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Rotor Fault Diagnosis Based on Weighted D‑S Evidence Theory
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Abstract: The main rotor is the lift surface and control surface of a helicopter， and its normal health is crucial for the 
safety of the helicopter. The rotor fault diagnosis technology is still a weak link in the field of helicopter health and 
usage monitoring system （HUMS）， and the development of rotor fault diagnosis technology is of great value. Based 
on information fusion technology， the mechanism of rotor failure is analyzed， the rotor failure model is established， 
and the fault feature information of blades， hub and airframe under different faults are obtained by fluid structure 
coupled simulation， thus generating data sets for network training and verification. Then genetic algorithm-

backpropagation （GA-BP） neural network is used to diagnose three types of helicopter rotor faults， namely， 
misadjusted trim-tab， misadjusted pitch control rod and imbalanced mass. Three cascaded levels of networks are used 
to identify fault classification， location and severity， respectively. Finally， the rotor faults are diagnosed and analyzed 
by the weighted Dempster-Shafer （D-S） evidence theory. The results demonstrate that the rotor blade fault diagnosis 
method based on the improved D-S evidence theory can be successfully applied to rotor blade fault diagnosis with 
good identification results.
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0 Introduction 

The helicopter rotor system has complex me‑
chanical structure， more complex aerodynamic and 
dynamic environment. There are many factors that 
affect the safety of the rotor system， so that each 
failure has many causes. Once a fault occurs， it will 
easily lead to a chain reaction， and then multiple 
faults will occur concurrently. For example， the 
aerodynamic imbalance of the rotor blades causes ab‑
normal blade flapping motion， and the dynamic 
loads at the blade root and hub are too large， which 
in turn cause the vibration of the airframe to intensi‑
fy. Its failure rate accounts for a large proportion of 
helicopter failures， reaching 20%， and 35% of heli‑
copter class-one flying accidents are related to rotor 
failure［1-2］. Therefore， it is very necessary to study 
the fault diagnosis technology of helicopter rotor. 
This is of great significance to improving the reliabil‑

ity of the helicopter， flight safety and reducing main‑
tenance costs［3-4］.

The rotor is the lifting and control surface of a 
helicopter， and the proper functioning of its state is 
crucial for the safety of the helicopter. Due to the 
complexity of the rotor’s structure and dynamics， it 
is challenging to obtain real-time fault characteristic 
signals from the rotor. Therefore， rotor state moni‑
toring and fault diagnosis remain weak areas in the 
field of helicopters.

In rotor fault diagnosis， information obtained 
from individual sensors is often limited and may pro‑
vide a partial view of the system. Moreover， the in‑
formation collected by sensors is frequently incom ‑
plete. Information fusion techniques are employed 
to process data gathered from multiple sensors， and 
by separating true data from noise， useful informa‑
tion can be extracted. This enables a comprehensive 
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and multi-dimensional diagnosis of faults from vari‑
ous perspectives. Khazaee et al.［5］ conducted the re‑
search on fault diagnosis of a planetary gearbox us‑
ing feature-level acoustic and vibration data fusion. 
They employed artificial neural networks and the 
Dempster-Shafer （D-S） evidence theory for this 
study. Through the information fusion approach， 
the diagnostic accuracy was enhanced from 88.4% 
to 98.6%， effectively improving the precision of 
planetary gearbox fault diagnosis. Azamfar et al.［6］ 
conducted research on gearbox fault diagnosis using 
a multi-sensor data fusion approach， particularly fus‑
ing current signals from electric motors at the data 
level. They employed convolutional neural net‑
works for this study and validated the effectiveness 
of multi-sensor data-level fusion in gearbox fault di‑
agnosis.

This paper focuses on information fusion tech‑
nology to fuse the fault identification results diag‑
nosed according to different fault feature information 
under the same fault type. Comprehensive and multi-
angle fault diagnosis is carried out to further im ‑
prove the recognition accuracy of rotor fault diagno‑
sis. Information fusion essentially involves the pro‑
cess of synthesizing different bodies of evidence into 
a new body of evidence within the same recognition 
framework. This synthesis is achieved using combi‑
nation rules based on the D-S evidence theory， 
which can effectively address uncertainties in infor‑
mation fusion.

However， this method has its limitations， par‑
ticularly when dealing with highly conflicting evi‑
dence， it may lead to conclusions that contradict 
facts. To address this issue， the paper will propose 
a weighted D-S evidence theory diagnostic model. 
Based on the evidence distance-weighted evidence 
combination rule， the weights of the evidence are 
optimized and allocated. This will effectively reduce 
evidence conflict and lead to improved fault recogni‑
tion rates.

1 Analysis of Rotor Failure Mecha‑
nism

Aimed at the common types of unbalanced 

faults of the rotor system， the typical characteristics 
of the faults in the response of the rotor and the 
body are found out through theoretical research. 
The unbalance faults of the rotor system mainly in‑
clude to the misadjusted trim-tab， misadjusted pitch 
control rod and imbalanced mass［7］. Through the 
analysis of the transmission path of rotor fault infor‑
mation， the influence law between fault and re‑
sponse is explored［8］. It lays a theoretical foundation 
for constructing the mapping relationship between 
rotor failure and response.

1. 1 Rotor failure mode analysis　

Fault factors in rotor systems can be primarily 
categorized into two types. The first type involves 
changes in the mass distribution of rotor blades， al‑
tering the centrifugal force characteristics of the 
blades. The second type affects the aerodynamic 
force distribution on either the entire rotor blade or a 
specific section of the blade， leading to aerodynamic 
imbalance faults. Therefore， based on these imbal‑
ance factors， rotor system faults can be equivalently 
categorized into three fault modes： trailing-edge flap 
misalignment， pitch link misalignment， and rotor 
blade mass imbalance.

1. 2 Basis for rotor imbalance fault diagnosis　

In the state of helicopter flight， rotor blades 
maintain balance and undergo deformation due to 
the combined effects of aerodynamic loads， centrifu‑
gal forces， and inertial forces［9］. By placing sensors 
on the rotor blades， it is possible to acquire data on 
the stress and deformation of each blade， allowing 
for the monitoring of their individual states. In the 
event of a malfunction in one of the blades， the vec‑
tor of aerodynamic loads， centrifugal forces， and in‑
ertial forces acting on that particular blade differs 
from those acting on the other healthy blades. This 
discrepancy results in unique stress and deformation 
patterns in the affected blade compared to the other 
blades. By analyzing the blade loads， it is possible 
to diagnose the blade’s condition based on changes 
in its deformation components. This study focuses 
on diagnosing rotor faults by examining deformation 
components at the root of the rotor blade.
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For an ideal rotor system， the entire rotor re‑
mains balance under the influence of aerodynamic 
forces on each rotor blade and the hub forces. The 
hub loads， represented as a set of six hub loads or 
hub six force components， should occur at frequen‑
cies that are integer multiples of the product of the 
number of rotor blades k and the rotor’s rotational 
speed Ω， i.e.， 1kΩ， 2kΩ， 3kΩ， and so on［10］. When 
there is an imbalance fault in one or more rotor 
blades， the hub loads will exhibit cyclic loading at 
frequencies of 1Ω， 2Ω， 3Ω， and so forth. Different 
rotor faults will result in different vibration frequen‑
cies of the hub of six force components. By analyz‑
ing the hub loads， it is possible to monitor the condi‑
tion of the rotor blades based on changes in the indi‑
vidual components of the hub loads.

The aircraft maintains balance under the influ‑
ence of various loads， including hub loads， gravity， 
and aerodynamic forces. Rotor is the main source of 
fuselage vibrations， and information about rotor hub 
and blade vibrations is transmitted to the fuselage， 
resulting in a corresponding vibration response. Pre‑
vious research has demonstrated the existence of a 
one-to-one mapping relationship between the spatial 
domain of rotor imbalance faults and the multi-point 
spatial domain of fuselage vibrations. Therefore， it 
is possible to monitor the condition of the rotor 
based on the fuselage’s vibration signals.

2 Rotor System Modelling 

When it comes to identifying faults in rotor sys‑
tems， gathering a substantial amount of fault charac‑
teristic data samples is crucial. The most reliable 
method is often through flight tests and wind tunnel 
experiments. However， due to safety and cost con‑
siderations， conducting such experiments can be 
challenging， making it difficult to obtain data for 
various fault cases. Therefore， this study utilizes 
simulation software ANSYS to simulate rotor faults 
and collect fault characteristic data. This approach is 
cost-effective and versatile， and allows for the simu‑
lation of various fault combinations and degrees， 
making it relatively straightforward to obtain experi‑
mental data.

2. 1 Design of rotor parameters　

In accordance with the overall design require‑
ments for helicopter rotors， the key rotor system pa‑
rameters include rotor diameter， blade chord 
length， number of rotor blades， and rotational 
speed， among others. This paper focuses primarily 
on the diagnosis of faults in conventional rotor 
types. The specific rotor parameters are presented in 
Table 1.

Aerodynamic design of rotor blades primarily 
encompasses parameters such as blade twist angle， 
blade planform shape， and airfoil type. By designing 
the twist angle of the blades， it ensures that the an‑
gle of attack at different radii of the blade is in favor‑
able positions. Given the challenges associated with 
conducting physical experiments， a rectangular 
blade planform shape has been chosen in this study. 
The airfoil type selected for the rotor blades is the 
OA212 airfoil. The distribution of the blade plan‑
form shape and twist angle along the span is illustrat‑
ed in Fig.1. The three-dimensional model of the ro‑
tor blade is illustrated in Fig.2.

Table 1　Rotor overall parameters

Parameter
Rotor configuration

Blade number
Rotor radius/m
Blade chord/m
Blade span/m

Mass of single blade/kg
Speed/(rad·s-1)

Value
Hingeless type

4
2

0.12
1.7

3.06
95

Fig.1　Blade planform and twist angle

Fig.2　3-D model of rotor blade
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2. 2 Design of propeller hub model　

The rotor system utilizes a hingeless rotor 
hub， primarily composed of the hub central piece， 
pitch link， pitch change hinge housing， and addition‑
al components. The hub central piece experiences 
substantial loads during rotation. By structurally in‑
corporating pre-coning， a downward centrifugal mo‑
ment is generated during blade rotation， offsetting 
the torque caused by blade tension at the root of the 
hub. This effectively improves the load distribution 
on the hub.

Following the traditional design pattern and ba‑
sic structural layout of a hingeless rotor hub， the 
structural arrangement from the rotor shaft to the 
blade consists of the following components： The ro‑
tor shaft， flexible beams， pitch hinge， and rotor 
blade. The flexible beam assembly in the hingeless 
rotor hub comprises the flapwise section and lead-

lag section， extending from the rotor shaft towards 
the rotor blade. The rotor blade is connected to the 
rotor hub through the pitch hinge. The pitch hinge is 
linked to the pitch change yoke assembly and the ro‑
tating disk. This structure enables pitch change mo‑
tion of the rotor blades. The rotor hub structure is il‑
lustrated in Fig.3.

2. 3 Rotor failure simulation　

The rotor system model created in CATIA 
software is imported into the simulation software 
ANSYS for fluid-structure interaction （FSI） simula‑
tion. The process involves the following steps： Ge‑
ometry model processing， domain setup， mesh gen‑
eration， fluid simulation， importing aerodynamic 
forces into dynamic simulation， solving the compu‑
tations， and obtaining data.

3 GA‑BP Neural Network Model 

3. 1 Network construction　

Due to the complex structure of rotor systems， 
simple fault diagnosis methods may struggle to 
achieve accurate results. The backpropagation （BP） 
neural network has found extensive application in ro‑
tor system fault diagnosis［11］. However， the accura‑
cy of neural networks can significantly decrease 
when dealing with imprecise or uncertain input infor‑
mation.

To address the issues of low learning efficien‑
cy， slow convergence， and susceptibility to con‑
verging at local minima associated with traditional 
BP neural networks， an optimized approach is em ‑
ployed. This involves using a genetic algorithm 
（GA） to optimize the weights and thresholds of the 
neural network. This results in an optimized GA-BP 
neural network， which greatly enhances fault diag‑
nosis accuracy and speed. The GA-BP neural net‑
work algorithm is shown in Fig.4.

Three types of fault characteristic signals are 
extracted from the deformation components of the 
rotor blades， hub load components， and aircraft vi‑
brations. Based on these three signals， three catego‑
ries of GA-BP neural network rotor imbalance fault 
diagnosis models are established. The characteris‑
tics of the feature signals are analyzed， and the net‑

Fig.3　Structure diagram of rotor hub

Fig.4　GA-BP neural network algorithm flowchart

69



Vol. 41 Transactions of Nanjing University of Aeronautics and Astronautics

work structure and parameters for the genetic algo‑
rithm are determined within each diagnostic model 

category. Simulations are conducted following the 
fault recognition process as depicted in Fig.5.

The fault diagnosis model’s genetically opti‑
mized BP neural network comprises an input layer， 
a hidden layer， and an output layer. The first layer 
is the input layer， with nodes composed of the three 
types of fault characteristic signals extracted from 
the deformation components of the rotor blades， 
hub load components， and aircraft vibrations.

The second layer is the hidden layer， and the 
nodes in the hidden layer are responsible for extract‑
ing relevant features from the input signals. The 
third layer is the output layer， where nodes corre‑
spond to the type of rotor fault， the location of the 
fault， and the fault severity.

To prevent significant prediction errors result‑
ing from differences in the magnitudes of input and 
output data， the training data for the neural network 
is normalized. Based on this normalization， each 
neural sub-network randomly selects 300 fault data 
samples for training the fault diagnosis model. The 
remaining 60 data samples are used to validate the 
performance of the trained model.

3. 2 Fault characteristic quantity （network in‑
put）

The rotor system selected for this study is a 
four-bladed main rotor， and the three types of faults 
mentioned above will each appear individually on a 
specific rotor blade. Each type of fault comprises 31 
fault levels， ranging from zero to the maximum fault 
level （including both positive and negative maxi‑
mum fault levels）， incrementally increasing one by 
one

f ={ f | f = -1 + k × 1
15       k = 0,1,⋯,30} (1)

where when f = 0， it indicates no fault， and when 
f = 1 and -1， they represent the maximum fault 
level in the positive and negative directions. All oth‑
er numerical values represent fault levels that vary 

linearly between zero and the maximum value. Ta‑
ble 2 provides the ranges of variation for the three 
types of faults.

When generating fault data samples， the rotor 
simulation program’s input parameters are adjusted 
according to the defined fault level values f. This is 
done to calculate the corresponding rotor responses 
and obtain fault data samples. The selected fault 
characteristic signals include deformation compo‑
nents at the root of the rotor blade， hub load compo‑
nents， and aircraft vibrations.

For a four-bladed main rotor， there are 12 char‑
acteristic quantities for rotor response， 6 for hub 
loads， and 18 for fuselage vibration in the horizontal 
direction. For each type of fault， calculations are 
performed for 30 fault levels. Therefore， the total 
number of fault data samples is 1 080. Fig.6 shows 
the setup of the rotor failure model.

To simulate real-world conditions， noise is 
added to the simulation results. The “contaminated” 
results are used as input signals for training the net‑

Fig.5　Rotor failure identification flow chart

Table 2　Range of rotor system faults

Fault type

Misadjusted trim‑tab
Misadjusted pitch control rod

Imbalanced mass

Range of 
adjustment

-7.5°—7.5°
8.5°—23.5°

-300g—300g

f

-1—1
-1—1
-1—1

Fig.6　Rotor failure model setup
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work［12-13］.
In this study， random noise is added to each 

component pi of each fault data sample using the fol‑
lowing formula to obtain the “contaminated” value 
pni， i.e.

pni = pi( 1 + aε ) (2)
where ε is a random number between -1 and 1 and 
a the noise level. For example， a = 0.05 represents 
a noise level of 5% in the sample input vector. This 
paper selects noise level a = 10%.

4 Application of D‑S Evidence 
Theory

Considering at the difficulty of comprehensive 
evaluation and modeling of helicopter rotor system， 
it is proposed to use the preliminary diagnosis re‑
sults of various neural networks as the basis. 
Change the evaluation factors from high-dimension‑
al features to low-dimensional primary diagnosis re‑
sults to reduce the complexity of the model. Build‑
ing upon the classical D-S evidence theory［14-15］， a 
weighted D-S evidence theory model has been intro‑
duced. This model optimizes the probability assign‑
ment functions by introducing trustworthiness coeffi‑
cients， effectively reducing evidence conflict and en‑
hancing fault recognition rates.

4. 1 Construction of basic probability allocation 
function　

To ensure that the evidence provided by vari‑
ous fault characteristics can be reasonably fused， the 
key lies in constructing basic probability assignment 
（BPA） functions based on the existing evi‑
dence［16-18］. BP neural networks are known for their 
strong function approximation capabilities. By using 
a sigmoid-type activation function in the output lay‑
er， the network’s output results can be mapped to 
the ［0， 1］ interval， allowing the classification re‑
sults to be output in the form of probabilities. This 
paper employs the approximation error parameter of 
the BP neural network to describe the uncertainty of 
propositions

E = 1
2 ∑

i = 1

l

( yi - di) 2
(3)

where yi represents the output of the ith neuron， 
and di the expected output result of the ith neuron. 
The basic probability allocation function of D-S evi‑
dence theory is constructed as

S = ∑
j = 1

l

y ( )A i + E (4)

m ( A j )= y ( A j )
S

（5）

m ( Θ ) = E
S

（6）

where S represents the total evidence set， m ( A j ) 
the basic probability assignment function for the jth 
type of fault， and m ( Θ ) the basic probability assign‑
ment function that describes uncertainty.

4. 2 Optimization of D‑S evidence theory　

This paper proposes a novel weight-based deci‑
sion-level data fusion method to address the prob‑
lem of fusing conflicting evidence. The method in‑
volves assigning different weights to various sets of 
evidence to adjust the probability assignment func‑
tions. These weights are determined based on the re‑
liability of the evidence.

Assuming you have u sensors and v target 
types， you will indeed obtain u × v BPA functions 
for a particular observed target
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The basic solution process for weight values is 
as follows.

（1） Calculate the mean value of u sets of prob‑
ability distribution functions　

M j
MED = 1

u
m      i = 1,2,⋯,u; j = 1,2,⋯,vij （7）

（2） Calculate the distance between the basic 
probability distribution of each group of evidence 
and the mean value　

Di = ∑
j = 1

v

|| mij - M j
MED （8）

The distance is obtained by accumulating the 
probability distribution function value of each propo‑
sition in a set of evidence with the distance of the 
corresponding proposition’s probability distribution 
function in the mean value.
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（3） Calculate the trust weight of each sensor.
For evidence sources that are far from the mean val‑
ue， they are considered unreliable， and lower trust 
weights should be assigned. Conversely， for evi‑
dence sources that are close to the mean value， they 
should be assigned higher trustworthiness. Hence， 
trustworthiness is inversely proportional to the dis‑
tance. To achieve this， the reciprocal of the distance 
is computed firstly， i.e.

W i = 1/Di (9)
Then standardize it as

w i = W i

W max
(10)

where W max = max W i， ensure that the value range 
of W i is between ［0， 1］.

Once the trustworthiness coefficients are deter‑
mined， the probability assignment functions of the 
evidence sources are adjusted according to

ì
í
î

ïï
ïï

m *
i ( )A = w i mi( )A       A ⊂ Θ

m *
i ( )Θ = w i mi( )Θ + 1 - w i

(11)

Following the steps outlined above， evidence 
is readjusted according to different weights， and the 
newly obtained basic probability assignment func‑
tions are subjected to D-S combination rules for evi‑
dence synthesis.

5 Results and Discussion 

Fig.7 depicts the fundamental process of rotor 
fault diagnosis based on the weighted evidence theo‑
ry. Firstly， fault characteristic information is ac‑
quired from three types： rotor responses， hub load， 
and fuselage vibration. Next， three types of GA-BP 
neural networks are employed to obtain individual 
diagnostic results for each type of fault characteris‑
tic. These three diagnostic results are then treated 
as three independent bodies of evidence within the 
evidence theory framework. Weighted and decision-

level fusion is applied to these three sets of evi‑
dence， resulting in the final diagnosis.

5. 1 Application of weighted D‑S evidence theo‑
ry in fault type diagnosis

We extracted a set of sample data for each of 
the three fault types from the experimental samples. 
Using three different GA-BP network models， we 
obtained diagnostic output results as shown in Table 
3， where f1 is the trim-tab misadjustment， f2 the 
pitch control rod misadjustment， and f3 the mass im ‑
balance.

For each sample group corresponding to differ‑
ent fault types， the preliminary diagnosis results 
from three distinct GA-BP network models， based 
on rotor response， hub loads， and aircraft vibrations 
as feature signals， are considered as separate sets of 

evidence bodies， denoted as E1， E2， and E3. These 
evidence bodies are assigned values using the basic 

Fig.7　Basic process of rotor fault diagnosis based on weighted evidence theory

Table 3　Preliminary diagnosis result of a single signal

Diagnostic model

Rotor response
Hub load

Fuselage vibration
Rotor response

Hub load
Fuselage vibration

Rotor response
Hub load

Fuselage vibration

f1

0.812 3
0.866 1
0.236 3
0.189 1
0.026 4
0.083 4
0.032 1
0.052 7
0.046 3

f2

0.077 5
0.048 7
0.389 5
0.798 3
0.878 3
0.893 2
0.035 8
0.1541
0.108 0

f3

0.110 2
0.085 2
0.374 2
0.012 6
0.095 3
0.023 4
0.932 1
0.793 2
0.845 7

Diagnostic 
result

f1

f1

f2

f2

f2

f2

f3

f3

f3

72



No. 1 GAO Yadong, et al. Rotor Fault Diagnosis Based on Weighted D-S Evidence Theory

probability functions described in this paper， and the 
results are presented in Table 4.

From Table 4， it is evident that individual evi‑
dence bodies may face situations where uncertainty 
is too high to make a determination. To address 
this， the weighted D-S evidence theory fusion meth‑
od is applied to combine the results of multiple evi‑
dence bodies for the same sample. Taking the real 
condition f1 as an example， evidence body E 3 cannot 
identify a specific fault state due to excessive uncer‑
tainty in the output results. By synthesizing the 
three evidence bodies for this sample， the fusion 
process results are presented in Table 5.

From Table 5， it is apparent that the post-fu‑
sion results significantly reduce the probability distri‑
bution related to uncertainty and notably increase 
the probability distribution for the output condition 
f1. The application of weighted D-S evidence theory 
effectively addresses the issue of excessive uncer‑
tainty.

5. 2 Comparison of results　

The utilization of weighted D-S evidence theo‑
ry in fault location diagnosis and fault degree diagno‑
sis follows a process similar to the one described 
above， and the ultimate diagnosis results are pre‑
sented in Tables 6—8.

Tables 6—8 provide an overall diagnosis accu‑
racy for each method concerning fault type， fault lo‑
cation， and fault degree. Comparing Tables 6 to 8， 
it becomes evident that relying solely on individual 
information results in certain errors. However， after 
applying weighted D-S evidence theory decision-lev‑
el fusion， the diagnostic accuracy improves. With 
the weighted D-S evidence theory， accuracy is 98% 
for fault type diagnosis， 96% for fault location diag‑
nosis， and 92% for fault severity diagnosis.

6 Conclusions 

This paper focuses on the research of rotor sys‑
tem fault diagnosis based on three types of fault 
characteristic signals： Blade deformation， hub load， 
and aircraft diagnostic signals. Recognizing that the 
diagnostic accuracy of a single-fault diagnostic mod‑

Table 8　Comparison of fault degree diagnosis accuracy

Diagnostic model
Based on rotor response

Based on hub load
Based on fuselage vibration

Weighted D‑S evidence theory fusion method

Accuracy/%
87
82
79
92

Table 4　Assignment of basic probability assignment 
functions to evidence bodies

Evidence 
body

E 1

E 2

E 3

E 1

E 2

E 3

E 1

E 2

E 3

m ( f1)
0.802 7
0.876 7
0.229 0
0.183 6
0.024 6
0.082 7
0.032 0
0.049 1
0.045 5

m ( f2)
0.077 7
0.057 2
0.235 3
0.774 9
0.817 8
0.886 3
0.035 7
0.111 5
0.106 2

m ( f3)
0.050 7
0.053 9
0.224 7
0.012 2
0.088 7
0.023 2
0.929 1
0.738 5
0.831 7

Diagnostic 
result

f1

f1

Unknown
f2

f2

f2

f3

f3

f3

Table 5　Evidence fusion results

Evidence 
body

E 1

E 2

E 3

E 1 &E 2 &E 3

m ( f1)
0.802 7

0.876 7

0.229 0

0.964 3

m ( f2)
0.077 7

0.057 2

0.235 3

0.004 8

m ( f3)
0.050 7

0.053 9

0.224 7

0.030 0

Diagnostic 
result

f1

f1

Unknown
f1

Table 6　Comparison of fault type diagnosis accuracy

Diagnostic model
Based on rotor response

Based on hub load
Based on fuselage vibration

Weighted D‑S evidence theory fusion method

Accuracy/%
93
92
90
98

Table 7　Comparison of fault location diagnosis accuracy

Diagnostic model
Based on rotor response

Based on hub load
Based on fuselage vibration

Weighted D‑S evidence theory fusion method

Accuracy/%
95
90
88
96
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el may not meet practical requirements， this paper 
combines multiple diagnostic models and proposes a 
rotor system fault diagnosis method based on 
weighted D-S evidence theory. The specific re‑
search findings are as follows：

（1） For the three rotor faults studied in this pa‑
per， three classes of genetic neural networks have 
been developed to progressively identify fault type， 
location， and degree.

（2） Experimental results demonstrate that the 
weighted improved D-S evidence theory not only en‑
hances fault recognition rates but also effectively re‑
duces diagnostic uncertainty.

（3） The ability to identify faults in test samples 
containing noise has been improved， enhancing net‑
work convergence and generalization capabilities.
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基于加权 D‑S证据理论的旋翼故障诊断

高亚东， 张传壮
（南京航空航天大学航空学院，南京  210016，中国）

摘要：旋翼作为直升机的升力面和操作面，其健康状态对直升机的安全至关重要。旋翼故障诊断技术仍是直升

机健康与使用监测系统（Health and usage monitoring system， HUMS）领域的薄弱环节，开发旋翼故障诊断技术

具有重要价值。基于信息融合技术，首先分析了旋翼故障的诊断机理，建立了旋翼故障模型，通过流固耦合仿真

获取了不同故障下桨叶、轮毂和机身的故障特征信息，生成数据集进行网络训练和验证。然后，利用遗传算法反

向传播（Genetic algorithm‑backpropagation， GA‑BP）优化神经网络诊断 3 种类型的直升机旋翼故障，即后缘调整

片误调、变距拉杆误调和桨叶质量不平衡。3 个逐级神经网络分别对旋翼故障类型、故障位置和故障程度进行了

诊断识别。最后采用加权的 Dempster‑Shafer（D‑S）证据理论对旋翼故障进行诊断和分析。结果证明基于改进 D
‑S 证据理论的旋翼故障诊断方法能够成功应用到旋翼故障诊断中，并具有良好的识别效果。

关键词：旋翼系统；故障诊断；GA‑BP 神经网络；信息融合技术；D‑S 证据理论
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