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Aircraft Noise Prediction Based on Machine Learning Model
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Abstract: In order to explore the aircraft noise prediction methods beyond the best practice model and scientific 
model， this paper uses multiple linear regression model and random forest regression model to predict the aircraft 
noise value of Seattle-Tacoma International Airport in the summer of 2020—2022. The experiment confirm the 
feasibility and advantages of the machine learning model in aircraft noise prediction tasks and find that the mean R2 
predicted by the random forest regression model is 74.469%， 5.361% higher than that of the multiple linear 
regression model. The mean RMSE predicted by the random forest regression model is 0.814， 0.106 lower than that 
of the multiple linear regression model.
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0 Introduction 

Aviation noise refers to the noise generated by 
various aircraft in the airport and its adjacent areas， 
most of which are aircraft noise， mainly airframe 
noise， fan noise， and jet noise［1］. The World Health 
Organization believes noise pollution is the second 
largest environmental risk factor next to air pollu‑
tion［2］， and aviation noise is the third largest source 
next to road traffic and railway traffic noise［3］. Rele‑
vant medical research shows that long-term expo‑
sure to aircraft noise will increase the risk of cardio‑
vascular diseases such as hypertension， coronary 
heart disease， and heart failure［4-5］. Moreover， there 
is sufficient evidence to show that aircraft noise will 
not only affect children’s learning ability and cogni‑
tive skills［6］ but may even lead to children’s mental 
health problems［7］.

Regarding environmental costs， the social cost 
of noise in Taipei Songshan Airport （TSA） is， on 
average， three times that of airport emissions. In 
2015， the social cost of aircraft noise in TSA is as 
high as 33 million euros［8］. When considering the ex‑
pected environmental impact per capita， the aviation 
noise damage within 6 km of the airport is domi‑

nant， while people living within 5 km of the com‑
mercial airport bear the cost of aircraft noise dispro‑
portionately［9］. The cost per decibel of aviation noise 
is higher than road and railway noise［10］. For each 
decibel increase in aircraft noise， the cost is 0.4% to 
0.6% higher than road noise［11］.

Aviation noise has become an important social 
issue. On the one hand， scientific and reasonable 
noise prediction can provide a theoretical basis for 
land planning near the airport， thus ensuring com ‑
munity residents’ physical and mental health and im ‑
proving the quality of life. On the other hand， it can 
reduce airport noise control costs and social property 
losses. That will undoubtedly enhance the public’s 
recognition of the civil aviation industry， promote 
the establishment of environmentally friendly urban 
airports， and promote the sustainable development 
of the civil aviation transport industry.

Therefore， based on the data of noise monitor‑
ing points near Seattle-Tacoma International Air‑
port （SEA）， this paper uses Python programming 
language to build multiple linear regression （MLR） 
and random forest （RF） regression models for noise 
prediction. It can not only investigate the feasibility 
and advantages of the machine learning model in 
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noise prediction but also provide technical support 
for noise prediction of similar airports.

1 Literature Review 

Aeronautical noise prediction models are most‑
ly divided into two categories： Best practice model 
and scientific model. The former regards the aircraft 
as a single noise point source， which uses a data‑
base and sound propagation law to predict noise； 
the latter is a multi-source parameter model， which 
uses a component sound source model （including en‑
gine noise and fuselage noise） and sound propaga‑
tion model to predict noise［12］. However， the best 
practice model will not be satisfactory unless its pre‑
diction results are modified many times to improve 
the accuracy； the scientific model is very complex， 
the required component parameters are difficult to 
be obtained， and the cost is high. With the develop‑
ment of the artificial intelligence technology， some 
scholars have made exciting progress in using ma‑
chine learning models to predict aircraft noise. Zell‑
mann et al.［13］ applied two multiple linear regression 
models with different complexity and applicability to 
the fuselage and engine noise sources， respectively， 
and established a general aircraft noise emission 
model for 19 turbofan engine aircraft. Based on ra‑
dar data， noise readings， trajectory data， weather 
data， and other data for more than ten months， the 

LSTM model developed by Vela et al.［14］ accurately 
predicted aviation noise at ground monitoring points 
near Washington National Airport， with a mean ab‑
solute error of 2.3 dB. Revoredo et al.［15］ established 
a multilayer feedforward neural network model， 
which considers the dynamic relationship between 
flight parameters and 4D tracks. It is found that the 
model can not only compare the noise impact of dif‑
ferent arrival and departure procedures but also eval‑
uate the overall noise level in the airport.

2 Research Materials and Methods

2. 1 Overview of airport and monitoring points

SEA Airport is located in Seatac， Washington 
State. The airport has three runways： 16L/34R， 
16C/34C， and 16R/34L， covering a total area of 
2500 acres， about 40% of the area of Seatac. In 
2019， SEA’s passenger flow is 51.829 million per‑
son-times， making it the eighth busiest airport in the 
United States. At least 32 000 residents are affected 
by airport aircraft noise. The noise monitoring point 
is located at 1217 S 207th St， SeaTac， which is the 
No.17 monitoring point in the flight track monitor‑
ing system established by Seattle Port. As seen in 
Fig.1， the monitoring is in the south of the airport， 
3.8 km away from the center of the airport， and 1.6 
km from the nearest runway.

2. 2 Dataset　

The data set contains 20 869 data in six di‑

mensions ， including operation ， aircraft model ， 
engine model ， runway ， altitude ， and noise ， 

Fig.1　Overview of SEA airport and noise monitoring point
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from July to September 2020 to 2022. The Ordi‑
nalEncoder （·） function in the preprocessing 
module of the sklearn library is used to convert 

the categorical features to integer codes. The fre‑
quency histogram of each dimension is shown in 
Fig.2.

The numbers 1 and 2 in “Operation” represent 
approach and departure； the numbers 1 and 2 in 

“Aircraft model” represent DH8D， E75L； the num‑
bers 1， 2 and 3 in “Engine model” represent 
2 PWC PW150A， CF34-8E5G01， PW150A； the 
numbers 1， 2 and 3 in “runway” represent 16C， 
16L and 34L. The altitude of most samples is con‑
centrated around 800 m and 2 000 m， and the noise 
of most samples is mainly distributed between 84—
87 dB. The noise unit is sound exposure level 
（SEL）， and its calculation formula is shown in

SEL =∫
t0

tf

100.1LA,max dt (1)

Where LA，max represents the maximum A-weighted 
sound level， t0 and tf are the start and end time， re‑
spectively.

The cleaning of the original dataset includes 
three steps： Missing value test， type test， and outli‑
er test. First， the missing value test is used to re‑
move missing data and then unify data types. Then， 
the Z-score and inter-quartile range （IQR） methods 
are used to screen out suspected outliers. Finally， 
6.9% of the screened samples are manually re‑
viewed to determine whether to delete or retain 

them.

2. 3 Principle of multiple linear regression 
model

The multivariate linear regression model is a 
classical mathematical， statistical model that ex‑
plains the changes of dependent variables by con‑
structing a linear equation with multiple independent 
variables. Its principle is shown in

y= b0 + b1 x 1 + b2 x 2 + ⋯ + bn xn + μ (2)
where xi ( i = 1，2，…，n ) and y are independent and 
dependent variables， respectively； b0 is the con‑
stant， bi ( i = 1，2，…，n ) the partial regression coef‑
ficient， and μ the random error. This paper uses the 
ordinary least squares （OLS） method to calculate 
the partial regression coefficient in Eq.（2）.

2. 4 Principle of random forest regression model

The random forest model was proposed by Bre‑
iman in 2001. It originates from the idea of the Bag‑
ging algorithm and is a parallel integrated learning 
algorithm［16］. The model comprises multiple CART 
decision tree models and has good generalization 
ability and prediction performance［17］. The main 
steps of aircraft noise prediction based on the ran‑

Fig.2　Feature and label histogram
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dom forest model are as follows：
（1） Assuming that training set T contains W  

samples， the Bootstrap method is used to randomly 
select n groups of training subsets ｛t1，t2，…，tn｝， ti 
（i = 1，2，…，n ) and T have the same capacity. The 
probability that each sample will not be selected is 
( 1 - 1 ∕ W ) W

， and the unselected data is called out 
of bag data.

（2） The feature dimension of the original train‑
ing set and each training subset is H， and h features 
are randomly selected from H feature dimensions. 
According to the branch optimality criterion， the op‑
timal feature is selected from h features for node 
splitting to build a decision tree.

（3） Each decision tree grows as far as possible 
without pruning according to the preset parameters， 
and n decision trees constitute a random forest re‑
gression model.

（4） The mean value of n decision trees’ output 
values is taken as the final prediction result， and the 
prediction performance of the model can be evaluat‑
ed with out-of-bag data.

The principle of the random forest regression 
model is shown in Fig.3.

2. 5 Evaluation index　

In order to evaluate the effect of the above two 
machine learning models on aircraft noise prediction 
quantitatively， the root mean square error （RMSE） 
and coefficient of determination R2 are used as the 
basis.

Suppose yi is the actual value， ŷ i the predicted 
value， ȳ the average of the actual values， and n the 
total number. RMSE reflects the deviation degree 
between predicted and actual values［18］. The smaller 
the RMSE value， the better R2 reflects the fitting 
degree of the predicted value to the actual value［19］. 
The closer the R2 value is to 1， the better the fitting 
degree is. Their calculation formula is shown as

RMSE = 1
n ∑

i = 1

n

( )yi - ŷ i

2

(3)

R2 = 1 -
∑
i = 1

n

( )yi - ŷ i

2

∑
i = 1

n

( )yi - ȳ
2

(4)

3 Modeling Process and Discussion 
of Results

3. 1 Modeling process of multiple linear regres⁃
sion

First， the Pearson correlation coefficient be‑
tween each feature and the label is checked. The 
seaborn library’s heatmap（·） function is used to 
make a correlation coefficient diagram. It can be 
seen from Fig.4 that the absolute values of the corre‑
lation coefficients of all features and noise labels are 
on the left and right of 0.3， showing a weak correla‑
tion.

Then， the variance inflation factor （VIF） is cal‑
culated to test the multicollinearity of the indepen‑
dent variable. If the VIF value is greater than or 

Fig.3　Principle of random forest regression model

Fig.4　Pearson correlation coefficient diagram
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equal to 10， it indicates an obvious multicollineari‑
ty， and the independent variable needs to be elimi‑
nated. The calculation result of calling the vari‑
ance_inflation_factor（·） function in the statsmodes 
library is shown in Table 1. The VIF value of the 

“Operation” is 16.529 970， which is greater than 10. 
After deleting the “Operation” feature column， the 
VIF value of the remaining features is less than 10.

In order to avoid the impact of the numerical 
value of the category labels of “Operation” “Air‑
craft model” “Engine model” and “Runway” on the 
model training， the four columns of features are one-

hot coded. The MinMaxScaler（·） function to is 
used to normalize the “Altitude” feature column， 
and then the formula. ols（·）. fit（·） function in the 
API module of the statsmodes library is called to 
complete the modeling.

After the modeling is completed， the residual 
distribution histogram of the model is drawn. It can 
be seen from Fig.5 that the residual kernel density 
curve is close to the normal distribution curve. That 
is， the residual follows the normal distribution， indi‑
cating that the t value of the partial regression coeffi‑
cient is valid， the partial regression coefficient is 
meaningful， the F value of the model is valid， and 
the model fitting equation is meaningful.

3. 2 Modeling process of random forest regres⁃
sion

Before modeling， the one-hot encoding and 

normalization are also carried out， and then the 
GridSearchCV（·） function of the Sklearn library 
model_selection module is imported to search for 
the optimal parameters of the random forest model. 
That is， a variable containing the decision tree quan‑
tity list （n_estimators）， the maximum tree depth 
list of each decision tree （max_depth）， and the 
Scale list of the maximum number of features taken 
（max_features） is created. The list of minimum 
samples required by nodes （min_samples_split） are 
divided， and the optimal parameters through travers‑
al operation are obtained， as shown in Table 2.

When setting hyperparameters， if the number 
of decision trees is too small， it will lead to insuffi‑
cient training and a large deviation of prediction re‑
sults. If it is too large， it will increase unnecessary 
calculations. If the number of features used is too 
large， the model will be overfitted， reducing the 
generalization ability of the model. If the number is 
too small， the model will be underfitted， reducing 
the prediction accuracy.

In a decision tree， the formula for calculating 
the importance of variable Xj at node m is shown in

V Gini
jm = ∑

k = 1

K

Pmk( )1 - Pmk - Gml - Gmr (5)

where ∑
k = 1

K

Pmk( )1 - Pmk  is the Gini index calculation 

formula of node m， K the number of classes in the 
decision tree， and Pmk the estimated probability that 
the sample belongs to class k at node m； Gml and 
Gmr represent the Gini index of left and right nodes 
split by node m， respectively. The importance coef‑
ficients of variable Xj at each node are summed to 
get the importance coefficients of variable Xj in this 
decision tree， as shown in Eq.（6）； the average val‑
ue of the importance coefficient of the variable Xj in 
all decision trees is taken to obtain the importance 
coefficient of the variable Xj in this random forest 
model， as shown in Eq.（7）.

Table 1　VIF factor value

Feature
Operation

Aircraft model
Engine model

Runway
Altitude

Previous VIF factor
16.530 034
2.017 232
1.772 234
8.141 861
7.993 787

Rear VIF factor
-

1.976 448
1.772 228
4.077 224
4.104 425

Table 2　RF model parameters

Keyword
n_estimators
max_depth

max_features
min_samples_split

Parameter list
[240, 250, 260, 270]

[5, 6, 7, 8]
[0.4, 0.6, 0.8]

[100, 200, 300, 400]

Optimal value
250

7
0.8
100

Fig.5　Residual distribution histogram
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V Gini
ij = ∑

m = 1

M

V Gini
jm (6)

V Gini
j = 1

n ∑
i = 1

n

V Gini
ij (7)

where M is the number of nodes containing variable 
Xj in the ith tree， and n the number of decision trees 
in the random forest model.

The feature_importances_ function calculates 
the importance coefficients of five features， as 
shown in Fig. 6. It can be seen that the importance 
coefficients of “Altitude” and “Aircraft model” fea‑
tures in the random forest model are higher， reach‑
ing 0.487 333 and 0.351 191， respectively， while 
the importance coefficients of “Operation” features 
are only 0.008 547.

The tree module of the sklearn library and the 
pydotplus library is imported， and the E function is 
called to visualize the specified decision tree in the 

random forest.
3. 3 Forecast results　

The train_test_split（·） function of the mod‑
el_selection module in the sklearn library is called to 
divide 10% of the data into a verification set， and the 
random seed “random_state” is not set. The two 
models are used to predict ten times， and the partial 
results of one experiment are shown in Fig.7.

In Fig.7， the gray solid line is the actual value 
in the validation set， and the red dotted line and 
blue dashed line are the prediction values of the mul‑
tivariate linear regression model and the RF model， 
respectively. It can be seen that the MLR model per‑
forms poorly in the peak part of the prediction， 
while the RF model performs relatively well.

The RMSE and R2 values of the predicted data 
from ten experiments are calculated and a line chart 
and box chart are drawn， as shown in Fig.8.Fig.6　Importance coefficient diagram

Fig.7　Partial forecast results

Fig.8　RMSE and R2 value diagrams
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In Figs.8（a） and （c）， the red dotted line is the 
RMSE and R2 value of the MLR model， and the 
blue dashed line is the RMSE and R2 value of the 
RF model. In Figs. 8（b） and （d）， the line in the 
middle of the box is the median， the triangle is the 
average value， and the dot is the abnormal value. 
The R2 value of the MLR model fluctuates between 
65.26% and 72.12%， with an average of 69.108%， 
and the RMSE value fluctuates between 0.78 and 
1.16， with an average of 0.92. The R2 value of the 
RF model fluctuates between 69.03% and 76.82%， 
with an average of 74.469%， and the RMSE value 
fluctuates between 0.7 and 1.12， with an average of 
0.814.

4 Conclusions

According to the above experimental results， 
the following conclusions can be drawn.

（1） Not only the best practice model and scien‑
tific model but also the machine learning model can 
predict aviation noise and show good results. Com‑
pared with the scientific model， the data required by 
the machine learning model prediction is easier to be 
obtained. Compared with the best practice model， 
the machine learning model prediction process is 
more straightforward， and the prediction results do 
not need to be supplemented by various amend‑
ments.

（2） In the data set used in this experiment， 
“Operation” “Aircraft model” “Engine model” 
“Runway” and “Altitude” are the input features， 

and the SEL noise value is the label. MLR model is 
more sensitive to outliers in samples， while the inte‑
grated algorithm RF model has better anti-noise abil‑
ity and generalization ability. On the above datas‑
ets， the prediction performance of the RF model is 
better than that of the MLR model. Specifically， the 
average R2 value in the RF model is 5.361% higher 
than that in the MLR model， and the average 
RMSE value is 0.106 lower than that in the MLR 
model.

（3） This experiment uses the data from SEA 
airport in the summer， but it does not include meteo‑

rological data. That is to say， the impact of tempera‑
ture difference between day and night on noise is not 
considered. The accuracy of model prediction can be 
further improved by integrating more meteorological 
data.
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基于机器学习模型的飞机噪声预测

丰  豪，周亚东，丁  聪，曾维理，郭文韬
（南京航空航天大学民航学院，南京 211106，中国）

摘要：为了探索最佳实践模型和科学模型之外的飞机噪声预测方法，采用多元线性回归模型和随机森林回归模

型对西雅图‑塔科马国际机场 2020—2022 年夏季的飞机噪声值进行了预测。实验验证了机器学习模型在飞机噪

声预测任务中的可行性和优势，结果表明随机森林回归模型预测结果的 R2 均值为 74.469%，比多元线性回归模

型预测结果的 R2 均值高出 5.361%；随机森林回归模型预测结果的 RMSE 均值为 0.814，比多元线性回归模型预

测结果的 RMSE 均值低 0.106。

关键词：飞机噪声排放；飞机噪声预测；多元线性回归；随机森林回归
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