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Abstract: In order to optimize airspace resources and reduce operational costs， this paper investigates the air route 
network planning problem considering the avoidance of prohibited， restricted， and danger zones （PRDs）. Firstly， the 
airspace is discretized using the grid method， and the airspace information is binarized to enable the avoidance of these 
three zones. Then， a mathematical model is established with the objective of minimizing the total route length， 
considering factors such as nonlinear coefficient and flow constraints. The pathfinding process incorporates distance 
priority coefficients and collision risk coefficients， and the cellular automata algorithm is employed to solve the 
problem. Additionally， the results are further smoothed to obtain the shortest path. Finally， a case study is conducted 
using the air route network planning of Guangzhou FIR for verification. The results demonstrate that， compared to the 
current routes， the proposed approach effectively reduces the route length， decreases the number of waypoints， and 
lowers the nonlinear coefficient of the routes. These findings highlight the effectiveness of the improved cellular 
automata algorithm， which has important implications for real-world air route network planning.
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0 Introduction 

With the continuous development of the civil 
aviation industry， air traffic flow has been steadily 
increasing. Despite the recent slowdown in the in⁃
dustry due to the impact of the pandemic， the civil 
aviation industry is now regaining its vitality as the 
situation improves. The air route network planning 
is a crucial aspect of airspace planning and plays a vi⁃
tal role in optimizing airspace resources， enhancing 
airspace capacity， and alleviating air traffic conges⁃
tion. The rationality of air route network planning is 
of paramount importance to the operational efficien⁃
cy and effectiveness of the civil aviation transporta⁃
tion system.

Currently， there are three main methods for air 
route planning： Global route planning， local route 

planning， and high-speed route planning. Global 
route planning involves completely abandoning the 
current route network within a country or region and 
designing a new layout based on top-down planning 
principles. Local route planning optimizes certain or 
all waypoints in the existing route using optimization 
algorithms or heuristic methods without completely 
reconstructing the current routes. High-speed route 
planning aims to establish “highways” in the sky. 
Considering the fragmented airspace in China， local 
route planning is the most suitable method for air 
route planning in our country.

China has numerous prohibited， restricted， 
and danger zones （PRDs）. According to data statis⁃
tics， more than 80% of traffic control in the central 
and southern regions is due to military activities. 
Avoiding these “PRDs” in route planning can signif⁃
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icantly reduce the risk of traffic control. Therefore， 
considering the restrictions of these zones in route 
planning is of great practical research significance.

Currently， the most commonly used and effec⁃
tive method to avoid PRDs is the combination of 
grid modeling and path planning algorithms. Com⁃
mon path optimization algorithms include Dijkstra’s 
algorithm， A* algorithm， cellular automata algo⁃
rithm， and genetic algorithm. Dijkstra’s algorithm 
often has efficiency issues when dealing with large-

scale path planning problems， while heuristic algo⁃
rithms like genetic algorithm and A* algorithm may 
easily fall into local optima. In complex network en⁃
vironments， cellular automata have unique advan⁃
tages due to their discrete nature， which simplifies 
many complex problems. Additionally， the updated 
rules of cellular automata models do not rely on spe⁃
cific mathematical functions， making them more in⁃
tuitive and straightforward to express. In 2014， 
Wang et al.［1］ proposed a method for optimizing the 
air route network while satisfying the restrictions of 

“PRDs”. They used a local optimization approach 
and constructed an optimization model based on grid 
modeling. They also used cellular automata（CA） 
theory to formulate solving rules. However， the op⁃
timized air route network resulted in compromises in 
terms of both economic efficiency and accessibility. 
In the same year， Wang and Gong［2］ conducted opti⁃
mization research on the PRD-based air route net⁃
work using CA modeling. They established an opti⁃
mization model with the objective of minimizing the 
total operational cost to improve the economic effi⁃
ciency and safety of the route network within seg⁃
mented airspace. However， this came at the cost of 
increased total route length. In 2015， Gong［3］ com⁃
bined CA to obtain the optimal solution for the air 
route network optimization model on a global scale. 
He validated the model using five representative 
routes in the Beijing Flight Information Region. 
However， this model only supported the optimiza⁃
tion of single routes. In 2017， Wang et al.［4］ pro⁃
posed an optimization model for the air route net⁃
work with the objective of minimizing the total oper⁃
ational cost. The model included constraints such as 
airspace restrictions， route network capacity， and 

non-linear coefficient. They used CA for solving. 
But there is still room for improvement in terms of 
algorithm efficiency. In 2020， Shi［5］ compared and 
summarized the advantages and disadvantages of 
BFS algorithm， Dijkstra’s algorithm， A* algo⁃
rithm， and cellular automata algorithm in air route 
optimization based on the “PRDs” restrictions. 
They made improvements to the A* algorithm by 
optimizing the straight-line path， but the accuracy of 
the solution may be affected by the heuristic func⁃
tion. In 2022， Zhang et al.［6］ proposed an optimiza⁃
tion strategy that can significantly reduce the time 
consumption of robot path planning by simplifying 
the kernel and improving the greedy strategy-based 
cellular automata.

Although many researchers have applied the 
cellular automaton algorithm to path planning prob⁃
lems， there are still some limitations when it comes 
to handling diagonal obstacles. This paper proposes 
improvements to address this issue. Additionally， 
distance priority coefficients and collision risk coeffi⁃
cients are introduced to enhance the efficiency of the 
algorithm and obtain safer routes. Finally， the opti⁃
mized paths are further smoothed.

1 Problem Description

1. 1 Environment modeling

The process of environmental modeling also in⁃
volves rasterizing airspace information. Rasteriza⁃
tion is the process of converting airspace information 
into binary data that can be recognized by comput⁃
ers， which is then used for route planning. The 
steps involved in rasterization are as follows.

Step 1 Obtain the latitude and longitude coor⁃
dinates of the boundary points of the planned air⁃
space， as well as the coordinates of the waypoints 
and the location information of “PRDs”. Use this in⁃
formation to create a CAD representation of the air⁃
space map.

Step 2 Determine the appropriate grid size 
based on the actual airspace environment and divide 
the two-dimensional space into grids. To ensure 
flight safety， the grid size should not be smaller than 
the vertical interval of the aircraft. Set the maximum 
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length of the environment as L， the maximum 
width as W， and the scale of the grid cube as a. The 
total number of grids can be calculated as ( L/a )*
(W/a ).

Step 3 Determine the attributes of each grid 
and utilize MATLAB to generate a binary image 
and a binary matrix. The binary image consists of 0s 
and 1s， where 0 represents the barrier-free area， 
and 1 the barrier area or “PRDs”. This is done by 
assigning a raster attribute value of 1 to the corre⁃
sponding grid cells

Step 4 Represent each grid using a two-di⁃
mensional array to denote its location， completing 
the construction of the grid map. The 2D array 
A ( x，y ) represents the rows and columns in the ras⁃
ter map.

1. 2 Assumptions

In the established air route network planning 
model， the following assumptions are made to sim ⁃
plify the problem and facilitate the optimization pro⁃
cess.

（1） All aircraft fly along the center of the route 
at a constant speed， regardless of any differences in 

aircraft type. This assumption allows for a uniform 
representation of aircraft movement and simplifies 
the optimization calculations；

（2） The air route network is treated as a two-

dimensional plane， without considering altitude in⁃
formation. This simplification allows for easier visu⁃
alization and analysis of the air route network， but it 
neglects the impact of altitude on route planning and 
safety considerations；

（3） The “PRDs” are considered as impenetra⁃
ble areas， meaning that aircraft cannot pass through 
these areas. However， the boundaries of the PRDs 
are considered safe areas；

（4） Airports are treated as fixed waypoints， 
meaning they do not move. Additionally， the radio 
stations named after the airports， which serve as 
waypoints for navigation， are considered movable 
waypoints. This distinction allows for more flexibili⁃
ty in route planning；

（5） The model only considers the cruise phase 
of the aircraft and does not take into account the 
climb and descent phases. This simplification allows 
for a focus on optimizing the main phase of flight 
and avoids the added complexity of considering alti⁃
tude changes.

1. 3 Mathematical model

Suppose N represents the air route network 
planning model， in which the meaning of each pa⁃
rameter is shown in Eqs.（1）—（7）.

N = {V, D, I, F, U, B, C } （1）
（1） Waypoint constraints
V ( N ) represents the set of waypoints， the 

waypoints are divided into fixed waypoints and mov⁃
able waypoints， and the number of fixed waypoints 
and non-fixed waypoints are represented by m and 
n，respectively. When i ≤ m， V i represents a fixed 
waypoint， that is， an airport point. And when m +
1 ≤ i ≤ m + n， it represents a non-fixed waypoint， 
that is， a navigation station.

V = {V 1 ,V 2 ,⋯ ,V m ,V m + 1 ,V m + 2 ,⋯ ,V m + n } （2）
（2） Non-linear coefficient constraints　
D ( N ) represents a collection of distances dij 

between waypoints， dij the actual distance between 
V i and V j， I ( N ) the collection of nonlinear coeffi⁃

Fig.1　Information rasterization flowchart
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cients， Iij the nonlinear coefficient between V i and 
V j， and Imax the maximum value of the acceptable 
nonlinear coefficient， which can be used to measure 
the convenience of the entire route network， the 
cost of the route network， and the airspace utiliza⁃
tion. O ij represents the Euclidean distance between 
V i and V j.

dij =
ì
í
î

ïïïï

ïïïï

( xi - xj )2 +( yi - yj )2 There is a route 
between V i and V j

0 Else
（3）

Iij =
∑
i = 1

m

∑
j = 1

m

dij

∑
i = 1

m

∑
j = 1

m

O ij

≤ Imax         i ≠ j （4）

（3） Flow constraints
F ( N ) represents the flow collection between 

the waypoints， and fij the flight flow between V i and 
V j， which should be less than the capacity Gij be⁃
tween two nodes.

∑
i = 1

m + n

∑
j = 1

m + n

fij ≤ Gij         i ≠ j （5）

（4） “Three zones” constraints
U ( N ) indicates the “PRDs” in the air travel 

network， and line  (V i，V j ) represents the route be⁃
tween V i and V j， which cannot pass through the 

“PRDs”.
line (V i ,V j )∩ U = ∅  i ≠ j,i ≥ 0,j ≤ m + n（6）
（5） Air route network boundary constraints
B ( N ) indicates the boundary constraint of the 

air route network node， and the air route network 
node must be located in the planning area.

xmin ≤ xi ≤ xmax,ymin ≤ yi ≤ ymax （7）
C ( N ) represents the total length of the route， 

and the air route network planning model can be ex⁃
pressed by the following formula. Taking the short⁃
est total route length as the goal， the objective func⁃
tion can be expressed by Eq.（8）. Nonlinear coeffi⁃
cient constraints， flow constraints， and waypoint 
boundary constraints are respectively shown as 
Eqs.（8）—（12）.

min C = ∑
i = 1

m + n

dij （8）

s. t. line (V i ,V j )∩ U = ∅ （9）
Iij ≤ Imax （10）

∑
i = 1

m + n

∑
j = 1

m + n

fij ≤ Gij （11）

xmin ≤ xi ≤ xmax,ymin ≤ yi ≤ ymax （12）

2 Path Search

2. 1 Introduction to cellular automata algorithms

CA， initially proposed by John von Neumann 
in 1950 to simulate the self-replication of biological 
cells， has now found widespread applications in vari⁃
ous fields such as physics simulation， biological 
modeling， and path planning.

There are three types of grid structures in cellu⁃
lar automata： Triangular grids， square grids， and 
hexagonal grids， as shown in Fig.2. Square grids 
are intuitively simple and can be cleverly integrated 
with grid-based modeling in geographic environ⁃
ments. Therefore， this paper adopts square grids for 
the evolution of cellular automata.

Cellular automata consist of four key elements： 
Cells， cell space， neighbors， and state transition 
rules， as represented by

CA ={R,LD ,J,g} (13)
where CA represents the cellular automaton system， 
R the set of cell states， LD the cell space， J the state 
of all adjacent cells to the current cell， and g the state 
transition rule of the cellular automaton， which deter⁃
mines the evolution of the state based on the current 
state of the cell and the states of its neighbors.

R ={Rx,y ∈ { 0,1} } (14)
where 0 and 1 represent the working state and the 
sleep state， respectively.

The working process of the cellular automaton 
model involves traversing each cell in the space ac⁃
cording to the evolutionary rules. The evolution 
starts from the cell near the endpoint and progresses 
towards the starting point. The evolution process 

Fig.2　Grid type diagram
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terminates when the state values of the neighboring 
cells around the starting point change. This process 
ensures that the evolution propagates throughout the 
system［7］.

2. 2 Evolutionary rules

There are typically three neighbor models for 
square grid cellular automata： Von-Neumann， 
Moore， and extended Moore models［8］， as shown in 
Fig.3. In Fig.3， the central grid represents the cur⁃
rent cell， and the gray grids represent the neighbor⁃
ing cells that can be moved to.

In this study， the cells are divided into interme⁃
diate cells and boundary cells based on their posi⁃
tions. The Moore neighbor model is adopted， which 
considers the eight nearest neighbor cells of the cur⁃
rent cell as reachable cells.

The evolution rule is as follows： Let ( c，t ) rep⁃

resent the state value of the intermediate cell c at 
time t， and let ( n，t ) represent the state value of any 
neighbor of the intermediate cell c. If the current 
state value of the cell is 0 or greater than 3， and 
there is a neighbor cell with a value greater than 3， 
then the neighbor cell with the smallest value great⁃
er than 3 is selected， and 1 is added to its value. As 
expressed in Eq.（15）， this process is repeated until 
all cells no longer meet the evolutionary conditions， 
resulting in the optimal solution for path planning.

（c，t+1）=ì
í
î

min [( n，t )≥ 3 ]+ 1         [ ( c，t )= 0 or ( c，t )≥ 3 ]  and ∃ ( n，t )≥ 3
                   ( c，t )                                                    Else

（15）

2. 3 Algorithm improvement

In the given Fig. 4， the central cell represents 
the current cell， and the black grid represents an un⁃
reachable obstacle cell. Based on the evolution rules 
of cellular automata， the current cell can move in 
eight directions： due north， due east， northeast， 
northwest， southwest， southeast， due west， and 
due south.

However， in real-world scenarios， there are 
cases where certain directions are blocked by obsta⁃
cles， making it impossible for the aircraft to pass 
through them. To address this， constraints can be 
added to the evolution rules. For example， if there 
are two diagonally adjacent obstacle cells， the cor⁃

ner cells included within the adjacent obstacle cells 
are considered unreachable.

By incorporating these constraints， the results 
obtained from the cellular automata model become 
more realistic and meaningful.

To enhance the algorithm’s efficiency， an op⁃
timization process incorporates a priority coefficient 
comprising two components： The distance priority 
coefficient and the collision risk coefficient. In 
Fig.5， the target cell is located northeast of the cur⁃
rent cell. Based on the distance advantage， the 
reachable cells in the northeast， due east， due 
north， northwest， southeast， due west， due 
south， and southwest directions are prioritized se⁃
quentially. The corresponding coefficients assigned 
to these directions are 8， 6， 6， 4， 4， 2， 2， and 
1， respectively. The collision risk coefficient is de⁃
termined by the number of obstacle cells in the 
neighbors of each reachable cell. Let α denote the 
distance priority coefficient of the reachable cell， β 
the number of obstacle cells in the neighbors of the 
reachable cell， and ( 8 - β ) indicate the collision 
risk coefficient of the reachable cell. The priority 
coefficient of the reachable cell can be calculated by

Fig.3　Three neighborhood models for cellular automata 
square grids

Fig.4　Movable direction of the target cell
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γ = α +( 8 - β ) (16)
In the given scenario， we can start by assigning 

the following initial state values to the cells： 1 for 
the cells containing the “PRDs”， 0 for the free 
cells， 2 for the origin cell， and 3 for the destina⁃
tion cell. The evolution process starts from time 
t=0 and continues until the last iteration， denoted 
as t=n. During each iteration， the state values of 
the cells are updated based on those of their neigh⁃
boring cells. The goal is to determine the shortest 
path from the origin to the destination. After the 
last evolution， when t=n， we can calculate the 
distance from each cell to the destination by sub⁃
tracting 3 from their state value. The resulting val⁃
ue represents the distance of each cell from the des⁃
tination， except for the starting point cell. To find 
the optimal path between the origin and the destina⁃
tion， we can trace back the evolution path of the 
cell with the smallest distance value. This path， 
followed through each iteration， represents the 
shortest path from the origin to the destination.

In the improved CA algorithm， the process of 
smoothing the path by straight line optimization is a 
crucial step. In the initial algorithm， the path has 
more turning points， which results in insufficiently 
smooth trajectories. To solve this problem， we in⁃
troduce the straight line optimization method. The 
process is as follows： First， the three neighboring 
points are checked in the path. If the line between 
the first point and the third point does not cross an 
obstacle， the middle point can be removed from the 
path. This helps to straighten the path， reduce the 
number of turning points and achieve a smoother tra⁃
jectory.

3 Case Study 

The Guangzhou Flight Information Region 
（FIR） is one of the busiest airspace areas in China. 
As air traffic continues to grow， the route network 
within the Guangzhou FIR has encountered issues 
such as longer detour distances and incomplete one-

way routes. In this study， we focus on several busy 
routes within the Guangzhou FIR， including A461， 
A599， R343， and W19. Our objective is to plan， 
model， and solve these routes to validate the feasi⁃
bility of the proposed approach.

Fig. 6 illustrates the airspace environment map 
of the Guangzhou FIR. The black areas represent 
the inaccessible “PRDs” regions. The macro binary 
map in Fig.6（a） provides an overview of the air⁃
space environment， while the detailed binary map in 
Fig. 6（b） corresponds to the numerical values and 
the “PRDs” areas. This division allows us to catego⁃
rize the airspace of the Guangzhou FIR into reach⁃
able and unreachable regions， facilitating the avoid⁃
ance of the “PRDs” areas during the route network 
planning process.

We select six routes for the optimization experi⁃
ment. We compare the original CA algorithm， Dijk⁃
stra’s algorithm， and the A* algorithm. The evalua⁃
tion of the optimization results is based on three indi⁃
cators： Route length， non-linearity coefficient， and 
number of turning points. The optimized routes are 
shown in Fig.7.

The results of different algorithms are present⁃
ed in Table 1. The A* algorithm’s performance is 
less stable due to the accuracy of the heuristic func⁃
tion. Dijkstra’s algorithm and the original CA algo⁃
rithm demonstrate advantages in terms of route 

Fig.5　Schematic diagram of improvement rules

Fig.6　Airspace environment binarization
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length and non-linearity coefficient. However， they 
tend to have more turning points， resulting in less 
smooth paths. Additionally， the CA algorithm ex⁃
hibits higher efficiency in handling large-scale maps 
compared to Dijkstra’s algorithm. The improved 
CA algorithm not only offers higher efficiency but al⁃
so effectively reduces the route length and non-lin⁃
earity coefficient without crossing the “PRDs” re⁃
gions. The optimization ratios range from approxi⁃
mately 10% to 44%. Furthermore， the optimized 
paths generated by the improved CA algorithm are 
smoother.

Since the optimization results may be affected 
by the grid size， this paper selects the grid size of 
10 km， 5 km and 3 km for example optimization， 
and compares and verifies the route length， nonlin⁃
ear coefficient and number of waypoints of the opti⁃
mized route.

According to the data in Tables 2—4， the 

route planned by the improved cellular automata al⁃
gorithm can not only effectively avoid the “PRDs”，  
but also can effectively shorten the length of the 
route. The reduction ratio is about 19%—44 % ， 
and the nonlinear coefficient is also reduced in the 
same proportion. This is of great significance for air⁃
lines to shorten the flight range， reduce flight time， 
reduce flight costs， and improve the core competi⁃
tiveness of airlines. At the same time， the number 
of waypoints has also been reduced to a certain ex⁃
tent.

As shown in Fig.7， the figure shows the aver⁃
age optimization ratio of each indicator under differ⁃
ent grid sizes. The grid size is different， the optimi⁃
zation effect is different. In general， the smaller the 
grid size， the more accurate the identification of ob⁃
stacles， the better the optimization effect， but the 
slower the optimization speed.

Table 1　Comparison of optimization results of different algorithms

Parameter

Length/km

Number of 
waypoints

Coefficient

Algorithm

Dijkstra
A*
CA

Improved CA
Dijkstra

A*
CA

Improved CA
Dijkstra

A*
CA

Improved CA

Air route
A

372.33
398.43
372.33
346.64

41
18
19
2

1.08
1.15
1.08
1.00

B
435.02
468.54
435.02
409.10

7
23
13
4

1.18
1.27
1.18
1.11

C
466.38
511.11
466.38
442.80

13
40
19
7

1.08
1.18
1.08
1.02

D
607.37
678.20
622.26
596.03

5
40
21
6

1.03
1.15
1.06
1.01

E
273.02
273.02
273.02
265.46

5
10
9
3

1.06
1.06
1.06
1.03

F
337.37
423.09
337.37
337.37

13
26
4
4

1.06
1.32
1.06
1.06

Fig.7　Optimization results of different algorithms
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4 Conclusions

This study primarily focuses on improving CA 

algorithm by addressing its limitations in obstacle 
avoidance. By introducing a priority coefficient and 
implementing straight-line optimization， the algo⁃
rithm􀆳s path optimization speed is accelerated， and 
the optimized paths are smoothed.

Comparisons with different algorithms demon⁃
strat that the improved CA algorithm outperforms 
others in terms of route length， non-linearity coeffi⁃
cient， and number of turning points. Additionally， 
the comparison of algorithm efficiency at different 
grid resolutions reveals that as the grid size decreas⁃
es， the algorithm 􀆳s accuracy improves， although the 
improvement rate diminishes. It suggests that pursu⁃
ing accuracy blindly is not necessary， as a balance 

Fig.8　Comparison of optimization results for different grid sizes

Table 4　Comparison of the number of waypoints after route optimization for different grid sizes

Air route

A
B
C
D
E
F

Before 
optimization

9
9
6
9
8
7

Grid size/km
10

After 
optimization

3
5
6
5
4
4

Reduction 
ratio /%

66.67
44.44

0
44.44
50.00
42.86

5
After

optimization
2
4
7
6
3
4

Reduction
ratio /%

77.78
55.56

-16.67
33.33
62.50
42.86

3
After

optimization/km
2
4
6
6
3
5

Reduction 
ratio/%

77.78
55.56

0
33.33
62.50
28.57

Table 2　Comparison of route length after optimization for different grid sizes

Air route

A
B
C
D
E
F

Before opti⁃
mization/km

467.96
729.74
772.73
814.37
340.19
461.49

Grid size/km
10

After
optimization/km

380.52
432.36
472.77
627.93
266.67
344.79

Reduction
ratio/%

18.69
40.75
38.82
22.89
21.61
25.29

5
After

optimization/km
346.64
409.10
442.80
596.03
265.46
337.37

Reduction
ratio/%

25.93
43.94
42.70
26.81
21.97
26.90

3
After

optimization/km
346.20
406.20
441.60
595.92
260.67
333.87

Reduction
ratio/%

26.02
44.34
42.85
26.82
23.38
27.65

Table 3　Comparison of nonlinear coefficients after optimization for different grid sizes

Air route

A
B
C
D
E
F

Before 
optimization

1.35
1.98
1.78
1.38
1.32
1.45

Grid size/km
10

After 
optimization

1.07
1.17
1.08
1.07
1.06
1.08

Reduction 
ratio/%

20.74
40.91
39.33
22.46
19.70
25.52

5
After 

optimization
1.00
1.11
1.02
1.01
1.03
1.06

Reduction 
ratio/%

25.93
43.94
42.70
26.81
21.97
26.90

3
After 

optimization/km
1.00
1.11
1.02
1.02
1.03
1.04

Reduction 
ratio/%

25.93
43.94
42.70
26.09
21.97
28.28
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between accuracy and efficiency can be achieved.
In conclusion， this research contributes to the 

field of flight route optimization by providing a reli⁃
able and efficient algorithm that generates shorter， 
smoother， and more optimized flight paths. Al⁃
though classical algorithms can compute the shortest 
path efficiently， in future research， neuronal cellular 
automata models can be introduced to adapt to more 
complex and intractable tasks and enhance the gener⁃
alization ability of models［9］.
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基于改进元胞自动机算法的航路网络规划研究

牛科新 1， 李桂芳 2， 黄 潇 1， 田 勇 1

（1.南京航空航天大学民航学院，南京  211106，中国； 2.南京航空航天大学通用航空与飞行学院，南京  211106，中国）

摘要：为优化空域资源、提升空域容量、缓解空中交通拥堵，本文研究了“三区”规避情况下的航路网络规划问题。

首先通过栅格法进行空域离散化建模，将空域信息二值化，以此实现“三区”规避；接着以航路总长度最小为目

标，考虑非直线系数、流量约束等建立数学模型，在寻路过程中添加距离优先系数和碰撞风险系数，利用元胞自

动机算法求解，并在此基础上增加了路径平滑过程；最后以广州飞行情报区航路网络规划为实例进行验证。结

果表明，相比于现行航路，航路长度有效缩短、航路点个数减少且航路的非直线系数也有所降低，验证了改进的

元胞自动机算法的有效性，对现实的航路网络规划具有重要的参考意义。

关键词：空中交通管理；空域管理；航路网络规划；“三区”规避；元胞自动机算法
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