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Abstract: Ice detection plays a crucial role in operation of anti/de-icing systems. An ice detection method exploiting
infrared thermal wave detection technology was proposed, followed by the identification of the edge, thickness and
shape reconstruction of ice accretion using the related processing techniques. An active infrared ice detection
experimental platform was constructed by flash pulse infrared technology. With regular and step-shaped ice samples
prepared, the infrared thermal signals of the ice accretion were captured by an infrared thermal imager. A comparative
analysis of the edge detection effects was conducted between the traditional edge detection methods and a new edge
detection algorithm combining Gaussian-Laplacian pyramids and area filtering. Through the spatiotemporal correlation
of the ice thermal signal, an end-to-end infrared detection ice thickness prediction model (i.e., convolutional neural
network-long short term memory-efficient channel attention (CNN-LSTM-ECA) ) was constructed by introducing
the attention mechanism into the LSTM model, with the thickness of the ice predicted. Further, three-dimensional
reconstruction of ice accretion was performed by combining the edge detection and thickness prediction. It concluded
that both traditional and new edge detection algorithms based on Gaussian-Laplacian pyramids and area filtering can be
used to detect the outer edge of the ice, but the new algorithm shows a significant advantage in detecting the ice edge
with internal step boundaries. The CNN-LSTM-ECA thickness prediction model based on signal features performs
well in prediction accuracy, stability, and noise resistance. The data for reconstructing three-dimensional ice accretion
shape come from the collected digital signals and thermal images, which are not limited by temperature reading and
heat transfer conditions, and have a wider application prospect. This paper provides a reference for exploring an
effective accurate and quantitative identification method for ice accretion detection based on flash pulse infrared
thermography.
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reconstruction
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0 Introduction

Airplane icing refers to a circumstance where
ice accumulates on the surface of certain parts of the
airplane, which is one of the major safety risks
posed to the flight. Airplane icing threatens the safe-
ty, maneuverability, and stability of the aircraft,
which can lead to catastrophe in some circumstanc-

es'". Thus, it is essential to detect and prevent air-
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plane icing effectively. Accurately identifying the
geometric structure of ice accretion on the key sur-
faces of aircraft is one of the problems needing to be
solved for the development of anti-icing technology.
Icing detection is the premise of anti/de-icing
work. Usually, icing losses and hazards can be re-
duced by accurately detecting the severity of ice ac-
cretion on the protective surface, measuring the

range and thickness of ice accretion, as well as trans-
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mitting the relevant information to the controller or
alerting the workers to the need for countermea-
sures. Due to the insufficient demand for ice shape
data measurement, the methods of ice shape mea-
surement, such as manual tracking'” and casting™,
were widely used. However, the growing demand
for accurate ice shape data has led to the emergence
of more advanced techniques, e.g. non-contact ice
shape measurement. Struck et al."’ made use of mul-
tiple static cameras, high-speed cameras, and high-
definition cameras to capture the image of ice on air-
plane wings from multiple angles. Then, the images
were processed to extract the contour of ice accre-
tion, with the thickness and growth rate of the ice
measured. Through the non-contact measurement of
the ice shape by optical camera, Ikidaes et al. "
solved the problem that the ice shape was damaged
during the measurement performed to obtain one-di-
mensional or two-dimensional ice shape data. How~
ever, the accuracy of measurement affected by the in-
terference from clouds and fog. Gong et al.'" per-
formed laser sheet scanning to measure the time evo-
lution of three-dimensional rime ice shape. In the ic-
ing wind tunnel, the growth of ice was effectively
measured. Wang et al."”’ arranged conventional ice
detectors at different sensitive icing locations accord-
ing to the collection range of water droplets to detect
the whole ice environment.

Given the advantages and disadvantages of vari-
ous ice detection methods, along with the difficulty
in quantifying the geometrical shape of ice with
most icing sensors, it is difficult to collect more in-
formation than the thickness of ice and three-dimen-
sional or even two-dimensional information. There-
fore, there is an urgent need to develop an ice detec-
tion method that can be used to obtain the accurate
information about ice shape. However, icing during
flight is a dynamic and complex process, and
ground maintenance personnel often observe the
static ice accretion and carry out anti/de-icing opera-
tions with the detection results. Especially, mainte-
nance personnel also conduct visual inspection,
manually touching the certain surface of the aircraft
to check for ice accumulation. Thus, a feasibility

study on static ice accretion detection was discussed

using non-contact flash pulse infrared thermal detec-
tion technology according to experimental condi-
tions, focusing on three aspects: Ice edge detection
for icing range, ice thickness prediction, and ice
shape reconstruction. Infrared detection technology
is characterized by extensive applicability, no con-
tact, fast detection, high accuracy, the minimal im-
pact from cloud/fog/lighting, the ease of qualitative
and quantitative analyses, and intuitive visualiza-
tion. Therefore, it has been widely used in aero-
space, automobile, military, new material re-
search, the petrochemical industry, the nuclear in-
dustry, and the power industry'®. Riehm et al."”
proposed the use of an infrared thermometer to de-
tect road icing, allowing the monitoring of tempera-
ture changes caused by the exothermic reaction of

1.1 used infrared thermal

water freezing. Rashid et a
imaging technology to record the thermal response
of sea ice, and determined the correlation between
response time and ice layer thickness through calcu-
lation. Grzych et al.""" used infrared satellites to cap-
ture the radiation of ice accretion, but at high cost.

Gao et al.'*?

adopted an infrared multispectral detec-
tion system to detect the residual ice on airplane
wings during ground experiments.

Edge identification of ice accretion, 1. e., ice
range detection, plays an essential role in the detec-
tion of ice accretion, which is a prerequisite for trig-
gering the anti/de-icing systems. The recognition of
ice thickness is required to guide the energy output of
the systems as well. Therefore, an infrared thermog-
raphy system is used in this paper to explore how the
edge and thickness of ice accretion can be identified
and determined using different image processing
methods. Further, by combining the edge detection
and thickness of ice accretion, a three-dimensional
ice shape can also be reconstructed to provide more

accurate guidance for anti/de-icing operations.

1 Experiments and Materials

The rationale of the pulsed infrared thermogra-
phy ice detection is to heat the ice adhered layer
with a flashing lamp as the source of thermal excita-
tion. As the ice surface emits thermal waves, it infil-

trates the ice. During ice detection, a thermal cam-
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era is used to record the changes in the thermal sig-
nal caused by the infiltration of the thermal waves in-
to the ice. Then, the thermal imaging results are ob-
tained to identify the morphology of ice accretion.
Based on the above rationale of ice infrared
thermography detection, an infrared thermography
testing platform was constructed in this paper. As
shown in Fig.1(a) , the infrared camera is an InSh
infrared camera, consisting of an internal circulation
Stirling cooler and a CdHg-Te (MCT) focal plane
detector. This camera has a resolution of 640 pixel X
512 pixel, and a spectral range of 2.0—5.7 pm. Al-
so, the 2X2 matrix of xenon flash lamps with a to-
tal power supply of 12 kJ is used for active thermal
wave excitation, as illustrated in Fig.1(b). In this
paper, we consider the examples of regular ice ac-
cretion because they are easier to be applied in prac-
tice. Multiple ice samples are prepared inside a re-
frigerated freezer in Fig.1(c) , including the regular
rectangular ice blocks and step-type ice blocks in-
tended for edge and thickness identification, as
shown in Fig.2. Immediately after the ice samples
were prepared, they were placed under the infrared
camera, with the energy output of the xenon lamps
adjusted to record the changes in surface tempera-

ture of the ice under active excitation.

(a) Infrared camera (b) Pulsed xenon
flash lamp

(c) Refrigerated freezer

Fig.1 Infrared equipment for ice detection

(a) Rectangular (b) Rectangular step-type (c) Cylindrical step-type
ice block ice block ice block

Fig.2 Physical samples of ice
2 Edge Detection of Ice Accretion

2.1 Edge detection method

2.1.1 Traditional methods

Edge detection of ice accretion reflecting the ic-

ing range is considered a prerequisite for the detec-
tion of ice accretion. However, the results of infra-
red thermal wave detection are easily affected by the
environmental conditions, thus leading to various
problems such as the fusion of infrared images with
the background and uneven illumination. This poses
a challenge for detecting ice accretion through infra-
red thermal wave detection technology. Therefore,
the first step in accurate ice detection is to use suit-
able algorithms to identify the boundary lines of ice
through infrared thermal wave detection technology.
Some research have dealt with ice detection image
processing through traditional edge detection opera-
tors, fusion-improved edge detection operators, and
a combination of threshold segmentation and mor-
phology. In Ref.[13], the algorithm based on wave-
let transform, floating threshold, digital image mor-
phology, and optimal threshold fusion is used to
identify the ice boundary line. In Ref. [14] , the
adaptive segmentation threshold method is used to
determine the shape of ice accretion.

The purpose of edge detection is to find a set of
pixels with a numerically abrupt change in the pixel
values from the image, which are usually represent-
ed by edges in the image. At the same time, edge
detection is performed to effectively suppress the
non-main information in the image and preserve the
important structural properties of the image. Given
some differences in the ideas of different edge detec-
tion operators and variations in the structural proper-
ties of image features, it is currently difficult to ob-
tain the same edge by using the same edge detection
operator for the images with different structural
properties'”.

Among them, the traditional edge detection op-
erators are built through first-order or second-order
differential processing on the image, such as the
Roberts operator, Sobel operator, and Prewitt oper-
ator, which are common first-order differential oper-
ators, as well as the Laplacian operator and Canny
operator, which are common second-order differen-

tial operators'®’

. The Roberts operator calculates
the edges through local differences, the convolution
template of a 2X 2 matrix both horizontally and ver-

tically. However, the Roberts operator is highly sen-
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sitive to noise and ineffective in suppressing noise.
As an optimization of the Roberts operator, the Pre-
witt operator identifies the edges by performing the
first-order differentiation of adjacent pixels in the im-
age. That is to say, the gray values in the horizontal
and vertical directions are not normalized for the
mean difference. Therefore, the Prewitt operator is
suitable for image smoothing, but the edge recogni-
tion is not accurate enough. The Sobel operator
achieves an improvement on the Prewitt operator,
with a 3X 3 matrix as its convolution template. The
gray values of adjacent pixels in the horizontal and
vertical directions are weighted and averaged, while
the gray difference approximation value of the image
is obtained through the convolution template. When
the gray difference approximation value exceeds a
certain threshold, it is judged as an edge. There-
fore, the Sobel operator produces a smoothing ef-
fect on the image noise and can be used to determine
the direction of the edge accurately. Differently, the
Laplacian operator and Canny operator are classed
into second-order differential operators. Among
them, the Laplacian operator is a second-order dif-
ferential operator in n-dimensional Euclidean space,
defined as the divergence of the gradient. It is more
accurate in locating the edge and sharpening the im-
age. The Canny operator, as a more common edge
detection operator, can be used to extract edges ac-
curately while suppressing noise effectively. In addi-
tion, the phase coherence method is applicable to
detect the edge in infrared images, and the edge can
be identified by classifying the points with a high de-
gree of phase coherence through K-means.
2.1.2
When there is a lack of uniformity in the thick-

Improved method

ness of an ice accretion sample, the boundary in the
infrared image of the sample is unclear and is more
likely to be affected by the environment where detec-
tion is carried out. Therefore, traditional edge detec-
tion methods are not applicable to find the ideal sur-
face boundary. Additionally, traditional infrared im-
age threshold segmentation and edge detection tech-
niques can be relied on only solving a specific type
of problem for the processing of ice accretion sample

infrared image'""’.

Aiming to address this situation, the traditional
edge detection operator is improved in this paper to
identify the surface boundary of ice accretion more
accurately. To achieve the desired effect, the Gauss-
ian-Laplacian pyramid operator is combined with ar-
ea filtering to solve the problem that the internal
boundaries are inaccurately detected due to the indis-
tinct grayscale differences between step and non-
step regions in the infrared image. On this basis, the
ice surface boundary can be identified™®. The
Gaussian-Laplacian pyramid is comprised of a
Gaussian filter function and a Laplacian operator''’.
The Gaussian pyramid is intended to decompose the
image by gradually sampling it downwards, with
the Gaussian filtering of the original image per-
formed before sampling. The Gaussian filter formu-
la and Gaussian pyramid formula are shown as fol-

lows
1 iy

—e 2r” (1)
216*

F(n+1)=F(n)X g(x,y)x S(scale 1,scale 2) (2)

where F(n) represents the nth decomposition of the

glx,y)=

image and S(scale 1, scale 2) the sampling rate of
the image on the row and the column. In this case,
the sampling rate for both rows and columns is 2.
Thus, the size of each image after sampling is re-
duced to 1/4 that of the original image, and the res-
olution is reduced to 1/2 that of the original im-
age'™’.

The purpose of the Laplacian pyramid is to pre-
serve the residual difference between adjacent levels
during the downward sampling by the Gaussian pyr-
amid, i.e., the high-frequency details of the image.
The Laplacian pyramid formula is shown as follows

Ln)=F(n)—F(n+1)X glx,y)X

S(scale 1,scale 2) (3)
The detailed process is shown in Fig.3. Firstly, the
Gaussian-Laplacian pyramid operator is used to
highlight the high-frequency structure of the image,
which enhances the feature information of the im-
age. Secondly, the small noise is filtered out by area
filtering to preserve the edge information of the im-
age. The noise in the image and the image edges to
be extracted can be treated as the connected regions

with different area values in the binary image. On
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this basis, the connected domain area of the Gauss-
ian-Laplacian filtered image is calculated, and the
connected domain with a relatively small area is in-
verted. Thirdly, the transformation of image mor-
phology is performed to fuse the filtered image with
the source image, thus deepening the structural in-
formation of the external and step-type internal
boundaries. Finally, the Canny operator is used to
perform edge detection on the grayscale image with
enhanced feature information for identifying the ice
accretion sample detection with step-type boundar-

1es.

(Start }—/Tnfrared thermal image sequence ‘

Gauss-Pierre-Simon Laplace
pyramid algorithm

¥ Calculate the connected

Image  |»|region & delete the smaller |>{. f d
thresholding connected region 1mage feature edge

End nternal boundary,

Fig.3 Flowchart of the edge detection algorithm

Principal component
extraction

Prominent source

2.2 Results and discussion of edge detection
By performing traditional edge detection and
using improved Gaussian-Laplacian pyramid and ar-

ea filtering algorithms (Figs.4,5), the boundary de-

(a) Roberts

(b) Prewitt (c) Sobel

(e) Canny (f) Phase congruency

(g) The improved algorithm

Fig.4 Results of traditional edge detection operators of

stepped ice specimens on rectangular bodies

J

(c) Sobel

(a) Roberts (b) Prewitt

(e) Canny

(g) The improved algorithm

Fig.5 Results of traditional edge detection operators of

stepped ice specimens on cylindrical bodies

tection results of infrared thermography of ice speci-
mens were comparatively analyzed to reveal the fol-
lowing issues.

Traditional edge detection operators mainly ex-
tract the image edges by detecting the abrupt chang-
es in the grayscale values of the image. Before the
edge area is calculated, the traditional edge detec-
tion algorithm is first used to perform denoising and
smoothing filtering on the image. Therefore, when
the flash infrared detection is used to identify the sur-
face boundary of regular and stepped ice samples,
there is a significant abrupt change in the grayscale
value of the external boundary of the regular ice
sample. At this time, traditional edge detection al-
gorithms can be used to detect the external bound-
ary. However, traditional edge detection algorithms
may fail to detect the internal stepped boundary of
ice samples due to the non-identifiable changes to
grayscale value in the infrared image of the stepped
ice sample. Additionally, although the phase consis-
tency algorithm is able to identify internal boundar-
les, it is not suitable to draw the high-phase-consis-

tency edge area accurately and clearly due to the in-
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significant phase consistency difference in the image.
The algorithm, which combines Gaussian-La-
placian pyramid and the area filtering proposed in
this paper, 1s first used to extract the primary image
components and structural information of the infra-
red ice detection sequence image. Then, the area fil-
tering algorithm is used to filter out the noise un-
needed for target detection, considering that the ar-
ea of the connected region of noise in the grayscale
image is smaller compared with the connected re-
gion of the internal and external edges of the image.
Therefore, the algorithm combining Gaussian-La-
placian pyramid and area filtering can be applied to
retain the image feature structure completely. Un-
like traditional edge detection algorithms and phase
congruency, it does not treat internal edges as
noise, thus avoiding the failure to identify stepped
internal edges.
The edge

Gaussian-Laplacian pyramid and area filtering gives

detection algorithm integrating
priority to image features for denoising to be per-
formed according to the overall image features.
Thus, it does not treat the detection results as
noise, which avoids the failure to recognize internal
boundaries. However, the noise level in the detec-
tion results is higher than that of traditional algo-
rithms. Therefore, the edge detection algorithm
combining Gaussian-Laplacian pyramid and area fil-
tering is advantageous in identifying irregular ice sur-
faces. Meanwhile, the drawback is that the noise in
the image is highlighted when the high-frequency
features of the image are preserved by the Gaussian-
Laplacian operator due to much noise remaining in
the infrared thermal sequence image. In addition,
the shapes of the original ice accretion in this paper
are regular. For other ice accretion shapes, edge de-
tection methods are still applicable. Indeed, the rele-
vant quantity for the ice shape detection method is
the intensity profile of the pixels. As long as the in-
tensity profile of the pixels describes the characteris-
tics of the ice accumulation area, the collection of
these pixels may be used to represent the ice accre-
tion, regardless of the shape of the ice accumula-
tion. In turn, the shape of ice accretion only affects

the arrangement of the target pixels.

3 Thickness Prediction of Ice Ac-

cretion

3.1 Thickness prediction methods
3.1.1

The thickness of ice accretion is an important

Ice thickness prediction model

indicator for the implementation of anti/de-icing sys-
tems. Although infrared thermography detection
shows its advantage in detecting flat surfaces due to
its temperature distribution characteristics, infrared
detection mainly relies on the thermal state of the
surface of testing objects and cannot visually deter-
mine the internal thermal state of the objects, there-
by increasing the difficulty of thickness measure-
ment. Thus, depth detection has become a research
hotspot among scholars ?’. In the experiment on de-
tecting ice thickness through infrared thermogra-
phy, the transient heat varies with the thickness of
the ice sample over time, and the signal of infrared
thermography detection can be decomposed into spa-
tial and temporal dimensions. When ice thickness is
detected through infrared thermography, it can be
viewed as a regression problem. The key to predict-
ing ice thickness is to solve this problem'*’,

The traditional regression methods used to pre-
dict ice thickness through infrared detection ignore

spatiotemporal correlation'**

, while a single con-
volutional neural network ignores the temporal fea-
tures of the infrared detection signal. The long short-
term memory (LSTM) model with fully connected
layers gives no consideration to spatial correlation.
To better simulate spatiotemporal relationships'*",
this paper proposes that the LSTM model can be ex-
tended to a convolutional model with convolutional
results for the establishment of an end-to-end infra-
red detection ice thickness prediction model (i.e.,
convolutional neural network-long short-term mem-
(CNN-LSTM-
ECA)) by introducing attention mechanism into the
LSTM model **". Through this model, the errors

in predicting ice thickness using infrared detection

ory-efficient channel attention

can be reduced for the improvement of accuracy.
Prediction of ice thickness through infrared de-

tection requires time series analysis, which is also
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affected by the physical spatial features. Traditional
regression prediction models are capable only of ex-
tracting features from the infrared signal values
when ice thickness is predicted, which leads to the
lack of a description of complex spatiotemporal rela-
tionships and makes it difficult to estimate the im-
pact of spatial and temporal information on the pre-
diction results simultaneously. To address this is-
sue, an end-to-end infrared detection ice thickness
prediction model is proposed in this paper that com-
bines LSTM with CNN and introduces the ECA at-
tention mechanism.

The structure of the CNN-LSTM-ECA model
is illustrated in Fig.6, where bs represents the batch
size. The infrared detection signal of the ice sample
is taken as the input data of the CNN-LSTM-ECA
model. First of all, the model 1s used to extract the
spatial dimension features of the signal through one-
dimensional convolution. Then, it is used to extract
the temporal features of the signal by introducing a
gate-controlled recurrent unit with the attention
mechanism. Finally, it relies on the fully connected

layers to obtain the prediction result®’.

-
Convolutions F latten \

lF latten Poohng I
WlndOWl
_ Spatlacﬁz I
I Featuer teristic data I pooling layer
Input ! Fedtter maps Output | LG
\ maps - Ixynits unitsx1
bsxbsxn . bs?xn /
_______________ ol
/ \\
|
|
|
|
|
Fully connected N\ =——_ _—— _——_ -/
Sigmoid layer Bi-LSTM
ﬂ bsx(2xunits) bsx2x(2xunits)
lz / > Predicted
® value
Input feature map ~ Fully connected
and channel weight layer
multiplied

Fig.6  CNN-LSTM-ECA model structure diagram

3.1.2 Spatial feature extraction based on CNN
In the present study, a convolutional neural

network (CNN) is employed to extract spatial fea-

tures. According to the theory of thermal waves,

the heat conducted by natural objects is usually

transferred along the x, y, and z directions, and the
distribution of temperature T is related to the space.
The temperature field on the ice surface is affected
by its neighboring spatial variables, and CNN is ap-
plicable to obtain the spatial features of data through
the convolutional layers™”.

Based on the assumption that the number of
frames of infrared detection is identical to that of
channels in the image, the signal value of each
frame 1s taken as the grayscale value of the image,
and the coordinate of each position on the ice sample
is treated as the pixel coordinate of the image.
Therefore, the experimental data can be considered
as an image structure with » channels. Unlike tradi-
tional image definitions, the data in the current ex-
periment show a pseudo-image structure with pixel
values as digital signal values. To better express the
spatial relationship, the space is denoted as G,;,
while i and j represent the pixel coordinates corre-
sponding to this space. To extract the target region
G, the n channel numbers corresponding to all pix-
els in G are taken as the input.

Assuming that G contains bs” pixels, the input
data have a dimensional size of bs X bs X n, and
that of G, ;is 1 X 1 X n. The input data are flattened
into bs® X n for convolution. Thus, the output of
the convolutional neural network is obtained as fol-
lows

y=F(w'G,;+ b,) (4)
where y represents the spatial feature extracted from
the current pixel point; w" the convolution kernel;
and b, the bias term of the convolution kernel. The
Sigmoid function is treated as the activation func-
tion. Finally, the spatial features are unfolded into
one-dimensional sequential data for subsequent mod-
el operations. The structure of the convolutional
model is illustrated in Fig.7.

3.1.3 Time
LSTM-ECA

When the detection of infrared ice accretion 1s

feature extraction based on

carried out, the distribution of the surface tempera-
ture field T of ice accretion is affected by the time
domain z. When the thickness of ice accretion var-

ies, there are changes shown by the trend of the
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Fig.7 Structural diagram of the convolution model

temperature field on the ice surface over time. To
address this issue, it is proposed in this paper to ex-
tract time features using the LSTM-ECA model
block after the extraction of spatial features. Based
on the ECA attention mechanism, the model can be
used as shown in Fig.6.

The procedures of using the LSTM-ECA mod-
el are as follows:

Step 1

features extracted by the convolutional neural net-

The max pooling of data with spatial

work is performed to reduce the number of hidden
layer parameters, remove redundant information,
and compress the features. This is also the first step
of the ECA attention mechanism, through which
the data x is obtained.

Step 2 The dropout operation of data x is con-
ducted to obtain x,, which prevents the overfitting
caused by the use of too many parameters given a
small number of training samples.

Step 3 Bi-LSTM operation is performed on
the result x, obtained in Step 2 to extract the time
features of the data, resulting in z,.

Step 4 To address the nonlinearity of the da-
ta, x, is inputted into the activation function Tanh,
which is expressed as
sinh(z) e —e”
cosh(x) e +e”

Tanh(x )= (5)

This yields xs.

Step 5 The output of the fully connected lay-
er replaces the convolutional layer output of the tra-
ditional ECA attention mechanism for a better inte-
gration with the Bi-LSTM network built in Step 3,
which ensures the data dimension of the model,
with the output data x, obtained.

Step 6 The Sigmoid activation function is
used to calculate the weight w of x,. ECA is essen-

tial for the attention mechanism, through which the

conducted to obtain the output data size of 1, which
is the data size needing to be predicted by the model.

Step 9 The activation function Tanh is used
to calculate the predicted data as obtained in Step 8,
with the final data as the predicted value.

In essence, the focus of ECA attention mecha-
nism introduced into this model is on the informa-
tion that is more critical to the current task than a
large amount of other input information. It is used to
reduce the sensitivity to other information and filter
out the irrelevant information, which is conducive
to improving the accuracy of time feature extraction

and prediction.

3.2 Results and discussion of thickness predic-
tion

By using random sampling method, the infra-
red detection signal of ice accumulation is randomly
sampled, with each sample value labeled with the
thickness of the ice sample corresponding to the
sample point. For the convenience of expression,
let S= {5y, 55, ==, 8, === , 5, represent the sample
point set, where s; denotes the 7th sample point,
with each piece of sample data in s including 200
frames of infrared digital signals. The data are stan-
dardized to ensure the convergence of neural net-
work training, with 70% of the above data taken as
the training set and 30% as the test set to input the
model for training and prediction.

The samples with an ice thickness of 1 cm or
3cm are selected to conduct the experiment, in
which the performance of 1D CNN is compared
with that of LSTM, LSTM-CNN, and the pro-
posed model. The prediction results are evaluated
using mean squared error (MSE) and coefficient of
determination (R? score). MSE and R? score are

expressed as Egs.(6, 7), respectively.
N

1
MSE = D (X —

=1

Xreal,/ )2 (6)
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R2=1—7”V[NSE (7)

where N represents the number of sample points,
X, the predicted value of the 7#th sample point,
and X .., the true value of the 7th sample point.

As shown in Fig.8, the MSE of the model is
gradually reduced with an increase in iterations dur-
ing the training process. Among them, the single
LLSTM model has the largest initial loss value. The
CNN-LSTM model performs poorly in conver-
gence, while the single CNN model performs well.
Compared with other models, the proposed CNN-
LSTM-ECA model has a less significant prediction

error and performs better in convergence.

1.6
1.4f CNN
12 — LSTM
R | — CNN-LSTM
S0l — CNN-LSTM-ECA
041 |
02\
00731 21 31 41 51 61 71 81 91
Epoch

Fig.8 Training accuracy of CNN-LSTM-ECA model

After training of the model, ten test data points
are randomly sampled as sample points, including
five sample points with a 1 cm thickness and five
sample points with a 3 cm thickness. Then, the pre-
diction results obtained by different models are ana-
lyzed. Table 1 shows the prediction results of the
samples with an ice thickness of 1 ¢cm or 3 cm
(rounded to two decimal places), and Table 2 lists
the prediction errors of different network models.
According to Tables 1, 2, the CNN-LSTM-ECA

model has the least significant prediction error and

Table 1 Result of network model

Actual value/cm

Prediction CNN-
value/cm CNN LSTM CNN-LSTM LSTM-
ECA

3 2.56 2.98 2.96 2.98

3 2.96 2.98 2.97 2.97

3 2.96 2.97 2.97 2.97

3 2.97 2.98 2.98 2.97

3 2.97 2.98 2.98 2.97

1 0.99 1.05 1.02 1.01

1 1.02 1.05 1.00 1.00

1 1.00 1.05 0.99 1.00

1 0.99 1.05 0.99 1.00

1 0.99 1.05 0.99 1.00

the highest fitting degree, indicating its advantages
in predicting the thickness of ice accretion based on
infrared detection. This confirms the CNN-LSTM-
ECA model can be used to extract time and space
features from the infrared images of ice accretion.
When using the CNN-LSTM neural network for
training and testing, attention can be better focused
on those important features through the introduction
of the ECA mechanism, thereby improving the ac-
curacy in predicting the thickness of ice accretion.
Accordingly, the thickness prediction method is still
effective for other shapes of ice accretion. The thick-
ness of ice accretion was predicted by inputting the
infrared signals corresponding to the pixels in the ice
detection image into the proposed network model.
Therefore, as long as the position of pixels in the
ice detection image is determined, the thickness of
ice accretion can be predicted without being affected
by the ice shape. This method can be also used for
three-dimensional reconstruction, and is indepen-

dent of the specific ice shape.

Table 2 Comparison of network model predictions

Model R*-sorce MSE
CNN 0.91 0.06
LSTM 0.95 0.05
CNN-LSTM 0.91 0.05
CNN-LSTM-ECA 0.99 0.01

4 Three-Dimensional Reconstruc-

tion of Ice Accretion

4.1 Reconstruction methods

The three-dimensional reconstruction of infra-
red thermal images is a research focus of infrared de-
tection technology, and can also be referenced in
the detection of ice accretion. When detecting the
presence of ice accretion, it is sometimes further re-
quired to identify the three-dimensional shape of ice
accretion for more accurate guidance on the energy
output of anti/de-icing systems, in addition to ob-
taining the covered range or thickness of ice accre-
tion. In the existing three-dimensional reconstruc-
tion technology, the acquisition of three-dimension-
al data is mainly point cloud data through sensors

such as depth sensors or laser radar to achieve effec-
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tive reconstruction of three-dimensional models™**!,

In this paper, edge detection and thickness predic-
tion were combined to reconstruct the three-dimen-
sional shape of ice accretion, as shown in Fig.9.
The edge was detected by the detection algorithm
combining Gaussian-Laplacian pyramids and area fil-
tering in Section 2 to guide the range of ice thick-
ness prediction. The surface morphology of the ice
accretion was extracted based on the calculated con-
tour of the ice sample. The data were refined while
maintaining the original information to the greatest
extent. The boundary contour of ice was drawn by
setting thresholds and traversing all pixel gray val-
ues within the ice sample. The CNN-LSTM-ECA
model in Section 3 was developed to predict the ice
thickness within the ice accretion boundary range.
The predicted one-dimensional thickness data were
rearranged according to the row priority method to
obtain a two-dimensional matrix marked with thick-
ness values. Finally, the dimensional numerical ma-
trix was converted into a three-dimensional struc-
ture image by image processing. The advantage of
this method is that it ensures the accuracy of the
thickness prediction model and has high reconstruc-

tion efficiency.

Ice accretion detection based on infrared thermal system

L
Infrared signal data
of ice accretion

Infrared thermal images
of ice accretion

Thickness prediction based on
CNN-LSTM-ECA model

Edge detection based on
Gaussian-Laplacian pyramids
and area filtering

] Completement of thickness
detection of ice accretion

[

Calibration of pixel scale

Three-dimensional shape
reconstruction of ice accretion

Edge dimension determination
of ice accretion

Completement of ice —!
accretion range detection

Fig.9 Three-dimensional reconstruction of ice accretion

4.2 Results and discussion of reconstruction

Take the thickness of the ice sample (Fig.2
(b)) calculated in Section 3 is taken as an example
for three-dimensional reconstruction. Since the back-
ground takes up a lot of data that does not need to
be calculated for thickness, it is determined that the

calculated ratio of pixel to size (mm) is 1: 2.5 by

scaling the images to remove the background.
Thus, the calculation speed has been greatly im-
proved. The reconstruction model is shown in
Fig. 10. The accuracy of the ice range depends on
the pixel scale of the infrared thermal camera, while
the accuracy of the thickness depends on the CNN-
LSTM-ECA model.

§ 3.0

21.5 0
g 0.0 40 \é§
= Length / mm 90 &

Fig.10 Three-dimensional shape of ice accretion

In the previous research, Li et al.'*' used the
inverse heat transfer problem for three-dimensional
identification of regular ice accretion. However, the
main problem is that the infrared thermogram and
temperature calibration of ice were carried out under
certain experimental conditions. Therefore, a stable
ambient temperature should be guaranteed for each
test to reduce the measurement deviation. Howev-
er, the method proposed in this paper goes beyond
the limitations of the previous research. The digital
signals and pixels collected by the infrared thermal
camera are directly used to predict the quantitative
value, which reduces the sensitivity of the tempera-
ture collected by the camera to the accuracy of the
heat transfer model. It also reduces the dimension
calculation error caused by temperature values solv-
ing in the geometric inverse heat transfer problem.
Moreover, it benefits the three-dimensional recon-

struction of irregular ice accretion samples.

5 Conclusions

An ice detection method was proposed and pre-
liminarily investigated using non-contact flash pulse
infrared thermal detection technology based on ex-
perimental static ice accretion samples. The feasibili-
ty, advantages and disadvantages of the detection
method were discussed from three aspects as ice
edge detection, ice thickness prediction, and ice
shape reconstruction. The following conclusions are
drawn:

(1) Although traditional edge detection opera-

tors are capable of identifying the outer contour of
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some ice samples, it is difficult to accurately detect
the step-type boundary on the surface of the ice sam-
ple. By contrast, the edge detection algorithm pro-
posed in this paper combines Gaussian-Laplacian
pyramid with area filtering to effectively improve
the outcome of identifying the internal step-type
boundary on the ice surface. However, the draw-
back is that the noise also increases with the en-
hancement of features.

(2) An infrared detection ice thickness predic-
tion model (CNN-LSTM-ECA) is proposed that
combines CNN and Bi-LSTM with attention mecha-
nism. The model is applicable to extract data time
and space feature information and suitable for pro-
cessing the signal output of infrared detected ice
thickness, which improves the accuracy of predic-
tion results. Meanwhile, the CNN-LSTM neural
network is used to train and test the dataset. Accord-
ing to the experimental results, the CNN-LSTM-
ECA model performs best in ice thickness predic-
tion, and the ECA mechanism can focus attention
on important features, thus improving the accuracy
of prediction. The CNN-LSTM-ECA model is ef-
fective in reducing the noise interference caused by
external factors during the infrared detection of ice
thickness, showing a certain level of stability and ro-
bustness to noise.

(3) The combination of ice accretion range and
thickness prediction to reconstruct a three-dimen-
sional model of ice accretion is based on the digital
signal and infrared thermal images collected by the
flash pulse infrared thermography system. This
method can break through the constraint of solving
geometric infrared heat transfer inverse problems
based on temperature values, and has a wider appli-

cation prospect.
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