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Abstract: Ice detection plays a crucial role in operation of anti/de-icing systems. An ice detection method exploiting 
infrared thermal wave detection technology was proposed， followed by the identification of the edge， thickness and 
shape reconstruction of ice accretion using the related processing techniques. An active infrared ice detection 
experimental platform was constructed by flash pulse infrared technology. With regular and step-shaped ice samples 
prepared， the infrared thermal signals of the ice accretion were captured by an infrared thermal imager. A comparative 
analysis of the edge detection effects was conducted between the traditional edge detection methods and a new edge 
detection algorithm combining Gaussian-Laplacian pyramids and area filtering. Through the spatiotemporal correlation 
of the ice thermal signal， an end-to-end infrared detection ice thickness prediction model （i. e.， convolutional neural 
network-long short term memory-efficient channel attention （CNN-LSTM-ECA）） was constructed by introducing 
the attention mechanism into the LSTM model， with the thickness of the ice predicted. Further， three-dimensional 
reconstruction of ice accretion was performed by combining the edge detection and thickness prediction. It concluded 
that both traditional and new edge detection algorithms based on Gaussian-Laplacian pyramids and area filtering can be 
used to detect the outer edge of the ice， but the new algorithm shows a significant advantage in detecting the ice edge 
with internal step boundaries. The CNN-LSTM-ECA thickness prediction model based on signal features performs 
well in prediction accuracy， stability， and noise resistance. The data for reconstructing three-dimensional ice accretion 
shape come from the collected digital signals and thermal images， which are not limited by temperature reading and 
heat transfer conditions， and have a wider application prospect. This paper provides a reference for exploring an 
effective accurate and quantitative identification method for ice accretion detection based on flash pulse infrared 
thermography.
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0 Introduction 

Airplane icing refers to a circumstance where 
ice accumulates on the surface of certain parts of the 
airplane， which is one of the major safety risks 
posed to the flight. Airplane icing threatens the safe‑
ty， maneuverability， and stability of the aircraft， 
which can lead to catastrophe in some circumstanc‑
es［1］. Thus， it is essential to detect and prevent air‑

plane icing effectively. Accurately identifying the 
geometric structure of ice accretion on the key sur‑
faces of aircraft is one of the problems needing to be 
solved for the development of anti-icing technology.

Icing detection is the premise of anti/de-icing 
work. Usually， icing losses and hazards can be re‑
duced by accurately detecting the severity of ice ac‑
cretion on the protective surface， measuring the 
range and thickness of ice accretion， as well as trans‑
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mitting the relevant information to the controller or 
alerting the workers to the need for countermea‑
sures. Due to the insufficient demand for ice shape 
data measurement， the methods of ice shape mea‑
surement， such as manual tracking［2］ and casting［3］， 
were widely used. However， the growing demand 
for accurate ice shape data has led to the emergence 
of more advanced techniques， e. g. non-contact ice 
shape measurement. Struck et al.［4］ made use of mul‑
tiple static cameras， high-speed cameras， and high-

definition cameras to capture the image of ice on air‑
plane wings from multiple angles. Then， the images 
were processed to extract the contour of ice accre‑
tion， with the thickness and growth rate of the ice 
measured. Through the non-contact measurement of 
the ice shape by optical camera， Ikidaes et al.［5］ 
solved the problem that the ice shape was damaged 
during the measurement performed to obtain one-di‑
mensional or two-dimensional ice shape data. How‑
ever， the accuracy of measurement affected by the in‑
terference from clouds and fog. Gong et al.［6］ per‑
formed laser sheet scanning to measure the time evo‑
lution of three-dimensional rime ice shape. In the ic‑
ing wind tunnel， the growth of ice was effectively 
measured. Wang et al.［7］ arranged conventional ice 
detectors at different sensitive icing locations accord‑
ing to the collection range of water droplets to detect 
the whole ice environment.

Given the advantages and disadvantages of vari‑
ous ice detection methods， along with the difficulty 
in quantifying the geometrical shape of ice with 
most icing sensors， it is difficult to collect more in‑
formation than the thickness of ice and three-dimen‑
sional or even two-dimensional information. There‑
fore， there is an urgent need to develop an ice detec‑
tion method that can be used to obtain the accurate 
information about ice shape. However， icing during 
flight is a dynamic and complex process， and 
ground maintenance personnel often observe the 
static ice accretion and carry out anti/de-icing opera‑
tions with the detection results. Especially， mainte‑
nance personnel also conduct visual inspection， 
manually touching the certain surface of the aircraft 
to check for ice accumulation. Thus， a feasibility 
study on static ice accretion detection was discussed 

using non-contact flash pulse infrared thermal detec‑
tion technology according to experimental condi‑
tions， focusing on three aspects： Ice edge detection 
for icing range， ice thickness prediction， and ice 
shape reconstruction. Infrared detection technology 
is characterized by extensive applicability， no con‑
tact， fast detection， high accuracy， the minimal im ‑
pact from cloud/fog/lighting， the ease of qualitative 
and quantitative analyses， and intuitive visualiza‑
tion. Therefore， it has been widely used in aero‑
space， automobile， military， new material re‑
search， the petrochemical industry， the nuclear in‑
dustry， and the power industry［8］. Riehm et al.［9］ 
proposed the use of an infrared thermometer to de‑
tect road icing， allowing the monitoring of tempera‑
ture changes caused by the exothermic reaction of 
water freezing. Rashid et al.［10］ used infrared thermal 
imaging technology to record the thermal response 
of sea ice， and determined the correlation between 
response time and ice layer thickness through calcu‑
lation. Grzych et al.［11］ used infrared satellites to cap‑
ture the radiation of ice accretion， but at high cost. 
Gao et al.［12］ adopted an infrared multispectral detec‑
tion system to detect the residual ice on airplane 
wings during ground experiments.

Edge identification of ice accretion， i. e.， ice 
range detection， plays an essential role in the detec‑
tion of ice accretion， which is a prerequisite for trig‑
gering the anti/de-icing systems. The recognition of 
ice thickness is required to guide the energy output of 
the systems as well. Therefore， an infrared thermog‑
raphy system is used in this paper to explore how the 
edge and thickness of ice accretion can be identified 
and determined using different image processing 
methods. Further， by combining the edge detection 
and thickness of ice accretion， a three-dimensional 
ice shape can also be reconstructed to provide more 
accurate guidance for anti/de-icing operations.

1 Experiments and Materials 

The rationale of the pulsed infrared thermogra‑
phy ice detection is to heat the ice adhered layer 
with a flashing lamp as the source of thermal excita‑
tion. As the ice surface emits thermal waves， it infil‑
trates the ice. During ice detection， a thermal cam ‑
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era is used to record the changes in the thermal sig‑
nal caused by the infiltration of the thermal waves in‑
to the ice. Then， the thermal imaging results are ob‑
tained to identify the morphology of ice accretion.

Based on the above rationale of ice infrared 
thermography detection， an infrared thermography 
testing platform was constructed in this paper. As 
shown in Fig.1（a）， the infrared camera is an InSb 
infrared camera， consisting of an internal circulation 
Stirling cooler and a CdHg-Te （MCT） focal plane 
detector. This camera has a resolution of 640 pixel×
512 pixel， and a spectral range of 2.0─ 5.7 μm. Al‑
so， the 2×2 matrix of xenon flash lamps with a to‑
tal power supply of 12 kJ is used for active thermal 
wave excitation， as illustrated in Fig.1（b）. In this 
paper， we consider the examples of regular ice ac‑
cretion because they are easier to be applied in prac‑
tice. Multiple ice samples are prepared inside a re‑
frigerated freezer in Fig.1（c）， including the regular 
rectangular ice blocks and step-type ice blocks in‑
tended for edge and thickness identification， as 
shown in Fig.2. Immediately after the ice samples 
were prepared， they were placed under the infrared 
camera， with the energy output of the xenon lamps 
adjusted to record the changes in surface tempera‑
ture of the ice under active excitation.

2 Edge Detection of Ice Accretion 

2. 1 Edge detection method　

2. 1. 1 Traditional methods　

Edge detection of ice accretion reflecting the ic‑

ing range is considered a prerequisite for the detec‑
tion of ice accretion. However， the results of infra‑
red thermal wave detection are easily affected by the 
environmental conditions， thus leading to various 
problems such as the fusion of infrared images with 
the background and uneven illumination. This poses 
a challenge for detecting ice accretion through infra‑
red thermal wave detection technology. Therefore， 
the first step in accurate ice detection is to use suit‑
able algorithms to identify the boundary lines of ice 
through infrared thermal wave detection technology. 
Some research have dealt with ice detection image 
processing through traditional edge detection opera‑
tors， fusion-improved edge detection operators， and 
a combination of threshold segmentation and mor‑
phology. In Ref.［13］， the algorithm based on wave‑
let transform， floating threshold， digital image mor‑
phology， and optimal threshold fusion is used to 
identify the ice boundary line. In Ref.［14］， the 
adaptive segmentation threshold method is used to 
determine the shape of ice accretion.

The purpose of edge detection is to find a set of 
pixels with a numerically abrupt change in the pixel 
values from the image， which are usually represent‑
ed by edges in the image. At the same time， edge 
detection is performed to effectively suppress the 
non-main information in the image and preserve the 
important structural properties of the image. Given 
some differences in the ideas of different edge detec‑
tion operators and variations in the structural proper‑
ties of image features， it is currently difficult to ob‑
tain the same edge by using the same edge detection 
operator for the images with different structural 
properties［15］.

Among them， the traditional edge detection op‑
erators are built through first-order or second-order 
differential processing on the image， such as the 
Roberts operator， Sobel operator， and Prewitt oper‑
ator， which are common first-order differential oper‑
ators， as well as the Laplacian operator and Canny 
operator， which are common second-order differen‑
tial operators［16］. The Roberts operator calculates 
the edges through local differences， the convolution 
template of a 2×2 matrix both horizontally and ver‑
tically. However， the Roberts operator is highly sen‑

Fig.1　Infrared equipment for ice detection

Fig.2　Physical samples of ice
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sitive to noise and ineffective in suppressing noise. 
As an optimization of the Roberts operator， the Pre‑
witt operator identifies the edges by performing the 
first-order differentiation of adjacent pixels in the im ‑
age. That is to say， the gray values in the horizontal 
and vertical directions are not normalized for the 
mean difference. Therefore， the Prewitt operator is 
suitable for image smoothing， but the edge recogni‑
tion is not accurate enough. The Sobel operator 
achieves an improvement on the Prewitt operator， 
with a 3×3 matrix as its convolution template. The 
gray values of adjacent pixels in the horizontal and 
vertical directions are weighted and averaged， while 
the gray difference approximation value of the image 
is obtained through the convolution template. When 
the gray difference approximation value exceeds a 
certain threshold， it is judged as an edge. There‑
fore， the Sobel operator produces a smoothing ef‑
fect on the image noise and can be used to determine 
the direction of the edge accurately. Differently， the 
Laplacian operator and Canny operator are classed 
into second-order differential operators. Among 
them， the Laplacian operator is a second-order dif‑
ferential operator in n-dimensional Euclidean space， 
defined as the divergence of the gradient. It is more 
accurate in locating the edge and sharpening the im ‑
age. The Canny operator， as a more common edge 
detection operator， can be used to extract edges ac‑
curately while suppressing noise effectively. In addi‑
tion， the phase coherence method is applicable to 
detect the edge in infrared images， and the edge can 
be identified by classifying the points with a high de‑
gree of phase coherence through K-means.
2. 1. 2 Improved method　

When there is a lack of uniformity in the thick‑
ness of an ice accretion sample， the boundary in the 
infrared image of the sample is unclear and is more 
likely to be affected by the environment where detec‑
tion is carried out. Therefore， traditional edge detec‑
tion methods are not applicable to find the ideal sur‑
face boundary. Additionally， traditional infrared im ‑
age threshold segmentation and edge detection tech‑
niques can be relied on only solving a specific type 
of problem for the processing of ice accretion sample 
infrared image［17］.

Aiming to address this situation， the traditional 
edge detection operator is improved in this paper to 
identify the surface boundary of ice accretion more 
accurately. To achieve the desired effect， the Gauss‑
ian-Laplacian pyramid operator is combined with ar‑
ea filtering to solve the problem that the internal 
boundaries are inaccurately detected due to the indis‑
tinct grayscale differences between step and non-

step regions in the infrared image. On this basis， the 
ice surface boundary can be identified［18］. The 
Gaussian-Laplacian pyramid is comprised of a 
Gaussian filter function and a Laplacian operator［19］. 
The Gaussian pyramid is intended to decompose the 
image by gradually sampling it downwards， with 
the Gaussian filtering of the original image per‑
formed before sampling. The Gaussian filter formu‑
la and Gaussian pyramid formula are shown as fol‑
lows

g ( x,y )= 1
2πδ 2 e

- x2 + y2

2πδ2 (1)

F ( n + 1 )= F ( n )× g ( x,y )× S ( scale 1,scale 2 ) (2)
where F ( n ) represents the nth decomposition of the 
image and S ( scale 1，scale 2 ) the sampling rate of 
the image on the row and the column. In this case， 
the sampling rate for both rows and columns is 2. 
Thus， the size of each image after sampling is re‑
duced to 1/4 that of the original image， and the res‑
olution is reduced to 1/2 that of the original im ‑
age［20］.

The purpose of the Laplacian pyramid is to pre‑
serve the residual difference between adjacent levels 
during the downward sampling by the Gaussian pyr‑
amid， i. e.， the high-frequency details of the image. 
The Laplacian pyramid formula is shown as follows

L ( n )= F ( n )- F ( n + 1 )× g ( x,y )×
S ( scale 1,scale 2 )        (3)

The detailed process is shown in Fig.3. Firstly， the 
Gaussian-Laplacian pyramid operator is used to 
highlight the high-frequency structure of the image， 
which enhances the feature information of the im ‑
age. Secondly， the small noise is filtered out by area 
filtering to preserve the edge information of the im ‑
age. The noise in the image and the image edges to 
be extracted can be treated as the connected regions 
with different area values in the binary image. On 
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this basis， the connected domain area of the Gauss‑
ian-Laplacian filtered image is calculated， and the 
connected domain with a relatively small area is in‑
verted. Thirdly， the transformation of image mor‑
phology is performed to fuse the filtered image with 
the source image， thus deepening the structural in‑
formation of the external and step-type internal 
boundaries. Finally， the Canny operator is used to 
perform edge detection on the grayscale image with 
enhanced feature information for identifying the ice 
accretion sample detection with step-type boundar‑
ies.

2. 2 Results and discussion of edge detection　

By performing traditional edge detection and 
using improved Gaussian-Laplacian pyramid and ar‑
ea filtering algorithms （Figs.4，5）， the boundary de‑

tection results of infrared thermography of ice speci‑
mens were comparatively analyzed to reveal the fol‑
lowing issues.

Traditional edge detection operators mainly ex‑
tract the image edges by detecting the abrupt chang‑
es in the grayscale values of the image. Before the 
edge area is calculated， the traditional edge detec‑
tion algorithm is first used to perform denoising and 
smoothing filtering on the image. Therefore， when 
the flash infrared detection is used to identify the sur‑
face boundary of regular and stepped ice samples， 
there is a significant abrupt change in the grayscale 
value of the external boundary of the regular ice 
sample. At this time， traditional edge detection al‑
gorithms can be used to detect the external bound‑
ary. However， traditional edge detection algorithms 
may fail to detect the internal stepped boundary of 
ice samples due to the non-identifiable changes to 
grayscale value in the infrared image of the stepped 
ice sample. Additionally， although the phase consis‑
tency algorithm is able to identify internal boundar‑
ies， it is not suitable to draw the high-phase-consis‑
tency edge area accurately and clearly due to the in‑

Fig.3　Flowchart of the edge detection algorithm

Fig.4　Results of traditional edge detection operators of 
stepped ice specimens on rectangular bodies

Fig.5　Results of traditional edge detection operators of 
stepped ice specimens on cylindrical bodies
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significant phase consistency difference in the image.
The algorithm， which combines Gaussian-La‑

placian pyramid and the area filtering proposed in 
this paper， is first used to extract the primary image 
components and structural information of the infra‑
red ice detection sequence image. Then， the area fil‑
tering algorithm is used to filter out the noise un‑
needed for target detection， considering that the ar‑
ea of the connected region of noise in the grayscale 
image is smaller compared with the connected re‑
gion of the internal and external edges of the image. 
Therefore， the algorithm combining Gaussian-La‑
placian pyramid and area filtering can be applied to 
retain the image feature structure completely. Un‑
like traditional edge detection algorithms and phase 
congruency， it does not treat internal edges as 
noise， thus avoiding the failure to identify stepped 
internal edges.

The edge detection algorithm integrating 
Gaussian-Laplacian pyramid and area filtering gives 
priority to image features for denoising to be per‑
formed according to the overall image features. 
Thus， it does not treat the detection results as 
noise， which avoids the failure to recognize internal 
boundaries. However， the noise level in the detec‑
tion results is higher than that of traditional algo‑
rithms. Therefore， the edge detection algorithm 
combining Gaussian-Laplacian pyramid and area fil‑
tering is advantageous in identifying irregular ice sur‑
faces. Meanwhile， the drawback is that the noise in 
the image is highlighted when the high-frequency 
features of the image are preserved by the Gaussian-

Laplacian operator due to much noise remaining in 
the infrared thermal sequence image. In addition， 
the shapes of the original ice accretion in this paper 
are regular. For other ice accretion shapes， edge de‑
tection methods are still applicable. Indeed， the rele‑
vant quantity for the ice shape detection method is 
the intensity profile of the pixels. As long as the in‑
tensity profile of the pixels describes the characteris‑
tics of the ice accumulation area， the collection of 
these pixels may be used to represent the ice accre‑
tion， regardless of the shape of the ice accumula‑
tion. In turn， the shape of ice accretion only affects 
the arrangement of the target pixels.

3 Thickness Prediction of Ice Ac‑
cretion 

3. 1 Thickness prediction methods　

3. 1. 1 Ice thickness prediction model　

The thickness of ice accretion is an important 
indicator for the implementation of anti/de-icing sys‑
tems. Although infrared thermography detection 
shows its advantage in detecting flat surfaces due to 
its temperature distribution characteristics， infrared 
detection mainly relies on the thermal state of the 
surface of testing objects and cannot visually deter‑
mine the internal thermal state of the objects， there‑
by increasing the difficulty of thickness measure‑
ment. Thus， depth detection has become a research 
hotspot among scholars［21］. In the experiment on de‑
tecting ice thickness through infrared thermogra‑
phy， the transient heat varies with the thickness of 
the ice sample over time， and the signal of infrared 
thermography detection can be decomposed into spa‑
tial and temporal dimensions. When ice thickness is 
detected through infrared thermography， it can be 
viewed as a regression problem. The key to predict‑
ing ice thickness is to solve this problem［22］.

The traditional regression methods used to pre‑
dict ice thickness through infrared detection ignore 
spatiotemporal correlation［23-24］， while a single con‑
volutional neural network ignores the temporal fea‑
tures of the infrared detection signal. The long short-
term memory （LSTM） model with fully connected 
layers gives no consideration to spatial correlation. 
To better simulate spatiotemporal relationships［25］， 
this paper proposes that the LSTM model can be ex‑
tended to a convolutional model with convolutional 
results for the establishment of an end-to-end infra‑
red detection ice thickness prediction model （i. e.， 
convolutional neural network-long short-term mem ‑
ory-efficient channel attention （CNN-LSTM-

ECA）） by introducing attention mechanism into the 
LSTM model［26-27］. Through this model， the errors 
in predicting ice thickness using infrared detection 
can be reduced for the improvement of accuracy.

Prediction of ice thickness through infrared de‑
tection requires time series analysis， which is also 
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affected by the physical spatial features. Traditional 
regression prediction models are capable only of ex‑
tracting features from the infrared signal values 
when ice thickness is predicted， which leads to the 
lack of a description of complex spatiotemporal rela‑
tionships and makes it difficult to estimate the im ‑
pact of spatial and temporal information on the pre‑
diction results simultaneously. To address this is‑
sue， an end-to-end infrared detection ice thickness 
prediction model is proposed in this paper that com ‑
bines LSTM with CNN and introduces the ECA at‑
tention mechanism.

The structure of the CNN-LSTM-ECA model 
is illustrated in Fig.6，where bs represents the batch 
size. The infrared detection signal of the ice sample 
is taken as the input data of the CNN-LSTM-ECA 
model. First of all， the model is used to extract the 
spatial dimension features of the signal through one-

dimensional convolution. Then， it is used to extract 
the temporal features of the signal by introducing a 
gate-controlled recurrent unit with the attention 
mechanism. Finally， it relies on the fully connected 
layers to obtain the prediction result［28］.

3. 1. 2 Spatial feature extraction based on CNN

In the present study， a convolutional neural 
network （CNN） is employed to extract spatial fea‑
tures. According to the theory of thermal waves， 
the heat conducted by natural objects is usually 

transferred along the x， y， and z directions， and the 
distribution of temperature T is related to the space. 
The temperature field on the ice surface is affected 
by its neighboring spatial variables， and CNN is ap‑
plicable to obtain the spatial features of data through 
the convolutional layers［29］.

Based on the assumption that the number of 
frames of infrared detection is identical to that of 
channels in the image， the signal value of each 
frame is taken as the grayscale value of the image， 
and the coordinate of each position on the ice sample 
is treated as the pixel coordinate of the image. 
Therefore， the experimental data can be considered 
as an image structure with n channels. Unlike tradi‑
tional image definitions， the data in the current ex‑
periment show a pseudo-image structure with pixel 
values as digital signal values. To better express the 
spatial relationship， the space is denoted as Gi，j， 
while i and j represent the pixel coordinates corre‑
sponding to this space. To extract the target region 
Gi，j， the n channel numbers corresponding to all pix‑
els in G are taken as the input.

Assuming that G contains bs2 pixels， the input 
data have a dimensional size of bs × bs × n， and 
that of Gi，j is 1 × 1 × n. The input data are flattened 
into bs2 × n for convolution. Thus， the output of 
the convolutional neural network is obtained as fol‑
lows

y = F ( w k Gi,j + bv ) (4)
where y represents the spatial feature extracted from 
the current pixel point； w k the convolution kernel； 
and bv the bias term of the convolution kernel. The 
Sigmoid function is treated as the activation func‑
tion. Finally， the spatial features are unfolded into 
one-dimensional sequential data for subsequent mod‑
el operations. The structure of the convolutional 
model is illustrated in Fig.7.
3. 1. 3 Time feature extraction based on 

LSTM‑ECA　

When the detection of infrared ice accretion is 
carried out， the distribution of the surface tempera‑
ture field T of ice accretion is affected by the time 
domain t. When the thickness of ice accretion var‑
ies， there are changes shown by the trend of the 

Fig.6　CNN-LSTM-ECA model structure diagram
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temperature field on the ice surface over time. To 
address this issue， it is proposed in this paper to ex‑
tract time features using the LSTM-ECA model 
block after the extraction of spatial features. Based 
on the ECA attention mechanism， the model can be 
used as shown in Fig.6.

The procedures of using the LSTM-ECA mod‑
el are as follows：

Step 1 The max pooling of data with spatial 
features extracted by the convolutional neural net‑
work is performed to reduce the number of hidden 
layer parameters， remove redundant information， 
and compress the features. This is also the first step 
of the ECA attention mechanism， through which 
the data x is obtained.

Step 2 The dropout operation of data x is con‑
ducted to obtain x1， which prevents the overfitting 
caused by the use of too many parameters given a 
small number of training samples.

Step 3 Bi-LSTM operation is performed on 
the result x1 obtained in Step 2 to extract the time 
features of the data， resulting in x2.

Step 4 To address the nonlinearity of the da‑
ta， x2 is inputted into the activation function Tanh， 
which is expressed as

Tanh ( x )= sinh ( x )
cosh ( x )

= ex - e-x

ex + e-x
(5)

This yields x3.
Step 5 The output of the fully connected lay‑

er replaces the convolutional layer output of the tra‑
ditional ECA attention mechanism for a better inte‑
gration with the Bi-LSTM network built in Step 3， 
which ensures the data dimension of the model， 
with the output data x4 obtained.

Step 6 The Sigmoid activation function is 
used to calculate the weight w of x4. ECA is essen‑
tial for the attention mechanism， through which the 

weight of each channel is determined.
Step 7 The feature data x4 and channel weight 

w are multiplied to assign a greater weight for those 
important features， focus attention on important fea‑
tures， and obtain data x5.

Step 8 The fully connected operation of x5 is 
conducted to obtain the output data size of 1， which 
is the data size needing to be predicted by the model.

Step 9 The activation function Tanh is used 
to calculate the predicted data as obtained in Step 8， 
with the final data as the predicted value.

In essence， the focus of ECA attention mecha‑
nism introduced into this model is on the informa‑
tion that is more critical to the current task than a 
large amount of other input information. It is used to 
reduce the sensitivity to other information and filter 
out the irrelevant information， which is conducive 
to improving the accuracy of time feature extraction 
and prediction.

3. 2 Results and discussion of thickness predic‑
tion　

By using random sampling method， the infra‑
red detection signal of ice accumulation is randomly 
sampled， with each sample value labeled with the 
thickness of the ice sample corresponding to the 
sample point. For the convenience of expression， 
let S=｛s1，s2，… ，si，… ，sn｝ represent the sample 
point set， where si denotes the ith sample point， 
with each piece of sample data in s including 200 
frames of infrared digital signals. The data are stan‑
dardized to ensure the convergence of neural net‑
work training， with 70% of the above data taken as 
the training set and 30% as the test set to input the 
model for training and prediction.

The samples with an ice thickness of 1 cm or 
3 cm are selected to conduct the experiment， in 
which the performance of 1D CNN is compared 
with that of LSTM， LSTM-CNN， and the pro‑
posed model. The prediction results are evaluated 
using mean squared error （MSE） and coefficient of 
determination （R2_score）. MSE and R2_score are 
expressed as Eqs.（6， 7）， respectively.

MSE = 1
N ∑

t = 1

N

( X pred,t - X real,t )2 (6)

Fig.7　Structural diagram of the convolution model
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R2 = 1 - MSE
N

(7)

where N represents the number of sample points， 
X pred，t the predicted value of the tth sample point， 
and X pred，t the true value of the tth sample point.

As shown in Fig.8， the MSE of the model is 
gradually reduced with an increase in iterations dur‑
ing the training process. Among them， the single 
LSTM model has the largest initial loss value. The 
CNN-LSTM model performs poorly in conver‑
gence， while the single CNN model performs well. 
Compared with other models， the proposed CNN-

LSTM-ECA model has a less significant prediction 
error and performs better in convergence.

After training of the model， ten test data points 
are randomly sampled as sample points， including 
five sample points with a 1 cm thickness and five 
sample points with a 3 cm thickness. Then， the pre‑
diction results obtained by different models are ana‑
lyzed. Table 1 shows the prediction results of the 
samples with an ice thickness of 1 cm or 3 cm 
（rounded to two decimal places）， and Table 2 lists 
the prediction errors of different network models. 
According to Tables 1，2， the CNN-LSTM-ECA 
model has the least significant prediction error and 

the highest fitting degree， indicating its advantages 
in predicting the thickness of ice accretion based on 
infrared detection. This confirms the CNN-LSTM-

ECA model can be used to extract time and space 
features from the infrared images of ice accretion. 
When using the CNN-LSTM neural network for 
training and testing， attention can be better focused 
on those important features through the introduction 
of the ECA mechanism， thereby improving the ac‑
curacy in predicting the thickness of ice accretion. 
Accordingly， the thickness prediction method is still 
effective for other shapes of ice accretion. The thick‑
ness of ice accretion was predicted by inputting the 
infrared signals corresponding to the pixels in the ice 
detection image into the proposed network model. 
Therefore， as long as the position of pixels in the 
ice detection image is determined， the thickness of 
ice accretion can be predicted without being affected 
by the ice shape. This method can be also used for 
three-dimensional reconstruction， and is indepen‑
dent of the specific ice shape.

4 Three‑Dimensional Reconstruc‑
tion of Ice Accretion 

4. 1 Reconstruction methods　

The three-dimensional reconstruction of infra‑
red thermal images is a research focus of infrared de‑
tection technology， and can also be referenced in 
the detection of ice accretion. When detecting the 
presence of ice accretion， it is sometimes further re‑
quired to identify the three-dimensional shape of ice 
accretion for more accurate guidance on the energy 
output of anti/de-icing systems， in addition to ob‑
taining the covered range or thickness of ice accre‑
tion. In the existing three-dimensional reconstruc‑
tion technology， the acquisition of three-dimension‑
al data is mainly point cloud data through sensors 
such as depth sensors or laser radar to achieve effec‑

Fig.8　Training accuracy of CNN-LSTM-ECA model

Table 1　Result of network model

Prediction
value/cm

3
3
3
3
3
1
1
1
1
1

Actual value/cm

CNN

2.56
2.96
2.96
2.97
2.97
0.99
1.02
1.00
0.99
0.99

LSTM

2.98
2.98
2.97
2.98
2.98
1.05
1.05
1.05
1.05
1.05

CNN‑LSTM

2.96
2.97
2.97
2.98
2.98
1.02
1.00
0.99
0.99
0.99

CNN‑
LSTM‑

ECA
2.98
2.97
2.97
2.97
2.97
1.01
1.00
1.00
1.00
1.00

Table 2　Comparison of network model predictions

Model
CNN

LSTM
CNN‑LSTM

CNN‑LSTM‑ECA

R2‑sorce
0.91
0.95
0.91
0.99

MSE
0.06
0.05
0.05
0.01
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tive reconstruction of three-dimensional models［30-31］. 
In this paper， edge detection and thickness predic‑
tion were combined to reconstruct the three-dimen‑
sional shape of ice accretion， as shown in Fig.9. 
The edge was detected by the detection algorithm 
combining Gaussian-Laplacian pyramids and area fil‑
tering in Section 2 to guide the range of ice thick‑
ness prediction. The surface morphology of the ice 
accretion was extracted based on the calculated con‑
tour of the ice sample. The data were refined while 
maintaining the original information to the greatest 
extent. The boundary contour of ice was drawn by 
setting thresholds and traversing all pixel gray val‑
ues within the ice sample. The CNN-LSTM-ECA 
model in Section 3 was developed to predict the ice 
thickness within the ice accretion boundary range. 
The predicted one-dimensional thickness data were 
rearranged according to the row priority method to 
obtain a two-dimensional matrix marked with thick‑
ness values. Finally， the dimensional numerical ma‑
trix was converted into a three-dimensional struc‑
ture image by image processing. The advantage of 
this method is that it ensures the accuracy of the 
thickness prediction model and has high reconstruc‑
tion efficiency.

4. 2 Results and discussion of reconstruction　

Take the thickness of the ice sample （Fig.2
（b）） calculated in Section 3 is taken as an example 
for three-dimensional reconstruction. Since the back‑
ground takes up a lot of data that does not need to 
be calculated for thickness， it is determined that the 
calculated ratio of pixel to size （mm） is 1∶2.5 by 

scaling the images to remove the background. 
Thus， the calculation speed has been greatly im ‑
proved. The reconstruction model is shown in 
Fig. 10. The accuracy of the ice range depends on 
the pixel scale of the infrared thermal camera， while 
the accuracy of the thickness depends on the CNN-

LSTM-ECA model.

In the previous research， Li et al.［32］ used the 
inverse heat transfer problem for three-dimensional 
identification of regular ice accretion. However， the 
main problem is that the infrared thermogram and 
temperature calibration of ice were carried out under 
certain experimental conditions. Therefore， a stable 
ambient temperature should be guaranteed for each 
test to reduce the measurement deviation. Howev‑
er， the method proposed in this paper goes beyond 
the limitations of the previous research. The digital 
signals and pixels collected by the infrared thermal 
camera are directly used to predict the quantitative 
value， which reduces the sensitivity of the tempera‑
ture collected by the camera to the accuracy of the 
heat transfer model. It also reduces the dimension 
calculation error caused by temperature values solv‑
ing in the geometric inverse heat transfer problem. 
Moreover， it benefits the three-dimensional recon‑
struction of irregular ice accretion samples.

5 Conclusions 

An ice detection method was proposed and pre‑
liminarily investigated using non-contact flash pulse 
infrared thermal detection technology based on ex‑
perimental static ice accretion samples. The feasibili‑
ty， advantages and disadvantages of the detection 
method were discussed from three aspects as ice 
edge detection， ice thickness prediction， and ice 
shape reconstruction. The following conclusions are 
drawn：

（1） Although traditional edge detection opera‑
tors are capable of identifying the outer contour of 

Fig.9　Three-dimensional reconstruction of ice accretion

Fig.10　Three-dimensional shape of ice accretion
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some ice samples， it is difficult to accurately detect 
the step-type boundary on the surface of the ice sam ‑
ple. By contrast， the edge detection algorithm pro‑
posed in this paper combines Gaussian-Laplacian 
pyramid with area filtering to effectively improve 
the outcome of identifying the internal step-type 
boundary on the ice surface. However， the draw‑
back is that the noise also increases with the en‑
hancement of features.

（2） An infrared detection ice thickness predic‑
tion model （CNN-LSTM-ECA） is proposed that 
combines CNN and Bi-LSTM with attention mecha‑
nism. The model is applicable to extract data time 
and space feature information and suitable for pro‑
cessing the signal output of infrared detected ice 
thickness， which improves the accuracy of predic‑
tion results. Meanwhile， the CNN-LSTM neural 
network is used to train and test the dataset. Accord‑
ing to the experimental results， the CNN-LSTM-

ECA model performs best in ice thickness predic‑
tion， and the ECA mechanism can focus attention 
on important features， thus improving the accuracy 
of prediction. The CNN-LSTM-ECA model is ef‑
fective in reducing the noise interference caused by 
external factors during the infrared detection of ice 
thickness， showing a certain level of stability and ro‑
bustness to noise.

（3） The combination of ice accretion range and 
thickness prediction to reconstruct a three-dimen‑
sional model of ice accretion is based on the digital 
signal and infrared thermal images collected by the 
flash pulse infrared thermography system. This 
method can break through the constraint of solving 
geometric infrared heat transfer inverse problems 
based on temperature values， and has a wider appli‑
cation prospect.
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基于闪光红外热像技术的积冰探测方法

李清英 1， 勾 一 1， 刘森云 2， 么 娆 1

（1.上海工程技术大学航空运输学院，上海  201620，中国； 2.中国空气动力研究与发展中心结冰与防除冰重点实

验室，绵阳 621000，中国）

摘要：结冰探测在防除冰系统运行中起着至关重要的作用。本文提出了利用红外热波检测技术进行了积冰探

测，并运用相关分析技术探讨了积冰边缘、厚度识别与冰形重建的方法。搭建了闪光脉冲红外主动式红外积冰

探测实验平台，制备了规则型与阶跃型积冰样件，借助红外热像仪采集了受脉冲红外热激励后的积冰红外热信

号。运用传统边缘检测方法与新构建的高斯‑拉普拉斯金字塔和面积滤波相结合的边缘检测算法进行了积冰边

缘识别效果的对比与分析。利用积冰热信号的时空相关性，提出了在长短时记忆（Long short term memory，

LSTM）模型中引入注意力机制建立端到端的红外探测积冰厚度预测模型（Convolutional neural netwok‑long 
short term memory‑efficient channel attention，CNN‑LSTM‑ECA），用以预测积冰厚度。此外，通过结合边缘检测

和厚度预测，进行了阶梯状积冰样件的三维重建。结果表明，基于高斯‑拉普拉斯金字塔和区域滤波的传统边缘

检测算法和新的边缘检测算法都可以用于检测冰的外边缘，但新算法在检测具有内部阶梯边界的冰边缘方面显

示出显著的优势。基于信号特征的 CNN‑LSTM‑ECA 厚度预测模型在预测精度、稳定性和抗噪声性方面表现良

好。重建三维积冰形状的数据来源于采集的数字信号和热图像，不受温度读数和传热条件的限制，具有更广阔

的应用前景。此项研究为探索一种利用闪光脉冲红外技术进行积冰冰形有效、准确、定量识别提供可参考的

方案。

关键词：积冰；红外探测；边缘检测；厚度预测；三维重建
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