradient histogram features and combined them with 
linear SVM classifiers for pedestrian detection， 
achieving high detection accuracy. Lowe［15］ used the 
SIFT algorithm to find feature points and match tar‑
gets， thereby improving the recognition rate of oc‑
cluded targets. Bay et al.［16］ proposed the SURF al‑
gorithm， which was based on the SIFT algorithm 
and used an approximate Hessian matrix to reduce 
the downsampling process and improve detection 
speed.

Deep learning methods for object detection are 
generally classified into two categories： Anchor-
based methods and anchor-free methods. Anchor-
based methods， such as the R-CNN series［17-19］， 
have achieved remarkable success in detecting ob‑
jects in natural scene. These methods initially ex‑
tract candidate regions in the input image where the 
object may exist and subsequently perform classifica‑
tion and regression operations on these regions to 
obtain the object’s detection box. Although these 
methods offer high detection accuracy， the genera‑
tion of anchors necessitates the manual tuning of nu‑
merous parameters and additional post-processing 
operations， resulting in a high model complexity 
and computational demands. Moreover， a signifi‑
cant proportion of anchor regions serve as negative 
samples， which can lead to an imbalanced distribu‑
tion of positive and negative samples， making it 
challenging to train the model.

Law et al.［20］ proposed CornerNet， an anchor-
free target detection method that achieved an aver‑
age accuracy of 42.1% on the COCO dataset［21］， 
surpassing all previous one-stage detectors. Howev‑
er， its detection speed was significantly slower than 
YOLO［22］. To improve the CornerNet method， 

Zhou et al.［5］ introduced an additional key point at 
the center of the target， enabling more precise cor‑
ner point matching. The anchor-free series of algo‑
rithms have a smaller network complexity and calcu‑
lation load， enabling CenterNet to strike a balance 
between detection accuracy and speed.

2 RA‑CenterNet Algorithm

While the CenterNet algorithm has shown 
promising results on the MSCOCO dataset， detect‑
ing targets in the wind tunnel experimental dataset 
through this approach presents significant challenges 
due to the high aspect ratios， tilted angles， and lim‑
ited differences in edge information. As a result， in 
order to improve the network’s adaptability to wing 
icing images and enhance detection accuracy， modi‑
fications must be made to the CenterNet network us‑
ing a more appropriate approach.

2. 1 Principle of CenterNet algorithm

CenterNet is an anchor-free object detection al‑
gorithm that is based on the CornerNet approach［20］， 
and its network architecture is shown in Fig.1， 
where w and h denote the width and the height. The 
core idea of this algorithm is to treat an object as a 
keypoint， which represents the center of the ob‑
jects’ bounding box. By estimating the keypoint， 
the algorithm can localize the object’s center and 
predict other attributes， such as size， 3-D position， 
and human pose information. Compared to other 
two-stage object detection algorithms， CenterNet 
eliminates the need for time-consuming and compu‑
tationally expensive anchor operation， resulting in 
improved detection performance. Additionally， the 
algorithm performs filtering directly on the heat‑
map， eliminating the need for non-maximum sup‑
pression （NMS） and further enhancing its speed. 
CenterNet employs ResNet［23］， Hourglass［24］， and 
DLA［25］ as backbone networks for feature extrac‑
tion， which includes deconvolutional layers for infor‑
mation extraction and improved spatial resolution. 
The output layer consists of three prediction branch‑
es： Keypoint heatmap prediction， keypoint offset 
prediction， and object size prediction. Consequent‑
ly， the loss function comprises three components， 
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shown as
L det = L k + λ size L size + λoff L off （1）

where L det is the overall loss value， comprising three 
components： L k for the keypoint heatmap prediction 

loss， L off for the keypoint offset loss， and L size for 
the target width and height loss. Specifically， the 
weighting factors for L size and L off are λ size=0.1， λoff=
1， respectively.

2. 2 RA‑CenterNet network design　

The regression box predicted by the CenterNet 
algorithm comprises four parameters， namely x， y， 
w， and h. Here， x and y represent the coordinates 
of the regression frame’s center point.

This paper proposes an additional parameter， 
θ， for angle regression to represent the rotated box. 
The bounding box is expressed as （x， y， w， h， θ）. 
However， the periodicity of the angle can cause dif‑
ferent numerical values representing the same an‑
gle， which can cause ambiguity. To address this is‑
sue， we adopt a method similar to the OpenCV rep‑
resentation. Specifically， we restrict the angle range 
of the rotation frame to a specific range to eliminate 
ambiguity， as shown in Fig.2.

In order to restrict the range of angle output in 
the angle prediction branch network， the hyperbolic 
tangent function is employed as the activation func‑

tion in this study. With a range bounded between 
+1 and -1 and an origin value of 0， this function is 
highly suitable for the angle range of the rotating 
box utilized in this research. Eq.（2） defines the acti‑
vation function， with a multiplication of π 4 before 
the hyperbolic tangent function to constrain the an‑
gle.

f ( x ) = π
4 × ex - e-x

ex + e-x
（2）

This study addresses the limitations of the orig‑
inal CenterNet［5］ algorithm in detecting rotated tar‑
gets by integrating the angle branch prediction net‑
work. Additionally， the CBAM module［6］ is intro‑
duced to enhance the correlation of target features in 
the icing area， with regard to both dimensions and 
spatial positions. This significantly improves the 
neural network’s capacity to extract features along 
the ice-shaped boundaries. The enhanced CenterNet 
algorithm comprises two parts， and its network 
structure is depicted in Fig.3.

（1） Feature extraction part. The feature ex‑
traction process employed in this study utilizes the 
DLA-34 backbone network， which has been en‑
hanced through the integration of skip connections. 
These connections facilitate the merging of deep 
high-level semantics with shallow fine information 
in the channel dimension. Furthermore， to generate 
a feature map containing the deepest information 

Fig.1　CenterNet network architecture

Fig.2　Spin box representation method(θ∈(-π/4, π/4])
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and exhibiting strong abilities to generalize and ab‑
stract features， the CBAM module is applied to the 
DLA network［25］. As a result， this feature map has 
the largest number of fusion channels.

（2） Prediction of branch network part. The 
upsampled and fused feature maps undergo process‑
ing through four branch networks， consisting of 3×
3 and 1×1 convolutions. These networks generate 
a keypoint heat map measuring 128×128×C， 
where C represents the number of target categories 
（in this study， C=1）. Alongside the heat map， the 
networks produce center point offset information of 
size 128×128×2 and angle information of size 
128×128×1.

2. 3 CBAM attention module　

The attention mechanism has become a pivotal 
tool in various data processing tasks， such as natural 
language processing and image recognition. By uti‑
lizing a distinct data processing technique， it enables 
networks to identify the most salient features within 
images or text， thereby emphasizing relevant infor‑
mation. Currently， there are three primary types of 
attention mechanisms： Channel attention， spatial at‑
tention， and spatial and channel mixed attention. 
Regarding the icing data set， which exhibits a high 
aspect ratio and small edge information difference， 
the attention mechanism proves to be highly effec‑
tive in detecting target features within the icing area 
of an image while suppressing non-target features， 
such as non-icing areas on the wing. Consequently， 

the accuracy of detection is significantly improved.
This article selects the CBAM approach［6］， 

which utilizes a mixed attention mechanism that 
combines both spatial and channel attention. The 
CBAM module comprises two sub-modules， the 
channel attention module （CAM） and the spatial at‑
tention module （SAM）， which are responsible for 
enhancing important image features in the channel 
and spatial dimensions， respectively. A visual repre‑
sentation of the CBAM module architecture is de‑
picted in Fig.4.

The overall architecture of the RA-CenterNet 
network utilizes DLA-34 as the backbone network 
and employs four down-sampling stages to extract 
deep features. To mitigate the negative impact of 
background noise on target feature information dur‑
ing the convolution process， CBAM is incorporated 
after down-sampling to enhance the network’s at‑
tention on potential target regions. However， the 
512 channels in the backbone network of RA-Cen‑
terNet do not all contain meaningful information. 
To address this issue， the CAM channel attention 
module is introduced to reduce the correlation of 
less useful and less meaningful channels and select 

Fig.4　CBAM module architecture

Fig.3　RA-CenterNet network architecture
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more practical and meaningful channels. To gener‑
ate channel attention maps A c， the feature map 
M ∈ RC × H × W is processed through two pooling 
branches and then fed into a three-layer neural net‑
work to obtain two C × 1 × 1 vectors that are subse‑
quently added together. Finally， the sigmoid func‑
tion is used to restrict the values of A c within the 
range （0， 1）， shown as

A c = ∆ (MLP (MaxPool ( M ) )+

MLP ( AvgPool ( M ) )) （3）

where MLP processes pooled features to learn chan‑
nel relationships and generates weights for recali‑
brating the input feature map.

In our method， a SAM spatial attention mod‑
ule is employed to reduce the correlation of irrele‑
vant background and coordinates with low semantic 
meaning， and to select more practical coordinate 
ranges that cover objects. This is accomplished by 
obtaining a feature map M ' with focused channels 
via element-wise multiplication between A c and M， 
shown as

M '=M⊗ A c( M ) （4）
The feature map M ' is then globally pooled 

along the channel axis twice， followed by a 7×7 
convolution and sigmoid activation to ensure that 
the values of the output spatial attention map A s are 
confined to the interval （0， 1）， shown as
A s = ∆ ( f 7 × 7 ( MaxPool ( M '); AvgPool ( M ') )) （5）

The final output M″ with focused positions is 
obtained by element-wise multiplication between A s 
and M '， shown as

M″ =M '⊗ A s( M ') （6）
By means of this approach， more refined and 

effective feature information， such as gradients， is 
provided for ice target detection tasks， without com‑
promising the network’s predictive performance. 
The skip connections are used to connect the ob‑
tained feature maps with the same resolution， there‑
by refining the center and edge positions of the de‑
tection results. Overall， the attention mechanism 
proposed in this study contributes to improving the 
accuracy of object detection and enhancing the quali‑
ty of the feature maps generated by the network.

2. 4 Angular prediction loss　

The RA-CenterNet algorithm leverages the 
loss function of CenterNet. Specifically， the rota‑

tion angle loss function， denoted by Âp
k
 for the pre‑

dicted deviation angle of the detection box output by 
the model and ak for the true rotation angle of the 
target， the loss is shown as

L angle = 1
N ∑

k = 1

N

|| Â p
k
- ak （7）

The overall loss is defined as
L = L k + λ size L size + λoff L off + λ angle L angle （8）

Following experimentation， the optimal param ‑
eter values are determined to be λ size=0.1， λoff=1， 
λ angle=0.1.

3 Experiment and Result Analysis 

In order to validate the effectiveness of the RA-

CenterNet algorithm， we conducted comparative ex‑
periments with other rotated object detection meth‑
ods， namely Rotated Faster R-CNN［26］ ， Beyond 
Bounding-Box［27］， SASM［28］， Oriented RepPoints［29］， 
as well as the original CenterNet algorithm［5］. More‑
over， we performed ablation experiments on the RA-

CenterNet algorithm to assess the impact of different 
structural modifications on detection performance im ‑
provement.

3. 1 Experiment settings　

The experiments are conducted on Ubuntu 
20.04 operating system using PyTorch 1.7.0 and 
CUDA version 11.0， with an NVIDIA RTX 3080 
GPU and an AMD 5800X CPU.

The data used in this study consists of images 
captured from various angles during an icing wind 
tunnel experiment， which replicates the conditions of 
an aircraft passing through a cloud of supercooled wa‑
ter droplets by adjusting the water and air pressure 
of the nozzle. The dataset comprises 241 images in 
the training set and 239 images in the validation set.

This paper employs random flipping， scaling， 
and cropping as data augmentation techniques and 
adopts Adam as the optimizer to optimize the over‑
all objective. During training， the batch size is set to 
8， epoch is set to 200， and the initial learning rate is 
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set to 0.000 125. The learning rate schedule decreas‑
es by a factor of 10 at epochs 90 and 150 to stabilize 
the training process.

3. 2 Analysis of results　

3. 2. 1 Comparison of experimental results and 

analysis

The algorithm proposed in this study is trained 
and tested on the same dataset as the CenterNet al‑
gorithm and several mainstream rotation-based ob‑
ject detection networks. The results are presented in 
Table 1.

Table 1 shows that the proposed RA-Center‑
Net algorithm achieves detection accuracy improve‑
ments of 16.6%， 23.1%， and 13.1%， respective‑
ly， compared with the two-stage Rotated Faster R-

CNN， the two-stage-like Beyond Bounding-Box， 
and Oriented RepPoints algorithms. Moreover， 
compared with the SASM algorithm， the proposed 
algorithm achieves a detection accuracy improve‑
ment of 6.9%. In comparison with the original Cen‑
terNet algorithm， RA-CenterNet adds an angle pre‑
diction branch network， which can better handle ro‑
tation object detection tasks and achieve a 22.5% 
detection accuracy improvement. Despite the slight‑
ly increased algorithm complexity due to the addi‑
tional angle prediction branch network and the 
CBAM compared with the baseline network， the de‑
tection speed of the RA-CenterNet algorithm is 
slightly reduced. However， compared with other al‑
gorithms， RA-CenterNet has obvious advantages in 
both detection accuracy and detection speed.

Fig.5 and Fig.6 present examples of detection 
results obtained by different algorithms on selected 

images from the test set. The task of detecting rotat‑
ed objects is analyzed， and Fig.5 reveals that the Be‑
yond Bounding-Box algorithm faces difficulty in 
identifying target feature points in datasets with 
blurred object boundaries due to its reliance on se‑
lecting 9 feature points to construct a convex hull， 
leading to missed detections of frozen targets. On 
the other hand， the Rotated Faster R-CNN algo‑
rithm overcomes this challenge by introducing rotat‑
ed anchors and corresponding non-maximum sup‑
pression （NMS） operations based on the Faster R-

CNN architecture. Nevertheless， due to the nature 
of two-stage detection algorithms， the rotated faster 
R-CNN algorithm exhibits slower detection speed 
and false alarms. The oriented RepPoints and 
SASM algorithms demonstrate no missed detection 
or false alarms， yet their detection results contain 
numerous redundant bounding boxes， and their de‑
tection speed is comparably slow. Additionally， the 

Table 1　Comparison of experimental results of different 
algorithms

Algorithm

Beyond Bounding‑Box
Rotated Faster R‑CNN

Oriented RepPoints
SASM

CenterNet
Ours

Average pre‑
cision/%

69.6
76.1
79.0
85.8
70.2
92.7

Frame rate/
(frame·s-1)

5.5
3.8
4.3
4.8

11.38

9.47

Fig.5　Comparison diagrams of detection results for tilted 
aircraft wings obtained by different algorithms
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CenterNet algorithm detects the frozen area， but its 
performance in representing the frozen area using 
horizontal detection boxes is suboptimal due to its 
design for general object detection tasks. In con‑
trast， the RA-CenterNet algorithm builds upon the 
success of the CenterNet algorithm in accurately per‑
ceiving the target region by adding an angle predic‑
tion branch network. This improves the model’s 
ability to learn the orientation of frozen targets， en‑
abling the rectangle box to adjust its angle according 
to the orientation of the target region and leading to 
more precise representation of rotated boxes.

Regarding boundary precision， Fig. 6 indicates 
that the Beyond Bounding-Box， Oriented Rep‑
Points， and SASM algorithms detect the frozen ar‑
ea， but the boundaries of the detection boxes exhibit 
significant deviations. Meanwhile， the detection po‑
sitions of Rotated Faster R-CNN and CenterNet al‑
so deviate significantly from the frozen area. By inte‑

grating the CBAM module， the RA-CenterNet al‑
gorithm emphasizes the feature information of the 
target region， such as gradients， and supplies more 
detailed and effective feature information for the 
task of frozen target detection. This enables the re‑
finement of the center position and edge position of 
the detection results， and the precise calibration of 
the boundaries of the targets in the frozen area.
3. 2. 2 Ablation experiment results and analysis

To assess the impact of the proposed improve‑
ment method on detection network performance， an 
angle prediction branch network and CBAM module 
are integrated into the baseline network for experi‑
mentation. The experimental results are presented 
in Table 2.

As indicated in Table 2， the integration of the 
angle prediction branch network into the model re‑
sulted in a substantial 18.3% improvement in detec‑
tion accuracy relative to the CenterNet algorithm. 
However， this improvement came at the expense of 
a slightly reduced detection speed due to the in‑
creased complexity of the network. Moreover， the 
incorporation of the CBAM module into the model 
with only the angle prediction branch network fur‑
ther improved detection accuracy by 4.2% while 
maintaining a comparable detection speed.

Fig.7 illustrates the comparison of detection 
performance after the improvement of different mod‑
ules. In Fig.7， it is evident that CenterNet can only 
detect object with horizontal rectangular detection 
boxes， and the detection area calibration is impre‑
cise. The inclusion of an angle prediction branch net‑
work enabled the model to learn the directional fac‑
tors of icing area targets more effectively， enabling 
the rectangular boxes to adjust angles based on the 

Table 2　Comparison of experimental results of different 
modules

Module

CenterNet
CnterNet+Angle

CenterNet+
Angle+CBAM

Average precision/%

70.2
88.5

92.7

Frame rate/
(frame·s-1)

11.38

9.56

9.47
Fig.6　Comparison diagrams of detection results for vertical 

aircraft wings obtained by different algorithms
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target area’s direction. This resulted in rotated box‑
es， which provide a more accurate representation of 
the target than horizontal rectangular boxes. How‑
ever， due to the characteristics of icing targets， 
there is little difference between the target edge and 
background information， leading to some deviation 
in the boundary calibration of the detection boxes.

This paper further incorporates the CBAM 
module into the model based on the addition of an 
angle prediction branch network， which facilitates 
the model to learn the features of icing area targets 
more effectively， leading to improved boundary cali‑
bration of the detection boxes for icing area targets.

4 Conclusions 

We propose a method for detecting rotated ob‑
jects that addresses the challenging task of detecting 
wing icing targets by utilizing the CenterNet net‑
work model. We incorporate an angle prediction 
branch into the CenterNet network model， which 
improves its ability to detect objects at various an‑
gles and enables successful detection of wing icing 
targets. Furthermore， we integrate the CBAM mod‑
ule into the feature fusion stage， which enhances the 
network’s ability to focus on the channel and spatial 
dimensions of icing regions and improves its expres‑
sion capability in key areas. Experimental results on 
a wing icing wind tunnel dataset demonstrate that 
our proposed RA-CenterNet algorithm has a signifi‑
cant competitive advantage over mainstream rota‑
tion-based object detection algorithms， with signifi‑
cantly better detection performance than the original 
CenterNet algorithm. This validates the effective‑
ness of our proposed improvements. Future work 
will focus on further improving the detection speed 

of the RA-CenterNet algorithm while maintaining 
high accuracy， thus making it applicable to a wider 
range of detection scenarios.
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一种改进的 CenterNet机翼结冰检测方法

王一帆 1， 魏家田 1， 左承林 2， 周文俊 1， 熊 浩 2， 赵 荣 2，
 彭 博 1， 王 杨 1

（1.西南石油大学计算机科学学院，成都 610500，中国； 
2.中国空气动力研究与发展中心结冰与防除冰重点实验室，绵阳 621000，中国）

摘要：在高空飞行环境下，机翼表面的积冰可能会改变其空气动力学特性并进一步降低升力，因此机翼结冰的检

测显得尤为关键。为克服现有积冰检测技术通常依赖于操作人员的经验判断或需要昂贵的工程实施及硬件开

发成本的局限，本文提出了一种基于 CenterNet 模型的旋转目标检测方法 RA‑CenterNet。针对风洞实验数据集

中呈现的特定积冰区域方向问题，设计了一种新颖的角度预测分支网络，有效实现了对旋转目标的精确校准。

此外，为了提升神经网络在识别冰形边界时的特征提取能力，研究中还融合了卷积注意力模块（Convolutional 
block attention module， CBAM）。通过与其他旋转目标检测方法以及基准网络进行的一系列对比实验验证了

RA‑CenterNet 方法的性能。实验结果表明，RA‑CenterNet 算法在主流的旋转目标检测算法中显示出明显的竞

争优势，证明了其在积冰检测领域的应用潜力。

关键词：机翼结冰；深度学习；旋转目标检测；无锚点；注意力机制
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