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Abstract: The distribution of ice cloud parameters is of great significance to the analysis of aircraft icing. In order to 
obtain these parameters， traditional high-fidelity numerical simulation techniques have low computational efficiency 
and are difficult to apply in engineering scenarios that require real-time evaluation of icing. To overcome this 
difficulty， a non-intrusive surrogate model is proposed by proper orthogonal decomposion （POD） model coupled with 
the Kriging technology. The model takes four flight parameters and two cloud parameters as input variables. The 
model outputs are liquid water content（LWC） and droplet collection efficiency. A quasi-three-dimensional 
NACA0012 airfoil is adopted to verify the accuracy and computational efficiency of the model. The numerical results 
of the four test cases show that the POD_Kriging model is able to produce satisfactory results for the statistical 
quantities of interest. It is found that the developed surrogate model is computationally more efficient than the classical 
FENSAP-ICE for simulation of icing cloud field.
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0 Introduction 

Numerous flight practices have shown that 
when an aircraft passes through a cloud containing 
supercooled water droplets， ice accretion can occur 
on the windward side of the aircraft， including the 
nose， wings， engine inlets and other critical loca⁃
tions［1］. Aircraft icing is a significant hidden hazard 
that can lead to aviation accidents. If icing occurs on 
the leading edge of the wing， it can cause the 
streamlined shape to become non-streamlined， re⁃
sulting in vortex separation of the airflow， signifi⁃
cantly reducing lift and increasing drag［2］. Flight pa⁃
rameters of the aircraft and clouds parameters in the 
airflow are the key influencing factors in aircraft ic⁃
ing. Numerical simulation technology is one of the 
effective means to obtain the spatial distribution of 

icing cloud parameters， such as liquid water content
（LWC）， median volumetric diameter（MVD）［3-4］.

Using traditional high-fidelity numerical simula⁃
tion to calculate icing cloud parameters is often very 
time-consuming， which limits the practical applica⁃
tion of this method. Computational methods based 
on surrogate/reduced-order models have been wide⁃
ly applied in engineering practice due to their ability 
to effectively handle numerical solutions of high-pre⁃
cision complex systems［5-6］. Such models are ob⁃
tained by approximating multi-dimensional nonlin⁃
ear time-varying physical processes with low-dimen⁃
sional descriptions and expressing the characteristics 
of the original physical problems with fewer degrees 
of freedom， thereby achieving the goal of simplify⁃
ing the model and improving computational efficien⁃
cy. Proper orthogonal decomposition （POD） is a 
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representative class of model reduction method in 
Refs.［7-8］.

POD reduced-order models can be classified in⁃
to two types： intrusive and non-intrusive model re⁃
duction. Intrusive model reduction involves express⁃
ing the key physical fields in terms of a series of opti⁃
mal orthogonal bases and corresponding coeffi⁃
cients. The original governing equations are then 
projected onto the low-dimensional space to estab⁃
lish the reduced-order model（ROM）［9-10］. A lot of 
mathematical derivation and equation discretization 
are requires in this modeling strategy， so it is diffi⁃
cult to implement.

Non-intrusive model reduction does not rely on 
the original governing equations， but instead estab⁃
lishes a surrogate model between the input and out⁃
put of the dynamical system［11-12］. By utilizing the 
surrogate model， the POD orthogonal basis coeffi⁃
cients corresponding to different parameters can be 
rapidly computed. The computation of common or⁃
thogonal basis coefficients can be mainly divided in⁃
to two categories. One is the interpolation method， 
which approximates the evolution of the orthogonal 
basis coefficients by constructing a spatiotemporal 
hypersurface interpolation function. Common meth⁃
ods include radial basis function（RBF）［13］， Krig⁃
ing［14］ ， multivariate interpolation［15］ and Gaussian 
process［16］. The other is the neural network mod⁃
el［17-18］. By utilizing the powerful nonlinear mapping 
ability and highly self-learning ability of neural net⁃
works， the mapping relationship between input pa⁃
rameters and orthogonal basis coefficients can be es⁃
tablished. Since non-intrusive model reduction relies 
only on sample data and does not consider the actual 
physical process， its computational accuracy and 
generalization ability are lower than that of intrusive 
model reduction. With the rapid development of arti⁃
ficial intelligence and big data technology， in order 
to improve the practicality of non-intrusive surrogate 
models under neural network frameworks， different 
degrees of physical knowledge constraints have been 
introduced in the network training process［19-20］.

At present， non-intrusive order reduction meth⁃
od has been applied to aircraft icing prediction［6-7，18］. 
By constructing the mapping relationship between 

flight parameters， cloud parameters and ice shape 
coordinate points， quasi-steady ice shape prediction 
under different input parameters can be realized. 
This method ignores the whole physical process of 
icing， and its accuracy needs to be further improved. 
Another alternative method is to quickly calculate 
the cloud parameters （such as droplet collection co⁃
efficient） required for ice accretion by surrogate 
model， while the growth of ice shape still adopts 
high-fidelity numerical simulation method. There⁃
fore， this paper proposes to use POD and Kriging 
surrogate method to establish a fast prediction mod⁃
el for icing cloud parameters， which can improve 
the calculation efficiency of traditional icing numeri⁃
cal simulation methods while ensuring the accuracy 
of icing calculation.

The paper is organized in three parts： the com⁃
putaional methods are proposed in the first section， 
including sampling method， theoretical knowledge 
of POD and Kriging model and solution process. 
Section 2 is the central part of the paper， where the 
detailed assessment and discussion of the proposed 
POD_Kriging model are presented by using the NA ⁃
CA0012 airfoil. Compared with the commercial soft⁃
ware FENSAP-ICE， the calculation efficiency and 
accuracy of the proposed surrogate model are veri⁃
fied. The concluding remarks and future work are 
given in the final part.

1 Computational Methods

1. 1 Sample calculation based on FENSAP‑ICE 
and NNW‑ICE

The calculation and prediction accuracy of the 
surrogate model is highly dependent on the selected 
sample data. In order to calculate the flow fields and 
the water droplet impingement around the airfoil， 
the FENSAP and DROP3D modules from the com ⁃
ercial software FENSAP-ICE were first used. For 
the air flow simulation， the Spalart-Allmaras model 
was employed for the Reynolds average Navier-

Stokes （RANS） turbulence equations.The Eulerian 
two-fluid model is used for the water droplet imping⁃
ment calculations， which consists of Euler and drop⁃
let-related continuity and momentum equations［3］

2



No. S1 LI Tingyu, et al. Fast Calculation of Icing Cloud Parameters Based on POD_Kriging Surrogate Model

∂α
∂t

+ ∇ ⋅( αud )= 0 (1)

∂ud

∂t
+ ud ∇ ⋅ ud = CD Red

24K
( u a - ud )+

(1 - ρ a

ρw ) 1
Fr 2 g (2)

where α is the non-dimensional water volume frac⁃
tion； ud the droplet velocity； ua the air velocity； t 
the time； ρ a the air density； ρw the water density； 
Red the dimensionless water droplet Reynolds num ⁃
ber， and ρ the density. The first and second right-
hand-side term of Eq.（2） is the air drag force on the 
droplets and the buoyancy and gracity forces. The 
inertial parameter K and the Fround number are de⁃
fined as

K = ρw d 2
w u a,∞ / ( 18Lμ a ) (3)

Fr = u a,∞ / Lg (4)
where dw is the droplet diameter； u a，∞the far-field 
velocity； L the characteristice length； μ a the dynam⁃
ic viscosity of air； and g the acceleration of gravity.

In Eq.（2）， CD is the drag coefficient for the 
spherical droplets

CD =
ì
í

î

ïïïï

ïïïï

24 ( 1 + 0.15Re0.687
D )

ReD
              ReD ≤ 1 300

0.4                                                                                            Otherwise
(5)

where ReD = ρw dw u a，∞| ud - u a |/μ a.
Based on the resolved α and ud through the 

whole solution domain， the local collection efficien⁃
cy β can then be obtained on the surface， shown as

β = -αud ⋅ n (6)
where n is the normal vector on solid surface.

According to the spatial distribution of the 
LWC and the collection efficiency β obtained by the 
FENSAP-ICE， the NNW-ICE software developed 
by the China Aerodynamics Research and Develop⁃
ment Center（CARDC） was employed to extract the 
distribution of LWC and β on the surface as the sam ⁃
ple data.

1. 2 POD method　

POD is a data processing method with high 
computational speed and accuracy. It can provide a 
set of optimal orthogonal basis in the sense of least 
squares to linearly approximate the physical field for 
the specific physical problem. The physical field 

（such as LWC， β） obtained by the above numerical 
simulation can be expressed as follows

f ( x )= ∑
k = 1

M

ak ϕk ( x ) （7）

where αk is the kth spectral coefficient； ϕk ( x ) the 
kth basis functions or POD modes， which is only 
space-dependent； f ( x ) the original physical field， 
i. e. sample data； and M the number of basis func⁃
tions.

The POD “Snapshot” method proposed by 
Sirovich［8］ was used to obtain the basis functions. 
According to the selected sample data， the correla⁃
tion matrix R is defined as

R = C T
s C s （8）

where C s =[ f1 ( x ) f2 ( x ) ⋯ fN ( x ) ] is the 
sample matrix.

The eigenvalue λ and eigenvector V can be ob⁃
tained by eigenvalue decomposition of correlation 
matrix R， shown as

RV =

é
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The POD modes can be calculated by using the 
eigenvector V and the sample matrix C s， shown as

Ψ = C sV  C sV （10）
where Ψ =[ ϕ 1 ϕ 2 ⋯ ϕN ]， and  ⋅  represents 
the L2

 norm.
As shown in Eq.（11）， the spectral coefficients 

can be given by multiplying the POD modes onto 
the original sample.

αk = ( f ( x ),ϕk ( x ) ) （11）
The selected POD mode is generally judged by 

the eigenvalue λi， which can be seen as an indicator 
of the energy contained in this mode. The energy 
contribution of the ith basis function is defined as

ξi = λi ∑
j = 1

N

λj （12）

The cumulative energy contribution of the first 
M POD modes is

ηk = ∑
k = 1

M

λk ∑
j = 1

N

λj （13）

The different ξi in Eq.（12） can be used to sort 
the corresponding POD modes， and ηk in Eq.（13） 
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helps us to determine the number of POD modes for 
data prediction of the surrogate model. Actually， 
whether the number of POD modes selected is too 
larger or too small will affect the calculation accura⁃
cy of the surrogate model. Too few POD modes 
will cause the loss of characteristic scale and key in⁃
formation of physical problems， while too many 
POD modes will introduce data errors. The trunca⁃
tion criterion of the POD modes generally satisfies 
ηk ≥99%.

1. 3 Kriging method　

Kriging interpolation algorithm is also called lo⁃
cal estimation interpolation or spatial local interpola⁃
tion. Suppose that the attribute value of a certain re⁃
search variable { Z ( x ) } at a space point xi ∈ Ω is 
Z ( xi )， then the Kriging estimate of the attribute val⁃
ue Z ( x 0 ) of the point x0 ∈ Ω is linear weighted sum 
of the known sampling points in the finite space re⁃
gion［21］， shown as

Ẑ ( x 0 )=∑
i

M

wi Z ( xi ) （14）

As can be seen from the above formula， the 
key of Kriging interpolation algorithm is to find the 
weight coefficient w i. According to the ordinary 
Kriging interpolation principle， the weight w i must 
satisfy the unbiased estimation condition to mini⁃
mize the estimation variance
ì
í

î

ïïïï

ïïïï

E [ ]Ẑ ( x 0 )- Z ( x 0 ) = 0    Unbiasedness

Var [ ]Ẑ ( x 0 )- Z ( x 0 ) → min    Minimum⁃variance

（15）
The above equation is an extremum problem 

under certain conditions， which can be solved by the 
standard Lagrangian multiplier method
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∑
j = 1

M

w j C ( )xi,xj - μ = C ( )xi,x0

∑
i = 1

M

w i = 1
（16）

where C ( xi，xj)= Cov ( xi，xj ) is the covariance 
function， and μ the Lagrange multiplier. The rela⁃
tionship between the covariance function and the 
semi-variance function γ ( h ) is as follows

γ ( h )= C ( 0 ) - C ( h ) （17）
where C ( 0 ) is the variance of the regionalized vari⁃

able Z ( x )， and h the relative distance.
According to Eq.（17）， Eq.（16） can also be ex⁃

pressed as a function of γ ( h )
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∑
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M

w i = 1
（18）

The above equation can be written in matrix 
form as
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where w is the weight coefficient； D =
[ 1 1 ⋯ 1 ]T； C =
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The distribution of weight coefficient w i can be 
obtained by solving the above matrix equation， and 
then the point to be interpolated can be obtained by 
substituting it into Eq.（19）.The test variation func⁃
tion is the function of the relative distance between 
space points xi and xj， which can be calculated by 
the Euclidean distance， that is

γ ( xi,xj)= γP (| xi - xj | )= γP ( h s ) （20）

where γp is the theoretical variation function； || ⋅  the 
Euclidean distance；and h s the space distance.

In fact， the theoretical variation function can be 
fitted by the experimental variation function and the 
spatial point pairs （Table 1）， where C0 is the nugget 
value， B， a and b are the constants， and C is the 
partial still. For the linear model， if B=0， it means 
a pure nugget effect. Commonly used theoretical 
models can be divided into linear model， spherical 
model， exponential model， Gaussian model.

1. 4 Surrogate model of POD_Kriging　

The overall construction process of surrogate 
model of POD_Kriging is shown in Fig.1. The input 
of the model is a series of cloud and flight parame⁃
ters （Outside air temperature （OTA）， altitude
（ALT）， air speed， angle of attack （AoA）， median 
volumetric diameter （MVD） of droplets and 
LWC）， and the output is approximate cloud field
（LWC and β） .The main modeling processes are：
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（1） According to the input flight and cloud pa⁃
rameters， the sample set is first resolved by the 
FENSAP-ICE and NNW-ICE.

（2） Calculate the POD basis functions ϕk ( x ) 
via POD “snapshot” method based on the selected 
sample set.

（3） The primary spectral coefficient ak corre⁃
sponding to the basis function ϕk ( x ) is obtained 
through Eq.（11）.

（4） By changing the input conditions， the new 
spectral coefficients al can be interpolated by the 
Kriging method.

（5） According the interpolated spectral coeffi⁃
cients al and the corresponding to POD modes， the 
approximate or predicted physical field is recon⁃

structed by Eq.（7）.

2 Assessment and Discussion of the 
POD_Kriging Surrogate Method

To evaluate the accuracy of reconstruction and 
prediction for the proposed POD_Kriging surrogate 
model， a quasi-three-dimensional NACA0012 air⁃
foil model is adopted. The computational mesh， as 
displayed in Fig. 2， consists of 242 788 hexahedral 
cells and 487 600 nodes. The airfoil surface contains 
406 quadrilateral wall faces and 814 nodes.

To enrich the sampling space， six design vari⁃
ables have been selected： OTA， ALT， air speed， 

Fig.2　Computational mesh of NACA0012

Table 1　Theoretical model of spatial variograms

Theoretical model

Linear model

Spherical model

Exponential model

Gaussian model

Function expression
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0 hs = 0
C 0 + C [ ]1 - exp (-hs a ) hs ≠ 0

γ ( hs )=
ì
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0 hs = 0
C 0 + C [ ]1 - exp (-9h2

s a2 ) hs ≠ 0

Fig.1　Surrogate model of POD_Kriging
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AoA， MVD and LWC. The range of parameter 
changes is shown in Table 2. The total number of 
samples is 486. Base on this case， we will use the 
following three physical fields to verify the predic⁃

tion accuracy of the POD_Kriging method. The first 
is the LWC distribution in the whole computational 
domain， and the rest is the LWC and β distribution 
on the airfoil surface.

In order to quantitatively verify the accuracy of 
the surrogate model， the following two error criteria 
are defined.

The root mean squared error （RSME） is

RSME = 1
N s

∑
i = 1

N s

|| f ̂ ( xi )- f ( xi )
2

（21）

The mean absolute error （MAE） is

MAE = 1
N s

∑
i = 1

N s

|| f ̂ ( xi )- f ( xi ) （22）

where Ns is the total number of sample； f ̂ ( xi ) and 
f ( xi ) represent the results of the POD_Kriging and 
FENSAP-ICE， respectively. ASME is sensitive to 

too large or too small errors， reflecting the precision 
of model prediction. MAE reflects the magnitude of 
prediction error of surrogate model.

As shown in Table 3， five test cases with their 
corresponding parameter values are selected to eval⁃
uate the performance of the surrogate model. Case 1 
is used to test the influence of the spatial variograms 
on the calculation results of the surrogate model. 
Case 2 and Case 3 are used to test the reconstruc⁃
tion accuracy of the POD_Kriging model. Case 4 
and Case 5 are used to verify the prediction accuracy 
of the surrogate model.

2. 1 LWC predicion　

Since the spatial variograms is critical to the 
prediction accuracy of the POD_Kriging surrogate 
model， we first verified the impact of the three kind 
of popular theoretical model in Table 3 on the calcu⁃
lation results. As we can see from Fig.3， the LWC 
and β on the surface calculated by using the three 
theoretical model are basically consistent. There⁃
fore， the spherical model is selected as the spatial 
variogram in the test.

For the LWC prediction of the whole computa⁃
tional domain， the energy contribution and cumula⁃
tive energy contribution of POD mode are displayed 
in Fig.4. The energy proportion of the first POD 
mode is 96.32%， which is higher than the remain⁃

ing modes. The cumulative energy contribution of 
the first six POD modes is 99.79%. The total ener⁃
gy contribution of the first twenty POD modes is 
99.99%. Base on Case 2， the MAE and RMSE 
convergence with increasing number of POD mode 
are presented in Fig.5. It can be seen that when the 
number of POD modes is greater than 10， the two 
groups of errors calculated by the POD_Kriging sur⁃
rogate model tend to be stable. Therefore， accord⁃
ing to the basis function truncation criterion， the 
first twenty modes are employed for reconstruction 
of full field LWC.

Fig.6 shows the comparisons of reconstructed 
LWC between FENSAP-ICE and POD_Kriging 
surrogate model. It can be seen from Figs. 6（a， b）， 

Table 2　Six expreimental parameters with their corresponding ranges

Parameter
Minmum
Maximum

OAT/℃
-5

-20

Altitude/m
2 000
4 000

Air speed/(m·s-1)
90

130

AOA/(°)
0
4

MVD/μm
20
60

LWC/(g·m-3)
0.5
1.5

Table 3　Five test cases with their corresponding parameter values

Case
1
2
3
4
5

OAT/℃
-20
-10
-5
-7

-15

Altitude/m
2 000
2 000
4 000
2 500
3 000

Air speed/(m·s-1)
110
130
90

120
125

AOA/(°)
0
2
4

3.5
2.5

MVD/μm
20
40
60
50
45

LWC/(g·m-3)
0.5
1.0
1.5
0.8
1.2
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the LWC spatial distribution of the two sets of re⁃
sults in the four cases is basically the same. It can be 
clearly seen from Fig.6（c） that the calculation differ⁃

ence between the two groups of results. In Fig.6（c）， 
the black solid line represents the result of FENSAP-

ICE； the red dashed line represents the result of 
POD_Kriging. The MAE and RMSE of reconstruc⁃
tion and prediction results are shown in Table 4. The 
maximum values of MAE and RMSE for surrogate 
model are the 0.046% and 0.069%， respectively.

Fig.6　Comparisons of reconstructed LWC between 
FENSAP-ICE and POD_Kriging

Fig.5　Mean absolute error and root mean squared error con⁃
vergence with increasing number of POD mode

Fig.4　Energy contribution and cumulative energy contribu⁃
tion with increasing number of POD mode

Fig.3　Sensitivity of different spatial variograms to the 
reconstruction effect of POD_Kriging model
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For the LWC prediction on the surface， it can 
be seen from Fig.4（b） that the energy contribution 
of the first POD mode is 78.60%. The first three 
POD modes have a total energy of over 90%. The 
cumulative energy contribution of the first 17 modes 
is close to 100%. Fig.5（b） shows the convergence 
process of MAE and RSME with the number of 
POD modes. When the number of POD modes is 
greater than 20， MAE and RSME tend to be consis⁃
tent. Thus， we still select the first 20 POD modes 
for surface LWC prediction. As can be seen from 
Fig. 7， the accuracy of surrogate model reconstruc⁃
tion is higher than that of prediction. The construc⁃
tion and prediction errors for surface LWC are 
shown in Table 5. In the four cases， the maximum 
value of model prediction error is MAE=4.46 ✕
10-3% and RSME 1.03✕10-2%.

2. 2 Droplet collection efficiency predicion

The proposed POD_Kriging surrogate model 
is used to predict the collection efficiency （β） in this 
Section. Fig.8 shows the variation of the energy cap⁃
tured by the basis functions against the number of 
POD modes. The first POD mode contains 95.12% 
of the total energy. Most energy over 99% is cap⁃
tured within the first ten modes. When the cumula⁃
tive energy contribution approaches 100%， 15 POD 
modes are required. Under the condtion of Case 2， 
Fig. 8 displays the variation of the reconstructed er⁃
ror varying with the number of POD modes. When 
the number of POD modes is less than four， the er⁃
ror will oscillate and then decrease rapidly with the 
increase of the number of POD modes. In order to 

Table 4　Construction and prediction error for full field 
LWC

Case
MAE/%

RSME/%

2
1.32✕10-4

4.13✕10-4

3
2.67✕10-4

7.95✕10-4

4
0.046
0.069

5
0.015
0.021

Fig.7　Comparisons of reconstructed LWC at the surface be⁃
tween FENSAP-ICE and POD_Kriging

Table 5　Construction and prediction error for surface 
LWC

Case
MAE/%

RSME/%

2
6.51✕10-5

1.73✕10-4

3
1.53✕10-4

3.24✕10-4

4
4.46✕10-3

1.03✕10-2

5
3.89✕10-3

1.10✕10-2
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balance accuracy and computaional efficiency， 15 
POD modes are selected for collection coefficiency 
prediction.

Fig. 9 shows the comparisons of reconstructed 
and predicted collection efficiency at the surface be⁃
tween FENSAP-ICE and POD_Kriging. The re⁃
sults suggest that there is almost no difference be⁃
tween the original and reconstructed solutions us⁃
ing only 15 of the available POD modes. It indi⁃
cates that the 15 POD modes is sufficient to obtain 
the droplet impingement limit and slope of the col⁃
lection efficiency. The errors of construction and 
prediction results are shown in Table 6. For 
MAE， the maximum reconstruction and prediction 
errors are 3.90 ✕ 10-3% and 0.25%， respectively. 
For RSME， the maximum reconstruction and pre⁃
diction errors are 1.15 ✕ 10-2% and 0.82%， re⁃
spectively. Both errors can meet the actual needs， 
reflecting the good adaptability of the surrogate 
model.

2. 3 Computational efficiency discussion

A good surrogate model not noly needs high 
calculation accuracy， but also needs fast calculation 
speed. For the FENSAP-ICE， the computational 
cost mainly contains two parts： Outflow field solu⁃
tion and droplet impingement solution. A worksta⁃
tion with an Intel Xeon Gold 6248R CPU， 
3.0 GHz， processor with a 35.75 MB L3 cache is 
used to solve the system of equations. The CPU 
time taken by all-time steps is 1 487.8 s. In the 
POD_Kriging approach， the computational cost 
mainly include the calculation of POD modes and 
spectral coefficient interpolation. Once the snap⁃
shots data are complete， the calculation of the POD 
modes can be viewed as an off-line operation.

The comparison of computational speed for  
LWC and β between FENSAP-ICE and POD_
Kriging is shown in Table 7 and Table 8. It can be 
seen that， with the increase of the number of POD 
modes， the surrogate model will not increase much 
computation cost. Compared with the FENSAP-

ICE， the average speed-up ratio of the surrogate 
model for the calculation of surface LWC and β can 
reach 115 times. For full field LWC calculation， the 
surrogate model can still improve the calculation effi⁃
ciency by 39 times on average.

Fig.8　Energy contribution and cumulative energy contri⁃
bution with increasing number of POD modes

Fig.9　MAE and RMSE convergence with increasing 
number of POD modes

Table 6　Error of construction and prediction results of 
surface β

Case
MAE/%

RSME/%

2
3.61✕10-3

1.15✕10-2

3
3.90✕10-3

1.12✕10-2

4
0.25
0.64

5
0.24
0.82
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3 Conclusions 

The present work proposes a surrogate model 
for fast calculation of icing cloud parameters by us⁃
ing POD and Kriging methods. Precision and accel⁃
eration of the POD_Kriging model are discussed un⁃
der different flight and cloud parameter conditons. 
The primary conclusions and remarks are as fol⁃
lows：

（1） The speed-up ratio is very large with very 
high predicition precision for caculation of liquid wa⁃
ter content and droplet collection efficiency in differ⁃
ent types of input parameters. The mean absolute er⁃
ror and root mean squared error are within the accept⁃
able range （MAE=6.51 ✕ 10-5%—0.25%， 
RSME=1.73✕10-4%—0.82%）. Compared to 
FENSAP-ICE， the computational efficiency of 
POD_Kriging model can be improved at least 39 
times on average.

（2）The number of POD modes and spatial va⁃
rogram have little effect on the computational effi⁃
ciency of the POD_Kriging model. The energy pro⁃
portion of the first POD mode is often dominant， 
but can contain only limited information. The selec⁃
tion of POD modes should be measured according 
to the error convergence proecss and computational 
efficiency.

（3）Although the 2-D test example is used in 
this paper， the proposed POD_Kriging surrogate 
model has the potential to realize the fast calculation 
of three-dimensional icing cloud fields in complex re⁃
gions.

Fig.10　Comparisons of reconstructed collection effi⁃
ciency at the surface between FENSAP-ICE 
and POD_Kriging

Table 7　Comparison of computational speed for LWC 
and β at surface between FENSAP‑ICE and 
POD_Kriging

Case

2
3
4
5

Average

Time cost / s

FENSAP⁃ICE

1 484.2
1 488.7
1 492.5
1 485.6
1 487.8

POD_Kriging
ϕ 1

1

11.6
11.8
11.5
11.5
11.6

ϕ 15
1

12.7
12.8
12.6
12.5
12.0

ϕ 20
1

13.1
12.9
12.8
12.9
12.9

Speed⁃up 
ratio

114.3
115.3
116.4
115.6
115.4

Table 8　Comparison of computational speed for full 
field LWC between FENSAP‑ICE and 
POD_Kriging

Case

2
3
4
5

Average

Time cost / s

FENSAP⁃ICE

1 484.2
1 488.7
1 492.5
1 485.6
1 487.8

POD_Kriging
ϕ 1

1

22.9
22.3
22.8
23.5
22.9

ϕ 15
1

33.8
35.1
33.2
33.8
34.0

ϕ 20
1

38.3
37.3
37.2
38.4
37.8

Speed⁃up 
ratio

38.7
39.9
40.1
38.7
39.3
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基于 POD_Kriging 代理模型的结冰云雾参数

快速计算方法研究

李庭宇 1，2， 任靖豪 1，2， 王 强 1，2， 易 贤 1，2

（1.中国空气动力研究与发展中心低速空气动力研究所，绵阳  621000，中国；

2.中国空气动力研究与发展中心结冰与防除冰重点实验室，绵阳  621000，中国）

摘要：掌握结冰云雾参数的分布对于飞机结冰分析具有重要意义。为了获得这些参数，传统的高保真数值模拟

技术计算效率低，难以应用于需要实时评估结冰的工程场景。为了克服这一困难，通过本征正交分解（Proper or⁃
thogonal decomposion， POD）方法与 Kriging 技术相结合，提出了一种非侵入式结冰云雾参数计算代理模型。该

模型以 4 个飞行参数和 2 个云参数作为输入变量，模型输出为液体水含量（Liquid water content，LWC）和液滴收

集系数。采用准三维 NACA0012 翼型验证了模型的准确性和计算效率。 4 个测试案例的数值结果表明 ：

POD_Kriging 模型准确、有效。相比于经典的 FENSAP⁃ICE 软件，所开发的代理模型能够更有效的得到结冰云

雾场。

关键词：结冰云雾参数；代理模型；本征正交分解；Kriging；快速计算
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