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Abstract: Residual stress （RS） within titanium alloy structural components is the primary factor contributing to 
machining deformation. It comprises initial residual stress （IRS） and machined surface residual stress （MSRS）， 
resulting from the interplay between IRS and high-level machining-induced residual stress （MIRS）. Machining 
deformation of components poses a significant challenge in the aerospace industry， and accurately assessing RS is 
crucial for precise prediction and control. However， current RS prediction methods struggle to account for various 
uncertainties in the component manufacturing process， leading to limited prediction accuracy. Furthermore， existing 
measurement methods can only gauge local RS in samples， which proves inefficient and unreliable for measuring RS 
fields in large components. Addressing these challenges， this paper introduces a method for simultaneously estimating 
IRS and MSRS within titanium alloy aircraft components using a Bayesian framework. This approach treats IRS and 
MSRS as unobservable fields modeled by Gaussian processes. It leverages observable deformation force data to 
estimate IRS and MSRS while incorporating prior correlations between MSRS fields. In this context， the prior 
correlation between MSRS fields is represented as a latent Gaussian process with a shared covariance function. The 
proposed method offers an effective means of estimating the RS field using deformation force data from a probabilistic 
perspective. It serves as a dependable foundation for optimizing subsequent deformation control strategies.
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0 Introduction 

Large structural components are extensively 
utilized in the aerospace industry. Titanium alloys 
are progressively replacing aluminum alloys as vital 
load-bearing components and essential connections 
in modern aircraft due to their exceptional mechani‑
cal properties.

The latest generation of aircraft aims for peak 
overall performance［1］. Titanium structural compo‑
nents， which form the aircraft’s framework， de‑

mand shorter production cycles and heightened man‑
ufacturing precision. This poses a distinct challenge 
in terms of controlling machining deformation.

Research has indicated that the residual stress 
（RS） field， consisting of initial residual stress（IRS） 
and machined surface residual stress （MSRS）， is 
the primary contributor to machining deformation. 
IRS represents the mechanical stress retained within 
the bulk material， achieving self-equilibrium while 
satisfying static force and moment equilibrium condi‑
tions. MSRS， on the other hand， is the residual 
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stress formed within the top 0.2 mm depth near the 
machined surface due to the interplay of IRS and the 
introduced additional machining-induced residual 
stress （MIRS） under cutting force and thermal ef‑
fects. Yang et al.［2］ have identified IRS and MSRS as 
the principal factors behind machining deformation in 
titanium alloy structural components. Wang et al.［3］ 
have demonstrated that the impact of IRS and 
MSRS on total deformation depends on the compo‑
nent’s stiffness. In cases of relatively high stiffness， 
IRS-induced machining deformation accounts for 
90% of the total deformation. However， as the com‑
ponent’s stiffness decreases， MSRS assumes a dom ‑
inant role， accounting for 47.1%. Hence， accurately 
inferring both IRS and MSRS is crucial for predict‑
ing deformation and guiding deformation control， ul‑
timately enhancing the overall aircraft performance.

Zhao et al.［4］ proposed a method for inferring 
IRS field using deformation force， which is an in‑
verse problem and the Tikhonov regulation （TR） 
method was used to reduce the impact of measure‑
ment noise on the accuracy of the inference results 
by constraining the magnitude and stability of the so‑

lution. However， inferring IRS and MSRS simulta‑
neously constitutes a multi-source inverse problem. 
The traditional TR method， when employed to 
solve the problem， are prone to falling into local 
minima of the objective function， making it chal‑
lenging to ensure the accuracy.

In addressing the above issue， this paper intro‑
duces a Bayesian model for inferring the RS field of 
titanium alloy parts based on latent Gaussian pro‑
cess （GP） as illustrated in Fig.1. The advantage of 
Bayesian model is to efficiently integrate various pri‑
or information into the problem. The latent GPs are 
used to model unobservable IRS and MSRS and ac‑
curately capture the theoretical correlation between 
MSRS on different machined surfaces by introduc‑
ing a kernel function with shared covariance， which 
helps to reduce the number of parameters and im ‑
prove the accuracy of inference results. The remain‑
der of the paper is structured as follows： Section 1 
presents related work， Section 2 details the method‑
ology， and Section 3 provides a numerical example 
validating the methodology. Finally， key conclu‑
sions are summarized in Section 4.

1 Related Work 

Existing methods for obtaining RS fields main‑
ly include RS prediction and measurement method.

1. 1 RS prediction method　

The prediction of IRS primarily involves simu‑

lating the blank preparation processes， including 

Fig.1　Schematic diagram of RS field inference method based on latent GP
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forging， rolling， and heat treatment， through nu‑
merical simulations［5］ to estimate the IRS after 
blank forming. However， the formation of the RS 
field in the blank is a complex interplay of mechani‑
cal and thermal factors， whereas simulation process‑
es can only account for certain influencing factors. 
Constitutive and interfacial heat transfer models are 
hypothesized， simplified， and approximated， result‑
ing in discrepancies between RS field predictions 
and actual outcomes.

Methods for predicting MIRS primarily fall into 
two categories： Analytical and numerical approach‑
es. Analytical methods establish mapping models be‑
tween physical parameters and the MIRS field， such 
as cutting parameters， cutting heat， and cutting 
force. Shan et al.［6］ proposed an analytical model for 
predicting orthogonal cutting stress by considering 
cutting force and cutting heat， while Cheng et al.［7］ 
introduced an analytical model for MIRS prediction 
based on GP regression. Analytical methods offer 
swift computations but pose challenges in ensuring 
high accuracy. On the other hand， numerical meth‑
ods simulate the cutting process involving both the 
tool and the workpiece to predict the MIRS field gen‑
erated by force-thermal coupling during machining. 
Yang et al.［8］ proposed a dynamic mesh refinement 
algorithm to balance speed and accuracy in the three-

dimensional finite element simulation model. Styger 
et al.［9］ investigated the influence of constitutive 
model parameters on the prediction results of 
Ti6Al4V using numerical calculations.

Existing methods for predicting residual stress 
fields through simulating material forming processes 
offer a general overview of RS field distribution 
trends. However， owing to the intricacies of the raw 
material forming process， these methods frequently 
necessitate multiple assumptions， simplifications， 
and approximations during the modeling and solving 
stages.

1. 2 RS measurement method　

RS measurement methods can be categorized 
into destructive and non-destructive techniques.

The destructive method involves physically or 
chemically altering materials to release RS in specif‑

ic regions. The RS in the material region is then cal‑
culated by measuring the strain or displacement 
caused by local changes in RS. Destructive methods 
primarily include the drilling method［10］， the crack 
compliance method［11］， the layer removal meth‑
od［12］， and the contour method［13］. However， these 
destructive measurement methods result in stress re‑
lease during the measurement process， leading to 
the redistribution of RS within the components and 
the accumulation of measurement errors， thus re‑
sulting in inaccurate RS measurements.

Non-destructive methods include X-ray diffrac‑
tion， neutron diffraction［14］， and ultrasonic test‑
ing［15］， which allow for RS calculations in materials 
without causing damage or affecting the usability of 
the object. Currently， the most frequently employed 
non-destructive method for RS detection is X-ray 
diffraction， which can measure surface stresses with‑
in a depth of 5 μm to 20 μm［16］.

In the case of titanium alloy structural compo‑
nents， the IRS field is complex， and additional high-

level MIRS is introduced during the machining pro‑
cess. Even within  the same batch of materials， sig‑
nificant differences in RS distributions can exist. Ex‑
isting RS prediction methods struggle to account for 
the numerous uncertain factors during material form ‑
ing processes， resulting in limited accuracy in pre‑
dicting residual stress fields. Moreover， residual 
stress measurement methods are limited to local 
measurements， which can be inefficient and inaccu‑
rate. Consequently， existing methods face challeng‑
es in meeting the requirements for accurately pre‑
dicting and controlling deformation in machining 
processes.

To achieve accurate RS inference， based on 
the author team research［4］， this paper proposes a 
method to infer unobservable IRS and MSRS using 
monitored deformation force.

2 Methodology 

Although directly measuring the RS field can 
be challenging， there are quantifiable physical pa‑
rameters within the manufacturing process that rep‑
resent the impact of RS on deformation， such as de‑
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formation force. In this paper， we propose an RS in‑
ference method based on the latent GP utilizing de‑
formation force data. In this method， the elusive 
IRS and MSRS are defined as latent fields， and a 
mechanical relationship between IRS， MSRS， and 
observable deformation force is established. Addi‑
tionally， during simulation， a noteworthy observa‑
tion emerged： the MSRS fields exhibited similari‑
ties under different IRS conditions. This observa‑
tion is treated as a correlation prior， which is encod‑
ed within the covariance function of the latent GP. 
Specifically， we model a vector-valued function 
with a shared covariance function to capture this the‑
oretical correlation prior. Subsequently， we estab‑

lish a Bayesian inference framework to solve the 
posterior distribution and infer the latent fields.

2. 1 The mechanical relationship between resid⁃
ual stress and deformation force　

The RS field is the main cause of machining de‑
formation. During the machining process， as materi‑
al is removed， the originally balanced IRS field 
within the workpiece is broke. In addition， MSRS， 
the outcome of IRS and additional MIRS， is intro‑
duced into the surface layer of the machined zone. 
As shown in Fig. 2， the combined effect of these 
two types of residual stresses， acting as bending mo‑
ments within the material， results in a tendency for 
the part deformation.

Due to the constraints of fixtures， the unbal‑
anced RS within the workpiece and the forces ap‑
plied by the fixture work together to maintain equi‑
librium， limiting the deformation of the workpiece 
and keeping it in a stable state. The forces applied to 
the fixture are called deformation forces［4］.

The workpiece system stiffness equation ignor‑
ing the volume force can be represented as follows

K vδv = F̄ v + Bvσ0 (1)
where K is the system stiffness matrix， δ the dis‑
placement of system nodes， F̄ composed of the reac‑
tions of deformation forces of the monitored node 
and zero value of the non-monitored node， B the 
system geometry matrix， σ0 a column matrix repre‑
senting the residual stress of all elements in the 
workpiece system， and v the geometric state of 
workpiece.

According to the node constraint conditions， 

the equilibrium equation can be further decomposed 
into the following forms
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where K rr， K rc， K cr， and K cc are the sub-stiffness 
matrices partitioned based on nodal constraint condi‑
tions； the nodal displacement δ consists of the un‑
constrained nodal displacement δ r and zero value of 
the constrained nodal displacement δ c. B r and B c are 
the sub-geometry matrices. F̄ v

c  is the reactions of de‑
formation forces.

Consequently， we have established an equiva‑
lent mechanical relationship between residual stress 
and deformation forces，namely

M vσ0 = F v
c (3)

where M v is the volume coefficient matrix of geome‑
try v and M v = B v

c - K v
crK v，-1

rr B v
r .

Based on the types of residual stress within the 

Fig.2　Theoretical model of machining deformation
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workpiece， the above equation can be decomposed 
as follows

[M IRS  MMSRS ] é
ë
êêêê ù

û
úúúúσ IRS

σMSRS
= F c (4)

where M IRS and MMSRS are the corresponding volume 
coefficient matrices of the IRS and MSRS， respec‑
tively. The value in the volume coefficient matrix is 
the influence coefficient of the unit RS in each area on 
the deformation force at each measurement point un‑
der the current geometric state of the part， which can 
be calculated by finite element analysis. σ IRS and σMSRS 
are the residual stress fields of the IRS and MSRS， 
respectively. F c is the deformation force of all measur‑
ing points under the current geometric state of the 
part. Measured by the fixture with an integrated force 
sensor is located at the measurement point.

2. 2 Finite element simulation of MSRS　

Finite element modeling （FEM） technology 
has proven to be a highly effective approach for sim ‑
ulating metal processing procedures. It enables the 
analysis of cutting parameters such as force， temper‑
ature， residual stress， and chip formation during the 
cutting process. In the pursuit of understanding the 
distribution patterns of MSRS， this paper employs 
FEM to simulate and analyze MSRS in Ti6Al4V.

Yue et al.［17］ demonstrated that during the pla‑
nar milling， under identical process parameters， the 
simulation results from two-dimensional orthogonal 
cutting can provide valuable references for predict‑
ing trends and patterns in actual milling outcomes. 
As illustrated in Fig.3， to streamline computation 
and simplify geometric construction， this paper has 
developed a condensed two-dimensional cutting 
model within the ABAQUS/Explicit software. It 
simulates the machining process through explicit， 
dynamic， and the temperature-displacement cou‑
pling analysis.

The simulation parameters are as follows： The 
workpiece material is Ti6Al4V， the tool material is 
YG6X， the rake angle of the tool is 4° ， and the 
clearance angle is 10°. And it is set as a rigid body， 
with a feed rate f of 0.1 mm/r， a cutting speed v of 
100 m/min， and a depth of cut ap of 0.4 mm.

Based on the actual machining process， the 
model sets up three analysis steps： Cutting （feed）， 
unloading （retraction） and cooling. The air-cooling 
process of the workpiece is simulated by the heat ex‑
change analysis step of the workpiece， tool， and air. 
The IRS is applied to the workpiece by defining a 
predefined field， and the trends of MSRS after cou‑
pling under different IRS fields are predicted.

The material constitutive model of Ti6Al4V is 
the Johnson-Cook （JC） model［18］， as shown in

σ = [ A + Bεn ] × é

ë
ê
êê
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é
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(5)

where σ is the equivalent stress， ε the equivalent 
plastic strain， ε̇ the equivalent strain rate， ε̇0 the ref‑
erence strain rate， A the initial yield stress， B the 
modulus of elasticity， n the strain hardening coeffi‑
cient， C the strain rate dependent coefficient， and m 
is the thermal softening coefficient； Tm and Tr are 
the melting temperature of the room temperature 
and the workpiece material. The JC parameters， 
workpiece and tool material properties used in this 
paper are given in Ref.［19］.

The predicted MSRS results from the FE mod‑
el are compared with the actual residual stress val‑
ues measured by X-ray diffraction under the same 
machining parameters， validating the effectiveness 
of the established model. The FE model prediction 
result is compared with the RS values measured by 
X-ray diffraction method to verify the effectiveness 
of the established model. The result is shown in Ta‑
ble 1.

Comparing with the measured MSRS values， 
the error of FE model prediction results in the x di‑
rection is 4.2%， and the error of prediction results 
in the y direction is 4.7%， which is within a reason‑
able range and can verify the accuracy of the FE Fig.3　Initial geometry and boundary conditions of the model
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model in this study.
To investigate the distribution of the MSRS 

with consistent processing parameters but varying 
IRS values， whose values in the x direction were se‑
lected based on the empirical knowledge. These val‑
ues were -175， -125， -75， -50， -25， 0， 
25， 50， 75， 125， and 175 MPa， respectively.

The MSRS is distributed within a depth range 
of 0.2 mm from the surface layer［19］. Based on the 
simulation results， the stress values in the x direc‑
tion of 100 element nodes per layer were extracted 
in MSRS distributed area. And their average was 
calculated to characterize the RS value of the cur‑
rent layer， which allowed us to understand the over‑
all trend of MSRS distribution in the depth direction 
of the MSRS distributed area.

According to the results， the through-thickness 
MSRS of different IRS values have similar profiles， 
which exhibit a “√” distribution pattern， but differ‑
ent magnitude as illustrated in Fig.4. The surface of 
the MSRS is initially compress. With the increase of 
depth，MSRS decreases first， reaches the maximum 
magnitude， and then gradually increases， reaching 
the tensile state and balanced state. It is found that 
the magnitudes of MSRS depend on the IRS values 

set in the workpiece region by analyzing the magni‑
tude of MSRS stress values at key trend points， 
such as points at the depth of 40， 65， and 180 μm. 
As the values of IRS set as predefined field in‑
crease， the MSRS value level continues to in‑
crease， which validates a direct correlation between 
magnitudes of MSRS and the values of IRS.

2. 3 Inference method for RS fields based on la⁃
tent GP　

The acquisition of the RS field remains a global 
challenge. In response to this challenge， this paper 
introduces an inference method based on the latent 
GP within a Bayesian framework as illustrated in 
Fig.5. This approach is well-suited for addressing in‑
verse probability problems， utilizing observable da‑
ta， and incorporating prior knowledge. In the pro‑
posed method， the monitoring data of deformation 
forces during the machining process are considered 
as observable data. The multiple unobservable and 
unmeasurable IRS and MSRS fields are treated as 
outputs of a latent vector-valued GP， employing a 
shared covariance function to capture correlations 
between these related outputs.

Building upon the mechanical relationship es‑
tablished in Section 2.1， it is evident that deforma‑

tion force is a function of IRS and MSRS. Conse‑
quently， the RS inference is transformed into the 

Fig.4　Distribution of MSRS of different IRS values

Table 1　Comparison of prediction and measurement re⁃
sults

MSRS
Predicted
Measured

Prediction error/%

x direction /MPa
-253.47
-243.1

4.2

y direction/MPa
-343.23
-360.15

4.7

Fig.5　Graphical representation of RS field inference method
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task of inferring unobservable latent RS fields using 
observable deformation force data. Within the 
Bayesian framework， latent GPs are employed to 
represent the unobservable IRS field and multiple 
MSRS fields as priors， as demonstrated in

σ IRS ~GP ( σ͂ IRS,K IRS ) (6)
σMSRS,i ~GP ( σ͂  

MSRS,i,K  
MSRS,i )    i = 1,2,⋯,N (7)

where σ IRS and σMSRS，i are the IRS field and the ith 
MSRS field in Fig.5； σ͂   is a prior to the mean resid‑
ual stress， and K the covariance of each RS field. 
The position relationship between various MSRS 
and IRS fields is illustrated in Fig.6.

To introduce the correlation prior between 
MSRS， a latent vector-valued function GP with a 
shared covariance function is modeled. Here， the 
linear model of coregionalization （LMC）［20］ is used 
to realize the idea.

Consider a set of latent GP function 
{ fd( x ) }D

d = 1 with x∈ R p. In the LMC， fd ( x ) can be 
formulated as

fd( x ) = ∑
q = 1

Q

∑
i = 1

Rq

ai
d,q ui

q ( x ) (8)

where the functions ui
q ( x ) is a GP with mean and 

covariance functions， as shown in Eq.（9）， if i = i ' 
and q = q '.

cov [ ui
q( x ),ui'

q' ( x ') ]= kq ( x,x ') (9)
For a fixed value of x， all the fi ( x ) can be 

grouped in a vector referred as a vector-valued func‑
tion shown in

f ( x ) = [ f1( x ),f2( x ),⋯,fD( x ) ] T
(10)

where fi ( x ) is the ith output of the vector-valued 
function f ( x ). The covariance for f ( x ) is given as

cov [ f ( x ),f ( x') ]= ∑
q = 1

Q

A q AT
q kq( x,x ') =

∑
q = 1

Q

B q ⊗ kq ( x,x ') (11)

where A q =[ a1
q，a2

q，⋯，aRq
q ]， ⊗ is the Kronecker 

product， kq ( x，x ' ) in Fig.5 represents the relation‑
ship between input data points， and B q measures the 
relationship between different latent GPs. The val‑
ues of non-diagonal elements in B q is positive relat‑
ed to the degree of correlation between different la‑
tent GPs.

Based on the mechanical relationship estab‑
lished in Section 2.1， the deformation force can be 
formulated as

F ij ~N ( F ( σ IRS,σMSRS,1,⋯,σMSRS,N ),δ ) (12)
where F ij represents the deformation force measured 
by fixture i during machining process j and N the 
Gaussian distribution with a mean function given by 
the formulated mechanical model； σ IRS and σMSRS，i de‑
note the IRS and various MSRS fields， respective‑
ly， and F（σ IRS，σMSRS，1，…，σMSRS，N） and δ the vari‑
ance.

The process of estimating the IRS and MSRS 
fields using deformation force is considered as the 
solution process of the posterior distribution in

P ( θ | F ) (13)
where θ represents all the hyper-parameters in Fig.5 
in latent GPs of the estimation process. In cases 
where the parameter space is extensive， the posteri‑
or distribution tends to be high-dimensional and intri‑
cate， posing challenges for computation via integra‑
tion methods. The Markov Chain Monte Carlo 
（MCMC） method， employed in this paper， is 
proved to be an efficient approach for addressing 
posterior probabilities. It accomplishes this by con‑
tinually evaluating the alignment of the advancing di‑
rection with both prior and observed samples， pro‑
gressively closing in on the proximity of the posteri‑
or distribution. After this， an extensive sampling 
process is conducted within this region of the poste‑
rior distribution， leveraging statistical techniques to 
extract numerical properties of the model.

3 A Numerical Example 

This paper performs its verification within the 
FEM framework. To evaluate the feasibility and ef‑
fectiveness of the proposed method in the inverse 
problem of residual stress field inference， the infer‑

Fig.6　Position relationship between various MSRS and 
IRS fields
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ence error of the proposed method and the TR meth‑
od based on deformation forces introduced different 
measurement noises is analyzed， comparing with 
the theoretical residual stress values.

First， a typical titanium alloy structural compo‑
nent with a size reduction of 300 mm × 100 mm × 
16 mm was used as the workpiece for validation. The 
material of the component is Ti6Al4V， with a 
Young’s modulus of 100 GPa and a Poisson’s ratio 
of 0.34. This part includes four groove features， each 
with a depth of 13.5 mm， a web thickness of 
2.5 mm， and a rib thickness of 4 mm. The process‑
ing sequence of the slots is illustrated in Fig.7， in‑
volving the removal of 9 layers of material from each 
slot， each with a depth of 1.5 mm. The 10th layer 
represents the remaining material， with a depth of 
2.5 mm. In line with the clamping arrangement with‑
in the real machining environment， we establish 
boundary conditions within the simulation environ‑
ment. Fixed constraints are applied to the unit nodes 
corresponding to the secured clamping points on the 
components. These constraints serve to restrict all 
six degrees of freedom of the parts， thus maintaining 
the machining reference point. Additionally， a 
grounding spring is positioned at the deformation 
force monitoring point to track deformation forces 
during the machining process. Following the remov‑
al of each layer， four monitoring point sensors record 
deformation force data， resulting in a total of 36 de‑
formation force data points recorded upon the com ‑
pletion of the machining process.

Based on distribution pattern of the IRS and 
MSRS fields of Ti6Al4V， the IRS field is divided 
into ten regions. Each layer in z direction is further 
divided into a single region， with each region con‑
taining σx. Additionally， the MSRS field distributed 
within a depth range of 0.2 mm is divided into five 

layers， each layer containing σx.
Then， a theoretical RS field distribution is in‑

troduced for comparison with inference results， 
which is based on the research conducted by Fang et 
al.［21］ and Outeiro et al.［22］， as well as the simulation 
results presented in this paper. The RS field closely 
resembles the actual environment， with the IRS 
symmetrically distributed along the neutral plane of 
the blank. The radial residual stress （σx，σ y） shares 
similar distribution characteristics， with tensile 
stress near the surface layer and compressive stress 
near the neutral layer， while the axial residual stress 
（σ z） shows relatively uniform distribution. The dis‑
tribution curve of residual stress on the processing 
surface exhibits a “ √ ” shape. Under the same ma‑
chining parameters， the stress levels are linked to 
the IRS values in the distribution area， a typical fea‑
ture of the RS distribution in titanium alloy plates.

This paper simplifies the assumption that the 
distribution of MSRS along the symmetrical region 
of the neutral plane is the same （Layers 1 ─ 4 and 
5─ 8）. Consequently， it is inferred that the residual 
stress field consists of IRS of x direction in 10 re‑
gions and MSRS of x direction in 25 regions， as 
shown in Fig.8.

Fig.7　Structural component information

Fig.8　Distribution of theoretical IRS and MSRS fields
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To assess the inference effectiveness of the 
method proposed in this paper in the residual stress 
field， a real environment is simulated， incorporating 
measurement errors of 2% and 5% for the calculat‑
ed deformation forces based on the theoretical RS 
field， respectively.

The inference results of the IRS and MSRS 
fields under 2% and 5% noise conditions using the 
presented GP method and TR method， are depicted 
in Fig.9 and Fig.10， respectively. The root mean 
square error （RMSE） of IRS and MSRS inference 
results using the mentioned methods are compared 
in Table 2.

As depicted in Fig.9 and Fig.10， the inference 
outcomes for IRS and MSRS achieved through the 
presented method exhibit a strong resemblance to 
the theoretical actual values. In contrast， the trend 
of IRS alone closely aligns with the theoretical actu‑
al values when employing TR method. A compari‑

Fig.9　Inference results of RS field under 2% noise condi‑
tion
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son of the RMSE results in Table 2 clearly demon‑
strates that the inclusion of the correlation prior has 
markedly enhanced the precision of the inference re‑
sults. These analytical findings validate the theoreti‑
cal feasibility of the proposed method， laying the 
groundwork and providing a robust foundation for 
subsequent research.

4 Conclusions 

The feasibility of the presented method is con‑
firmed through simulation data. It is important to 
note that this study has been validated solely in a 
three-dimensional simple model with a unidirection‑
al residual stress distribution， while actual parts 
should consider multi-direction residual stress. More 
intricate scenarios require thorough analysis. For ex‑
ample， the structures and residual stress filed of part 
are more complex. The measured MSRS values in 
actual processing experiments can also serve as a pri‑
or to further improve the accuracy and reliability of 
inference results.

We establish an equivalent mechanical model 
that links IRS and MSRS fields to deformation forc‑
es， exploring the correlation between various 
MSRS distributions under different IRS conditions 
using FEM in this research. Subsequently， we em‑
ploy a latent GP within a Bayesian framework to in‑
fer IRS and MSRS based on deformation forces.

Based on numerical results of this study，com‑

pared with the TR regularization method， using the‑
oretical residual stress as the evaluation index for re‑
sidual stress field inference error， the inclusion of 
the correlation prior has markedly enhanced the pre‑
cision of the inference results， which achieves the 
purpose of part deformation prediction and control 
and the fatigue life analysis.
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基于潜高斯过程引入理论先验的钛合金结构件残余应力场

推断方法

陈俊松 1， 刘长青 1， 赵智伟 1， 王 伟 2， 向兵飞 3， 危震坤 3， 李迎光 1

（1.南京航空航天大学机电学院，南京 210016，中国； 2.舍夫德大学工程科学学院，舍夫德，瑞典； 
3.江西洪都航空工业集团有限责任公司，南昌 330096，中国）

摘要：残余应力（Residual stress， RS）是导致钛合金结构件加工变形的主要原因。钛合金结构件的残余应力包括

初始残余应力（Initial residual stress， IRS）和加工表层残余应力（Machined surface residual stress， MSRS），其中，

MSRS 是加工表层区域的 IRS 与高水平的加工残余应力（Machining‑induced residual stress， MIRS）耦合作用的

结果。结构件的加工变形控制是航空航天工业亟需解决的重要问题，准确获取结构件残余应力场的是加工变形

精确预测和控制的基础。然而，现有的残余应力预测方法难以考虑零件制造过程中的各种不确定性，导致预测

精度有限。现有的测量方法仅能在样件中测量局部的残余应力，对于大型结构件残余应力场测量，测量效率低。

针对以上挑战，本文提出了一种贝叶斯框架下同时推断钛合金结构件 IRS 和 MSRS 的方法。该方法将不可观测

的 IRS 和 MSRS 建模为潜高斯过程，将不同区域的 MSRS 场之间存在相关性这一先验知识通过具有共享协方差

的核函数融入潜高斯过程，并利用可观测的变形力对残余应力场进行推断。本方法提供了一种从概率角度利用

变形力数据推断零件残余应力场的有效手段，为后续变形控制策略优化提供了可靠依据。

关键词：钛合金；残余应力场推断；潜高斯过程；加工变形
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