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Abstract: Accurate pose estimation of space non-cooperative targets with a monocular camera is crucial to space 
debris removal， autonomous rendezvous， and other on-orbit services. However， monocular pose estimation methods 
lack depth information， resulting in scale uncertainty issue that significantly reduces their accuracy and real-time 
performance. We first propose a multi-scale attention block （MAB） to extract complex high-dimensional semantic 
features from the input image. Second， based on the MAB module， we propose a dense multi-scale attention network 
（DMANet） for estimating the 6-degree-of-freedom （DoF） pose of space non-cooperative targets， which consists of 
planar position estimation， depth position estimation， and attitude estimation branches. By introducing an Euler angle-

based soft classification method， we formulate the pose regression problem as a classical classification problem. 
Besides， we design a space non-cooperative object model and construct a pose estimation dataset by using 
Coppeliasim. Finally， we thoroughly evaluate the proposed method on the SPEED+ ， URSO datasets and our 
dataset， compared to other state-of-the-art methods. Experiment results demonstrate that the DMANet achieves 
excellent pose estimation accuracy.
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0 Introduction 

Spacecraft pose estimation is used to obtain the 
position and orientation of space targets and provide 
security for on-orbit services， including mainte‑
nance， autonomous rendezvous and debris remov‑
al［1-5］. With the development of space technology， a 
large number of satellites have been launched. The 
total number of satellites in orbit has exceeded 6 700 
as of January 2023［6］. Over time， spacecraft can en‑
counter issues such as equipment degradation， fuel 
depletion， and accidental impacts， which lead the 
overall system to fail［7］. The repair of malfunction‑
ing spacecraft requires the determination of their 
pose. In addition， those abandoned spacecraft occu‑
py space orbits and generate space debris， which 

heavily threaten the safety of spacecraft in operation. 
Pose estimation can confirm the real-time position 
of space objects， and estimate their size and motion 
status， which is important to ensure the safety of 
spacecraft［8-11］.

There are a variety of sensors used for pose es‑
timation， including active vision sensors such as 
time of flight （ToF） cameras［12］ and Lidars［13-14］， as 
well as passive vision sensors such as stereo camer‑
as［15-16］ and monocular cameras［17］. Active vision sen‑
sors typically have high power consumption and are 
difficult to maintain， limiting their large-scale appli‑
cation in space. Stereo camera can precisely mea‑
sure the target position， but it heavily relied on ob‑
ject texture and is vulnerable to environmental per‑
turbations. Therefore， monocular cameras are wide‑
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ly used to accomplish pose estimation tasks in 
space， because of its small size， low power con‑
sumption， and simple hardware requirement. How‑
ever， monocular cameras cannot directly obtain 3D 
information without a depth estimation algorithm， 
and their accuracy is relatively poorer than those of 
the previous methods.

Traditional monocular solutions for pose esti‑
mation can be categorized into feature-based and 
template-based methods. Feature-based methods ex‑
tract local features from the image and compare 
them with the features obtained on the 3D model to 
establish 2D-3D matches［18-20］. These algorithms are 
usually divided into two stages： Extracting local fea‑
tures and comparing them with 3D keypoints， then 
involving 2D-3D correspondences to solve geomet‑
ric problems， e. g.， obtaining a 6D position using 
the perspective-n-point （PnP） algorithm［21］. These 
algorithms can be run in real-time， but they require 
objects to have clear texture details， otherwise， fea‑
ture matching is likely to fail.

Template-based methods first establish a tem ‑
plate database offline from a 3D model of the ob‑
ject， then match the image with the database to ob‑
tain the best position estimate. These algorithms 
can obtain good results for texture-less objects［21-23］， 
and the accuracy improves with the completeness of 
the template database［24］. However， they are sensi‑
tive to illumination and occlusion［25-26］， and real-time 
performance is inversely proportional to the number 
of template elements［27］.

Learning-based methods use the powerful rep‑
resentation capabilities of neural networks to esti‑
mate the position of a known instance or a class of 
objects. Depending on the algorithmic framework， 
these algorithms can be categorized as two stages［28］ 
or end-to-end［26］. The former uses neural networks 
to project the 3D keypoints of the target onto the 
corresponding 2D image， then chooses a traditional 
algorithm to get the target pose. The latter uses the 
multi-branch network to directly regress the target 
pose. In recent years， a large number of accuracy 
and robust pose estimation algorithms have emerged 
from learning-based methods［29-30］ which can accu‑
rately estimate the pose even under the conditions of 

occluded objects or cluttered backgrounds. Al‑
though these methods are effective， they need a 
lengthy and resource-intensive training process， ne‑
cessitate extensive datasets with precise labeling， 
and their ability to generalize across different scenari‑
os remains a subject for further evaluation.

Xiang et al.［31］ designed a fully-convolutional 
neural networks （CNN）， called PoseCNN， to ac‑
quire the target pose. They used one CNN with 
three branches to accomplish semantic labels， 3D 
translation and 3D rotation estimation seperately. 
The method provides a backbone network and a 
multi-branch structure； however， its accuracy needs 
to be further corrected［32］. Kehl et al.［33］ proposed the 
single shot multi-box detector （SSD）-6D network， 
which extends the SSD detection framework［34］ to 
accomplish 3D detection and 3D rotation estimation. 
The method decomposed the 3D rotational space in‑
to discrete viewpoints and in-plane rotations， used a 
neural network to obtain the target 2D bounding 
box， discretized the spatial rotations and solved the 
classification problem to obtain the 6D pose. Since 
the algorithm discretizes the 3D space and uses clas‑
sification to solve the 6D pose， the accuracy needs 
to be improved.

Unlike the pose estimation of terrestrial ob‑
jects， non-cooperative objects in space face more 
challenges， such as unclear texture and drastic illu‑
mination changes. Sharma et al.［35］ first used CNNs 
for spacecraft pose estimation based on hard view ‑
point classification， again using spatial discretization 
and transforming the pose estimation into a classifi‑
cation problem. They then proposed a spacecraft 
pose network （SPN） to accomplish the pose estima‑
tion［36］. This method uses a CNN with three branch‑
es to accomplish 2D bounding box detection， dis‑
crete coarse pose classification， and finer estimate 
regression. This paper also proposed a spacecraft 
pose estimation dataset （SPEED）， including a total 
of 15 300 frames of AR generated and real satel‑
lites， for training and testing of the position estima‑
tion algorithms. Huang et al.［37］ proposed a non-

model-based monocular pose estimation network. 
They designed a CNN with three sub-networks to 
predict the relative pose， relative position， and de‑
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tect objects， respectively. Although this method can 
achieve end-to-end pose estimation， it neither con‑
siders multi-scale adaptation of space objects， nor 
acquires independent object depths， which are al‑
ways the most important information of space mis‑
sions.

In addition， Proença et al.［38］ proposed a space‑
craft pose estimation framework based on orienta‑
tion soft classification. The method used ResNet as 
the backbone to obtain the relative position and rela‑
tive attitude of the spacecraft through regression and 
probabilistic orientation soft classification， respec‑
tively. They also proposed a simulator URSO based 
on Unreal Engine 4 to generate training and evalua‑
tion data. Huang et al.［39］ proposed an end-to-end at‑
titude estimation network. The method used a multi-
branch keypoints regression subnetwork to obtain 
the 2D keypoints locations， and a pose estimation 
subnetwork to estimate the target spacecraft pose 
based on the 2D keypoints and the corresponding 
3D keypoints.

However， these methods use the same net‑
work or branch to estimate the spatial target posi‑
tions and do not design individual branches and loss 
functions for the most important information， 
depth， in the spatial task. These methods therefore 
obtain large estimation errors and are unable to meet 
actual task requirements. In this paper， we propose 
the dense multi-scale attention network （DMANet） 
network for pose estimation of space non-coopera‑
tive targets， featuring the multi-scale attention 
mechanism and complex semantic representation. 
DMANet segments the 3D position estimation into 
two components： Planar positioning， encompassing 
the X and Y axes， and depth positioning， aligned 
along the Z-axis. Significantly， DMANet introduces 
a tailored loss function， specifically designed for the 
depth information. This novel approach proves to be 
more efficacious for spatially spatial tasks， offering 
a substantial improvement over conventional meth‑
odology.

The contributions of this paper are as follows：
（1） We design a feature extraction module， 

named multi-scale attention block （MAB）， which 
combines multi-scale convolutional networks with 

channel attention mechanisms. Based on the 
MABs， we further propose the dense multi-scale at‑
tention （DMA） backbone， which can extract multi-
scale information from the image of space non-coop‑
erative objects.

（2） We propose the DMANet for non-coopera‑
tive object pose estimation， which consists of three 
branches that can extract information about the posi‑
tion， depth， and orientation of the object. For orien‑
tation estimation， we encode the labels of images by 
soft classification， dividing the geometric space into 
different subintervals， and transform the direct re‑
gression problem into a classification problem.

（3） To prove the effectiveness of DMANet， 
we construct a space non-cooperative object pose es‑
timation dataset based on Coppeliasim. Then we 
perform pose estimation experiments on SPEED+ 
dataset［40］， URSO datasets［38］ and our dataset. Ex‑
perimental results show that the proposed method 
can achieve high precision 6-degree-of-freedom 
（DOF） pose estimation for space non-cooperative 
objects.

1 Dense Multi⁃scale Attention Net⁃
work

In this section， we introduce the MAB module 
and DMANet network in detail. Then， the soft clas‑
sification method and corresponding loss function 
are clearly described， which formulate the pose re‑
gression problem as a classical classification prob‑
lem.

1. 1 Multi⁃scale attention block　

Benefiting from the influence of the attention 
mechanism， we propose the MAB module， as 
shown in Fig.1. MAB is composed of multi-scale 
convolution and channel attention module， and its 
input is a preprocessed image feature map.

In the part of multi-scale convolution， we use 
kernels with the sizes of 1×1， 3×3， and 7×7 for 
convolution processing of input feature graphs， and 
then combine feature graphs of different scales in 
channel dimension and input them into channel at‑
tention module.
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The channel attention mechanism is employed 
within deep learning to provide weights to different 
features in input data. This mechanism uses the in‑
herent correlation between different channels of in‑
put to calculate the weightage or “attention” they 
should be given. We use the channel attention mech‑
anism to extract multi-scale information more effi‑
ciently and subsequent experiments prove that the 
MAB module has a strong feature extraction capabil‑
ity.

1. 2 Backbone network　

Based on the MAB， we propose the DMA 
backbone network， as shown in Fig.2. Four MABs 
are used in the DMA backbone network， and the in‑
put and output channels of each module are shown 
in Table 1. The model preserves and uses the feed-

forward feature maps of all preceding layers， and 
passes its own feature maps to all subsequent layers.

The dense structure， benefiting from its inher‑
ent architecture， allows each layer to access the 

“knowledge” from its preceding layers. The wonder‑

ful advantage is that it does not only preserve and 
utilize these feed-forward feature maps， but also 
transfer its own feature maps to all successive lay‑
ers. The benefits of such efficient connectivity are 
multi-fold. It mitigates the vanishing-gradient issue 
often faced in deep architectures， amplifies feature 
propagation， and significantly reduces the number 
of parameters， thus enhancing the model’s efficien‑
cy.

In the DMA backbone network， the main pur‑
pose of using four MABs is to build a hierarchical 
network， ensuring that the features of each convolu‑
tional layer can be learned by subsequent parts of 
the network. When we choose the number of input 
and output channels， we mainly consider that the 
number of network layers and the number of charac‑
teristic channels is directly related to the computa‑
tional complexity of network operations. In addi‑
tion， the number of input channels of each MAB is 
determined by the dense structure， because the in‑
put channels of each MAB contain the output of the 
previous module. Reasonable allocation of the num ‑
ber of channels can avoid unnecessary calculation 

Table 1　Architecture of DMA module

Layer
MAB1
MAB2
MAB3
MAB4

Channel (input)
64

128
192
256

Channel (output)
64
64
64
64

Activation
ReLU
ReLU
ReLU
ReLU

Fig.1　Multi-scale attention block

Fig.2　DMANet framework

125



Vol. 41 Transactions of Nanjing University of Aeronautics and Astronautics

burdens while retaining the necessary feature extrac‑
tion capability.

1. 3 Pose estimation overall network　

We design a pose estimation network for space 
non-cooperative objects based on DMA backbone 
network called DMANet， which is shown in 
Fig.2（a）.

Let I input ∈ RH × W × C represent the input image. 
First， we preprocess the input image to obtain the 
multi-channel feature map， which is represented by 
Ipre ∈ RH × W × P ( P = 64 ). Subsequently， the output 
after input Ipre ∈ RH × W × P to the DMA feature extrac‑
tion module is IDMA ∈ RH × W × 5P.

Unlike other pose estimation networks， DMA‑
Net is a three-branch output structure composed of 
three fully connected layers. In our opinion， the 
depth information of targets captured by monocular 
cameras will affect the accuracy of the other two di‑
mensions of targets. Therefore， we use one of the 
three branches to regression the distance of the tar‑
get on the Z-axis， and design a separate loss func‑
tion for it later. The remaining two branches will 
perform orientation estimate and position estimate 
in the other two dimensions.

1. 4 Probabilistic orientation soft classification

Different from the method to directly regress 
the quaternion of the target， we hope to encode the 
orientation labels of the data set through soft classifi‑
cation， let the orientation estimation branch of DM ‑
ANet output a probability mass function （PMF）， 
and then compare it with the encoded labels. Thus， 
the quaternion regression process is transformed in‑
to a classification problem.

First， we convert the quaternion from the data‑
set Q i

gt = ( qi
1，qi

2，qi
3，qi

4 )，i = 1，2，⋯，N to the Euler 
angle E i

gt = ( φi
gt，ψi

gt，θ i
gt )，i = 1，2，⋯，N， where N 

represents the number of labels. To ensure the uni‑
form distribution of the bins of orientations， we di‑
vide each attitude angle into M intervals on aver‑
age， and the dimension of the image label is convert‑
ed from ( 1 × 1 × 1 ) to ( M × M × M ).

Then we design a kernel function K ( a，b ) to 
encode the label information with the generated ori‑

entation bins， as shown in Eq.（1）， where σ is used 
to adjust the size of the output. To facilitate the cal‑
culation， the result of Eq.（1） needs to be normal‑
ized， as shown in Eq.（2）.

K ( a,b )= e
-( )| cos ( a - b ) |

Mσ 2 (1)

N ( aj,b )= K ( aj,b )

∑
k = 1

M

K ( ak,b )
(2)

The labels of the three attitude angles in the im ‑
age are encoded， as shown in Eq.（3）. The probabil‑
ity mass function of each label can be obtained. By 
comparing with the output of the orientation estima‑
tion branch of DMANet， the network can be effec‑
tively optimized.
N ( ei,egt )= N ( φi,φ gt )+ N ( ψi,ψ gt )+ N ( θi,θgt ) (3)

After training the network， we decode the 
probability mass function of the network output by

ê = arg max
eo

∑
k

M × M × M

ωk cos ( eo - ep ) (4)

where ep represents the element of the Euler angle 
generated when the label is encoded， that is， we 
could get the result of orientation estimation and  
ωi = { ω 1，ω 2，⋯，ωM × M × M } represents the output re‑
sult of the orientation estimation branch of DMA ‑
Net.

DMANet consists of three branches， and we 
design the loss function as

L total = Lxy + Lz + λ1 L ori + λ2 L distr (5)
where λ1 and λ2 are hyperparameters， and used to 
keep each part of the loss function the same order of 
magnitude. Each part of the loss function is de‑
scribed in detail below.

First of all， since the comparison between the 
probability mass function of the network output and 
the encoded label should consider the similar con‑
tent， as well as the difference in the distribution of 
the two probabilities， we adopt the combination of 
L ori and L distr for orientation estimation

L distr = -∑
i = 1

N

P i
p ln ( P i

gt ) (6)

L ori = ∑
i = 1

N

||P i
p - P i

gt ||2 (7)

where P i
p and P i

gt denote the predicted probability 
mass function and the corresponding ground-truth， 
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respectively.
In view of the effect of depth information on po‑

sition estimation， it is unreasonable to use absolute 
error to measure the position error and size of non-

cooperative objects. Therefore， we design a loss 
function， as shown in Eq.（8）， which is linearly cor‑
related with the target depth information.

Lxy = ∑
i

N ||( x,y )i
pre -( x,y )i

gt ||
||zgt ||

(8)

A branch of DMANet contains a regression of 
the Z-axis information， and we measure the branch 
output by the 2-norm as

Lz = ∑
i

N

||zi
pre - zi

gt ||2 (9)

2 Experimental Results and Analysis

To demonstrate the effectiveness of our pro‑
posed approach， we conducted experiments on the 
SPEED+ dataset［40］， URSO dataset［38］ and our da‑
taset. In addition， we analyzed the results of our ex‑
periments and also conducted ablation study to show 
the effectiveness of our method.

2. 1 Datasets　

The SPEED+ dataset was proposed by the 

ESA in 2021. To mimic the visual features and 
lighting variations of the spaceborne images， be‑
sides 60 000 synthetic images， SPEED+ also used 
the Testbed for Rendezvous and Optical Navigation 
（TRON） facility to take 9 531 photos of the space‑
craft model， which showed the spacecraft in various 
attitudes. URSO dataset is constructed based on 
simulation platform Unreal Engine 4. The dataset 
includes Soyuz and Dragon spacecraft models with 
geometric shapes imported from the 3D model li‑
brary. The synthetic scenes consider both the light 
intensity of the space environment and the influence 
of the Earth’s complex background. The 5 000 
viewing points in low Earth orbit were used to take 
random images of the spacecraft at different times 
and camera’s orientation.

In addition， we have constructed a space pose 
estimation dataset by using virtual physics engine， 
Coppeliasim， which contains 1 000 images of a 
space non-cooperative object. These images are 
split in frame-wise by portion of 4∶1， which means 
that the train set contains 800 images and test set in‑
cludes the rest. The simulation environment is 
shown in Fig.3.

The non-cooperative object， measuring 2.9 m×
2.9 m×1.2 m， is a spacecraft model programmed 
via Python code to continually alter its position and 

orientation within the view of a vision sensor. We 
obtain the object image sequence by using the vision 
sensor in Coppeliasim， the perspective angle 

Fig.3　Schematic diagram of Coppeliasim simulation environment
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( αx， αy ) and resolution (W， H ) can be obtained in 
Coppeliasim. In this work， we set αx = αy = 75° 
and W = H = 224. The coordinate system is de‑
fined as shown in the lower right corner of each sub-

figure in Fig.3， where red represents the X-axis， 
green the Y-axis， and blue the Z-axis.

2. 2 Implementation and training details　

DMANet was trained on a Tesla P100 GPU 
and 2.60 GHz Intel（R） Xeon（R） Gold 6132 based 
on the deep learning framework Pytorch. Unless 
otherwise specified， we set M = 6 and λ1 = 10，λ2 =
5 during training. In addition， to prevent the net‑
work from producing local optimal solutions， the 
learning rate would gradually decline with training 
steps increasing. We have trained 50 epochs in to‑
tal， and set the initial learning rate = 0.01， batch 
size=32， and the image of the dataset was resized 
to （224，224）.

2. 3 Evaluation metric　

Jensen-Shannon divergence is a measure of 
how similar two probability distributions are. We 
use it to judge the probability mass function of the 
network output. p ( x ) and q ( x ) represent the proba‑
bility quality function of the network output and the 
encoded label， respectively.

JSD = 1
2 ∑p ( x ) ln ( )p ( x )

p ( x )+ q ( x )
+

1
2 ∑q ( x ) ln ( )q ( x )

p ( x )+ q ( x )
(10)

In addition， we adopted the pose estimation 
evaluation index proposed by the European Space 
Agency （ESA） for space targets［41］. The orientation 
error and position error are calculated as

E q = 2arccos ( | < q̂,qgt > | )
E l = ||l̂ - lgt ||2

(11)

2. 4 Experimental results　

We trained the model on the SPEED+ ， UR‑
SO， and our dataset seperately. The loss in the 
training process is shown in Fig.4. It can be seen 
that the loss decreased significantly in the first 20 ep‑
ochs of training. In addition， we provided the posi‑
tion error curves of the DMANET network for the 

X， Y， and Z axes during the training of our pro‑
posed dataset.

In the process of DMANet training， we per‑
formed a position estimation on the test set for each 
epoch trained to verify the training effect， and the 
network weight were not be updated during the test. 
As shown in Fig.5， it can be seen that after training 
to 60 epochs， the network converged， and the posi‑
tion error of the target in the X-axis was estimated 
to be between 0.03 m and 0.08 m， the position error 
in the Y-axis was between 0.02 m and 0.05 m， and 
the position error in the Z-axis was between 0.01 m 
and 0.02 m.

We conducted experiments on lightbox images 
and sunlamp images in the SPEED+ dataset， and 
part of the experimental results are shown in Figs.6
（a，b） are from the lightbox test set， and Figs.6（c，
d） are from the sunlamp test set. The Euler angle 
estimated by the decoded probability mass function 
of the trained network output and the Euler angle of 
the label are represented by the red line and the blue 
line， respectively， in the polar coordinate diagram. 
In addition， we also conducted tests on the URSO 
dataset. Different from the SPEED+ dataset， the 

Fig.5　Distance error in the training phase in our dataset

Fig.4　Graph plot of total loss in the training step in the 
SPEED+ and URSO datasets
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URSO dataset consists of RGB images， and we 
converted the images to grayscale. The experimen‑
tal effects of orientation estimation are shown in 
Fig.7. Finally， we conducted pose estimation exper‑
iments on our proposed dataset. Part of the experi‑
mental results are shown in Fig. 8. Due to the rela‑
tively simple background of our dataset， pose esti‑
mation accuracy is high.

The evaluation results of position estimation 
and orientation estimation to SPEED+ dataset and 
URSO dataset are shown in Table 2. It can be seen 
that the accuracy of DMANet is remarkable， and it 
has the ability of high-precision pose estimation. 
Furthermore， Table 3 shows ESA Pose Estimation 
2021 Lightbox final scores. It can be seen that com ‑
pared with other advanced methods， our method 
can guarantee the accuracy of both position and ori‑
entation estimation. This is due to the design of a 
separate depth information branch in our DMANet 
to obtain the location information of space non-coop‑
erative targets.

Through Coppeliasim， we simulated the pro‑
cess of continuous position and orientation changes 
of space non-cooperative objects in space， recorded 
the truth data and the output results of the DMANet 
network， and intercepted 50 sets of data in the test 
set （images from the 900th to the 950th frames）. 
Relative position curves （X， Y， Z） and relative ori‑
entation estimation curves of space non‑cooperative 
targets rotating around （X， Y， Z） axes are drawn， 
as shown in Figs.9， 10， and relative orientation esti‑
mation error curves are shown in Fig.11.

It can be seen that in terms of position estima‑
tion， in the direction of the X-axis， Y-axis， and Z-

axis， our estimation error is about 0.1 m， 0.08 m， 
and 0.02 m， respectively， and the position estima‑
tion on Z-axis is the most accurate， which is consis‑
tent with our network structure. In terms of attitude 

Table 2　Evaluation results of DMANet on the SPEED+ , 
URSO, and our dataset

Dataset
Lightbox (SPEED+)
Sunlamp (SPEED+)

URSO
Our dataset

E l

0.206
0.191
0.498
0.120

E q

2.07
2.75
5.79
1.12

JSD
0.073
0.128
0.091
0.062

Table 3　ESA Pose Estimation 2021 Lightbox final scores

Algorithm
KARI_hhojeon [40]

Ozroto [40]

DMANet

E l

0.395
0.289
0.206

E q

1.723

2.203
2.07

Fig.8　Cases from our dataset with predicted and ground 
truth orientations

Fig.7　Cases from URSO dataset with predicted and ground 
truth orientations

Fig.6　Cases from SPEED+ testing sets with predicted and 
ground truth orientations
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estimation， we also estimated the rotation angles 
around the X-axis， Y-axis and Z-axis. As can be 
seen from Figs.10（a，b，c）， the error of our estima‑
tion of the angles is 1°—2°.

2. 5 Ablation study　

In order to prove the validity of the DMA struc‑
ture， we conducted a series of ablation experiments. 
It should be noted that both the ablation study and 
the hyperparameter experiment are based on the 
SPEED+ dataset.

First， we eliminated the dense structure in 
DMA and directly connect four MABs in serial， the 
network was named w.o. skip-connection. Then we 
removed the channel attention mechanism and multi-
scale convolution from the MAB module， and ob‑
tained w. o. channel attention and w. o. multi-scale 
convolution， respectively. The results of the abla‑
tion study are shown in Table 4.

We still used the evaluation indexes proposed 
in Section 2.3， and it can be seen that the vanilla 
DMANet achieved the best pose experimental re‑
sults obtained by using the DMA backbone， both 
for the position estimation and the orientation esti‑
mation. The most important factor affecting the 
pose estimation accuracy was the channel attention 
module. In conclusion， such experimental results 
fully prove the effectiveness of DMA feature extrac‑
tion.

2. 6 Hyperparameter experiment　

In the process of training DMANet， we found 

Table 4　Results of ablation experiments

Method
DMANet

w.o. skip‑connection
w.o. channel attention

w.o. multi‑scale convolution

E l

0.206

0.263
1.12
1.02

E q

2.07

3.26
4.08
3.13

JSD
0.073

0.161
0.229
0.090

Fig.11　Curves of relative orientation estimation error for 50 frames of images

Fig.10　Curves of relative attitude estimation for 50 frames of images

Fig.9　Curves of relative position estimation for 50 frames of image
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that when encoding image labels， different quantity 
direction dimensions would affect the experimental 
accuracy， so we set M = 3，4，6，12， and the experi‑
mental results are shown in Table 5. It can be clear‑
ly seen that when M = 6， the prediction accuracy is 
relatively high， and when M is too small， the cod‑
ing classification category is too small， and the accu‑
racy will be low. Plus， the network structure will 
become more complex with the increase of M， 
which is not conducive to the improvement of the 
pose estimation accuracy.

In addition， it can be seen that the designed 
loss function contains four weight values as hyperpa‑
rameters. Setting different weight values can not on‑
ly balance the order of magnitude of the network 
loss function but also cause the network to pay dif‑
ferent attentions to different branches. We set λ1 and 
λ2 to different values for comparative analysis， as 
shown in Table 6. As we see， the best experimental 
results can be obtained when λ1 = 10，λ2 = 5.

3 Conclusions 

We propose a DMANet model based on DMA 
backbone network for 6-DOF pose estimation of 

space non-cooperative objects and use the Euler an‑
gle-based soft classification method to transform the 
regression problem into a classification problem. We 
build a virtual simulation environment by Coppelia‑
sim， and construct a space non-cooperative object 
pose estimation dataset. Finally， we perform evalua‑
tion experiments on SPEED+， URSO， and our da‑
taset to prove that our proposed DMANet can 
achieve high-precision pose estimation. We prove 
the effectiveness of DMA module through ablation 
studies. However， The DMANet architecture pro‑
posed in this paper contains a large number of pa‑
rameters that need to be trained. We intend to de‑
sign a more lightweight model and improve the gen‑
eralization ability of the network in future studies.
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DMANet: 针对空间非合作目标位姿估计的密集多尺度注意力

网络

张 钊， 胡瑀晖， 周 栋， 吴立刚， 姚蔚然， 李 鹏
（哈尔滨工业大学航天学院，150001 哈尔滨, 中国）

摘要：利用单目相机对空间非合作目标进行准确的姿态估计对于空间碎片清除、自主交会和其他在轨服务至关

重要。然而，单目姿态估计方法缺乏深度信息，导致尺度不确定性问题，大大降低了其精度和实时性。本文首先

提出了一种多尺度注意块（Multi‑scale attention block， MAB），从输入图像中提取复杂的高维语义特征。其次，

基于 MAB 模块，提出了空间非合作目标 6 自由度位姿估计的密集多尺度注意网络（Dense multi‑scale attention 
network， DMANet），该网络由平面位置估计、深度位置估计和姿态估计 3 个分支组成，通过引入基于欧拉角的软

分类方法，将位姿回归问题表述为经典分类问题。此外，设计了空间非合作目标模型，并利用 Coppeliasim 构建了

姿态估计数据集。最后，与其他最先进的方法相比，在 SPEED+、URSO 数据集和本文数据集上全面评估了所

提出的方法。实验结果表明，该方法具有较好的姿态估计精度。

关键词：六自由度位姿估计；空间非合作目标；多尺度注意力机制；深度学习；神经网络
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