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Abstract: The lack of key materials has emerged as one of crucial factors affecting the execution of helicopter 
assembly production plans. Accurate material delivery time prediction can guide assembly production planning and 
reduce frequent changes caused by material shortages. A lifelong learning-based model for predicting delivery time of 
materials is proposed on the basis of internal data sharing within the helicopter factory. During real-time prediction， 
the model can store new memories quickly and not forget old ones， which is constructed by gated recurrent unit 
（GRU） network layer， ReLU activation layer， and fully connected layers. To prevent significant precision 
degradation in real-time prediction， a regularization parameter constraint method is proposed to adjust model 
parameters. By using this method， the root mean square error （RMSE） in the model’s prediction on the target 
domain data is reduced from 0.032 9 to 0.013 4. The accuracy and applicability of the model for real-time prediction in 
helicopter assembly is validated by comparing it with methods such as L2 regularization and EWC regularization， 
using 25 material orders.
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0 Introduction 

Due to various disturbance events， frequent ad‑
justment of production plans due helicopter assem ‑
bly line has become a prominent problem［1］. As one 
of the important influencing factors， the uncertainty 
in material delivery time will cause severe delays in 
material kitting time. Deviation between actual and 
expected time for material kitting time may result in 
reduced assembly efficiency［2］. The absence of criti‑
cal materials may disrupt the existing production 
plan， potentially leading to downtime on the produc‑
tion line［3］. The “headquarters-branch” mode is cur‑
rently the main model adopted by helicopter manu‑
facturing enterprises， which means most of the key 
components of helicopters are produced in the 

group’s own workshops. State data and statistical 
data are shared among different workshops. When 
making a production plan for helicopter assembly， 
the production planning department can directly ob‑
tain production process data， which provides com ‑
prehensive support in predicting material delivery 
time. The accuracy of real-time prediction of materi‑
al delivery time is important for the execution of pro‑
duction plans and the optimization of scheduling 
costs.

According to literatures， predictive methods 
for material delivery time include support vector re‑
gression， decision tree regression， case-based rea‑
soning， neural networks， etc. Lu et al.［4］ proposed a 
dynamic scheduling model for aircraft assembly 
based on material delivery lead time prediction， uti‑
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lizing the XGBoost algorithm to forecast delivery 
time and dynamically adjusting production plans 
based on the prediction results. However， this algo‑
rithm is not well-suited for processing high-dimen‑
sional sparse data. Chen et al.［5］ proposed an inte‑
grated model by combining K-means clustering， fea‑
ture selection， and the decision tree method into a 
single evaluation model to assess the performance of 
suppliers. Louvros et al.［6］ used machine learning 
and case-based reasoning for real-time onboard pre‑
diction of the survivability of ships， but if there is no 
similar data available to the current issue， it may re‑
sult in the inability to deduce new solutions. Ren et 
al.［7］ developed a material delivery node prediction 
approach based on information entropy and used dy‑
namic error compensation to refine the prediction re‑
sults. However， building a state transition matrix 
and precisely describing the transition probabilities 
of each workstation state are particularly challenging 
in complex assembly scenarios. Lyu et al.［8］ em‑
ployed principal components analysis （PCA） and a 
1D convolutional neural network （CNN） to predict 
the remaining life of aircraft engines， and Peng et 
al.［9］ proposed a multi-input deep learning model for 
predicting terminal area traffic flows during convec‑
tive weather. Although the aforementioned methods 
are effective in forecasting， they did not take into ac‑
count the sequentiality of the data.

Material delivery time prediction involves pre‑
dicting future delivery time using time series fore‑
casting techniques. This can be achieved using both 
statistical and machine learning-based methods. Sta‑
tistical-based methods， such as autoregressive mod‑
els［10］ and autoregressive moving average mod‑
els［11］， excel at processing linear and small-sample 
data. However， they may face challenges when 
dealing with large and non-stationary datasets due to 
their high computational costs and reliance on the as‑
sumption of data stationarity and linearity. Machine 
learning methods can be divided into traditional ma‑
chine learning and deep learning. Traditional ma‑
chine learning methods rely on manually selected 
features for modeling and prediction，such as linear 
regression models［12］， support vector［13］， decision 
trees［14］， random forests［15］， etc. However， for 

some time-series prediction problems with large da‑
ta sets and complex features， the performance of tra‑
ditional machine learning methods may be limited 
by the capabilities of the model.

Deep learning methods not only perform well 
in solving nonlinear and non-stationary data， but al‑
so handle prediction problems with large data sets 
and complex features. Ref.［16］ proposed the first 
recurrent neural network model for time series pre‑
diction. However， the problem of vanishing or ex‑
ploding gradients occurs with longer sequences. 
Long short-term memory （LSTM）［17］ model solves 
the gradient problem， but it comes with a high com ‑
putational cost and is susceptible to overfitting. Cho 
et al.［18］ introduced the gated recurrent unit （GRU） 
model， addressing gradient issues while simplifying 
and facilitating training. Wang et al.［19］ proposed a 
lightweight multi-layer residual temporal convolu‑
tional network model to target the highly complex 
kinematic and temporal correlation of human mo‑
tion. Deep neural networks exhibit high prediction 
accuracy， but most of these methods are trained on 
fixed datasets. When the distribution of data chang‑
es， the model may experience significant prediction 
bias.

Although previous research provides technical 
support for improving the accuracy of material deliv‑
ery time， real-time prediction under fluctuation in 
data distribution is relatively underexplored. Tech‑
nologies such as intelligent recognition， advanced 
control， and intelligent sensing provide technical 
support for data collection in the workshop. The re‑
al-time data in the machining process of the machin‑
ing workshop has a high dimensionality and is non-

linear. This paper analyzes the relevant factors that 
influence material delivery time， establishes a re‑
gression prediction model， and compares the predic‑
tion performance of popular time-series models on 
the dataset. To address the issue of reduced assem ‑
bly efficiency caused by inaccurate material delivery 
time， a material delivery time prediction model is 
proposed. In practice， the operating law of the work‑
shop changes dynamically over time， thus the data 
distribution representing the state of the material 
changes accordingly， and we add a lifelong learning 

148



No. 2 MA Lijun, et al. Lifelong Learning Based Material Delivery Time Prediction for Helicopter Assembly

approach to the model. This model has the ability to 
learn and accumulate knowledge over time within its 
neural network， surpassing the limitations of tradi‑
tional prediction models that can only provide accu‑
rate predictions on similarly distributed data.

1　Description of the Problem

In this article， a specific Chinese helicopter 
manufacturing plant is studied， and Fig.1 illustrates 
the diagram of material delivery within the factory， 
where AGV denotes automated guided vehicle. The 
materials required for helicopter assembly are manu‑
factured in the mechanic processing workshop and 
then delivered to the warehouse. The warehouse us‑
es a large underground conveyor to distribute the 
matched materials to the corresponding assembly 
stations based on the delivery time nodes.

Define the remaining material delivery time as 
from the current moment until the material is deliv‑
ered to the corresponding assembly station. The ma‑
terial remaining delivery time （MRDT） is defined as

MRDT = Tm + T c + T s (1)
where Tm represents the remaining time to comple‑
tion， T c the time required for delivery from mechan‑
ic processing workshop to warehouse， and T s the 
time of transportation via conveyor belt. As trans‑
portation route and speed remain constant， we con‑
sider the time required for material delivery as a con‑
stant value.

The warehouse system only maintains records 

of the current status of each inventory item and can‑
not accurately show the delivery time for non-inven‑
toried materials. The precision and promptness of 
material delivery are vital to the efficient operation 
of assembly tasks. Predicting the delivery time of 
materials beforehand can transform management 
mode form post-adjustments to pre-adjustments.

The materials required are processed by the 
corresponding machining workshop， which has ma‑
chining equipment with a total number of M. The 
primary objective of this article is to forecast critical 
shortages of essential materials which were frequent‑
ly encountered during statistical analysis in history. 
The duration of storage in the warehouse after the 
completion of material processing is not taken into 
account for the remaining delivery time.

The machining process discussed in this article 
follows the principle of processing different materi‑
als along predetermined routes， with each machine 
processing only one material at a time. During equip‑
ment operation， incoming materials are required to 
be queued in the input buffer area waiting for pro‑
cessing. Upon completion of the machining process， 
the finished parts will directly enter the output buffer 
area， awaiting transportation to the next machine fa‑
cility. The input and output buffer areas operate on a 
principle of first in first out for processing. There are 
five main factors that influence the delivery time of 
materials.

The uncertain equipment status （ES） of the 
machine can impact the required machining time. 
Considering the sufficient buffer capacity and ample 
number of AGVs， the waiting time due to material 
transport is eliminated. Hence， only the machine 
status is considered during data collection.

EST =[ MU T
n,CW T

n ] (2)
where EST denotes equipment operating status at 
time T， n machine number， MU T

n  average machine 
utilization rate from the nearest completed material 
order to the current time T， and CW T

n  machine n’s 
continuous working time at time T.

BQS represents the storage status of the queue 
in the buffer area， which affects the waiting time of 

Fig.1　Diagram of material delivery in a helicopter manu‑
facturing plant
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materials. The queue information reflects details re‑
garding the processing route and order of materials. 
The BQS queue information is shown as

BQST =
é

ë
ê
êê
ê ù

û
úúúú

ICT
n,1,ICT

n,2,⋯,ICT
n,M

OCT
n,1,OCT

n,2,⋯,OCT
n,M

(3)

where BQST represents the queue information for 
the buffer area of all machine tools at time T， ICT

n，i 
the type of the ith material entering buffer area 
queue for machine tool n at time T， and OCT

n，i the 
type of the ith material leaving the buffer area queue 
for machine tool n at time T.

The order information （OIF） describes the 
composition of materials involved in the processing 
order， including material identification and quanti‑
ties. The number and type of materials in the order 
play a determining role in the overall processing 
time of the order.

OIF =[ M 1,M 2,⋯,M X ] （4）
where M i represents the type of the ith material and 
X the number of material type in the workshop.

In-process information （IPI） is determined by 
the type of work-in-progress and the accumulated 
processing time for the work-in-progress on the ma‑
chine， which in turn determines the remaining pro‑
cessing time on that machine. TM T

n  represents the 
type of material being processed on machine n at 
time T， while PT T

n  represents the duration of pro‑
cessing that material on machine n up to time T.

IPIT =[ TM T
n,PT T

n ] (5)
In addition， statistics on the completion of the 

current order are also required， including the type of 
material quantities already completed and the re‑
maining processes of unfinished processing， which 
is shown as

MTT =[ N T
c ,P T

c ] (6)
where MTT represents the order completion status 
at time T， N T

c  the process of material c being com‑
pleted at time T and P T

c  the remaining processing 
steps of material c at time T.

Therefore， the feature dataset required for ma‑
terial delivery time prediction model can be repre‑
sented by

FD =[ ES,BQS,OIF,IPI,MT ] (7)

where FD represents the feature set of predicted ma‑
terial delivery time. And a deep neural network is 
utilized to perform regression prediction on material 
delivery time （MDT） using the features extracted 
from FD.

MDT = f ( FD ) (8)
Eq.（7） represents the mapping relationship be‑

tween material delivery time and the data features.

2 Material Delivery Time Predic⁃
tion Model 

In order to solve the problems of uncertainty of 
material delivery time in the shop floor and the easy 
failure of fixed models in real-time prediction， we 
propose a lifelong learning-based framework. The 
architecture of the material delivery time prediction 
model is based on the GRU network and incorpo‑
rates lifelong learning to address the issue of re‑
duced prediction accuracy caused by data distribu‑
tion fluctuations over time. The model’s structure is 
illustrated in Fig.2. Three major steps are involved 
in the lifelong learning-based model for material de‑
livery time prediction. The first step， the data that 
characterizes the state of the workshop is collected. 
The prediction model is trained by using historical 
data of the workshop through the gradient descent 
algorithm. By repeatedly conducting training 
rounds， the most accurate predictive model parame‑
ters can be attained. The predictive model utilizes re‑
al-time data for application validation. We monitor 
the root mean square error （RMSE） during the real-
time prediction process and use it to determine 
whether the model’s error exceeds a threshold. The 
third step is to fine-tune the parameters of the model 
when the error exceeds the baseline. The source 
model is used to initialize the target mode and com ‑
pute the importance of each parameter. The regular‑
ization constraint is used to retrain the model， and 
the trained model is updated after the training is 
completed.

In that case， define the data before the distribu‑
tion changes as the source domain， and after the 
change as the target domain. The relevant informa‑
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tion from the source domain is preserved to con‑
strain the parameter changes in the training of the 
target domain， thus enabling the model to make pre‑
dictions on data with different distributions.

Feature scaling is utilized as a crucial data pre‑
processing step to normalize features with disparate 
scales， which can help to alleviate the imbalanced 
sample distributions. The defining formula is shown 
as

x '=
x - xmin

xmax - xmin
(9)

where x ' is the normalized value of the data and x 
the data before normalization； xmax and xmin denote 
the maximum and minimum values of the corre‑
sponding features， respectively.

A time series prediction model is specifically 
designed for the delivery forecasting of materials， as 
it involves the regression prediction of time series 
data. GRU is not only able to learn quickly， but also 
suitable for scenarios especially when the sequences 
are relatively short. GRU is a type of recurrent neu‑
ral network that focuses on addressing the issues of 
vanishing and exploding gradients， and can also 
solve the problem of information loss in traditional 
RNN networks. Its main characteristic is the intro‑
duction of gate mechanisms. Through gate mecha‑
nisms， GRU can selectively “retain” or “forget” in‑
put data， thus achieving remembering and forget‑
ting of information. In GRU， the state of each unit 
can be weighted by the controller， which includes 
update gate （z t）， reset gate （r t）， and candidate 
state （h͂ t）.

The update gate functions control the extent to 
which input data modifies the current state， with a 
higher value indicating a stronger incorporation of 
previous state information.

z t = σ (W z x t + U zh t - 1 + b z ) (10)
The reset gate is used to control the impact of 

the unit’s historical information on the current state. 
The smaller the reset gate value is， the less previ‑
ous state information is being incorporated. If the 
correlation between the previous state information 
and the current input is weak， the reset gate is trig‑
gered.

r t = σ (W r x t + U rh t - 1 + b r ) (11)
Once the update gate and the reset gate are 

computed， the GRU calculates the candidate state 
by using

h͂ t = tanh (W t x t + U t( r t ⊙h t - 1)+ b t) (12)

The output of GRU at time step t is given as
h t = ( I- z t ) ⊙h t - 1 + z t ⊙h͂ (13)

where xt represents the input vector， ht - 1 the hid‑
den state vector from the previous time step， zt the 
update gate vector， rt the reset gate vector， h͂ t the 
new candidate hidden state vector， ht the hidden 
state vector at the current time step， and σ ( · ) the 
sigmoid function， whose range falls within （0，1）. 
⊙ denotes an element-wise multiplication opera‑

Fig.2　Material delivery time prediction framework
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tion. W， U and b represent the weight matrices for 
input， transition from the previous time step’s hid‑
den state vector， and the bias vector， respectively.

GRU has shown great predictive performance 
in sequential data prediction. It is usually trained on 
a dataset and then its network parameters are frozen 
before it is deployed in the target application. As 
time elapses and the distribution of data changes， 
the performance of neural networks may deteriorate. 
To adapt to changes in data distribution， it is neces‑
sary to make adjustments to the parameters of the 
neural network for mitigating the risks of overfitting 
and catastrophic forgetting. If source domain data 
and target domain data are mixed during model ad‑
justments， a large amount of storage space will be 
consumed.

Artificial intelligence predominantly relies on 
fixed datasets and stationary environments. In gener‑
al， the input data to the model consists of produc‑
tion data obtained from static conditions［20］. Howev‑
er， these data need to be carefully shuffled， bal‑
anced， and homogenized before presented to the 
model. When GRU is used for real-time prediction， 
in some cases， the model may underperform or ex‑
perience rapid performance degradation on previous‑
ly learned tasks. Lifelong learning could enable mod‑
els to adapt to the distribution of real-time data 
changes. Regularization-based methods can effec‑
tively avoid the issue of large storage space con‑
sumption. When the model experiences a decrease 
in prediction accuracy， abstract historical informa‑
tion can be saved and used for retraining the net‑
work to avoid catastrophic forgetting. The principle 
is to evaluate the importance of neural network pa‑
rameters trained on source domain， and prevent sig‑
nificant changes in important parameters during 
training on the target domain. Gu et al.［21］ visualized 
the distribution of parameter importance through ex‑
periments， and proposed a method based on Taylor 
expansion to assess the significance of neurons. 
They concluded that the importance of a neuron is 
calculated by multiplying the absolute value of its ac‑
tivation value with the gradient of the loss function 
concerning its activation value. By applying the 

aforementioned idea， the importance of the parame‑
ter can be assessed by analyzing its impact on the 
overall performance of the model. The importance 
of each parameter is measured by the absolute value 
of the product of the parameter’s magnitude and its 
gradient with respect to the loss function after com ‑
pleting training in the source domain. This yields 
the parameter importance matrix shown as

W ( H )=
|

|

|
||
|
θ⊙ δL ( H )

δθ

|

|

|
||
|

（14）

where H denotes all parameters in the network， θ 

the parameter matrix， and δL ( H )
δθ

 the gradient ma‑

trix of the loss function L ( · ) with respect to θ. After 
calculating the importance of parameters， we can 
use them to impose constraints on different parame‑
ters in training of the target domain. Additionally， 
the original loss function is replaced with a proxy 
loss function in the target domain shown as

L 2 = L '2 + C*∑
K

W ( H ) *( θ͂ k - θk )2 (15)

C = L '2
∑

k

W ( H ) * ( θ͂ k - θk )2 + ξ
(16)

where L 2 represents the proxy loss function， L '2 the 
original loss function on the target domain， and C 
the penalty term and dynamically adjustment of the 
value to balance the penalty and original loss func‑
tions. ξ is an additional damping factor that prevents 
the occurrence of excessively large or small values 
of C. θ͂ k denotes the parameter values after training 
on source domain， while θk denotes those used for 
training on target domain. By utilizing the proxy loss 
function and target domain data， we retrain the mod‑
el by initializing the parameters with the trained pa‑
rameters of the source domain and update them us‑
ing the gradient optimization. The model generated 
from this approach possesses the capability to cater 
to the prediction requirements of both the source 
and target domains， constantly accumulating knowl‑
edge via this methodology， and eventually extend‑
ing predictions to encompass diverse data distribu‑
tions within the workshop. The parameter update 
process of the model is illustrated in Fig.3.
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3 Experimental Application and 
Analysis 

As an instance， information relevant to the ma‑
terials necessary for the assembly of a specific heli‑
copter is gathered. 25 material orders corresponding 
to the frame， beam， and horizontal components lo‑
cated at the mid-end of the fuselage are selected for 
validation. Utilizing the data pertaining to materials 
required， a set of 15 material orders are selected as 
the source domain， while 10 orders are chosen as 
the target domain.

The dataset is preprocessed， and through com‑
parative experiments， the GRU neural network 
model shows the best performance in predicting the 
delivery time of materials. The optimal solution for 
hyperparameters is through the approach of a tree-

structured Parzen estimator （TPE）. It is a Bayesian 
optimization algorithm based on tree structure， 
which is used to solve the global optimization prob‑
lem of black box function. As follows， epoch=
100， batch size=256， learning rate=0.000 1， time 
step = 6， and the threshold ξ = 0.000 002 84. The 
hidden layer structure of the neural network is 
400‑215. The Adam optimizer is employed to adjust 
the parameters in the model. During training， the 
loss function is measured using RMSE， which is in 
line with the original data unit and makes it easier to 
interpret the performance of the model on the data. 
The formula for RMSE is shown as

RMSE = 1
N ∑

i = 1

n

(Y i - f ( xi ) )2 (17)

where the notation Y i represents the true values， 
f ( xi ) the predicted values， and N the total number 
of data in the batch.

To comprehensively evaluate the performance 
of the model， we also use R-square （R2）， mean ab‑
solute error （MAE）， and symmetric mean absolute 
percentage error （SMAPE） as evaluation metrics. 
R2， also referred to as the coefficient of determina‑
tion， reflects the degree to which the independent 
variable explains the variation in the dependent vari‑
able. The closer the value approaches 1， the higher 
the accuracy of the model’s fit. The MAE repre‑
sents the anticipated value of absolute error loss， 
whereas SMAPE serves as another performance 
metric. Smaller values for these measures indicate 
superior model performance. The formulas for calcu‑
lating R2， MAE and SMAPE are given as

R2 = 1 -
∑
i = 1

n

(Y i - f ( xi ) )

∑
i = 1

n

(Y i --Y )
(18)

MAE = 1
n ∑

i = 1

n

|| (Y i - f ( xi ) ) (19)

SMAPE = 1
n ∑

i = 1

n |f ( xi )- Y i |
( |f ( xi ) | + |Y i | ) /2

× 100% (20)

The advantage of GRU predictions is validated 
by comparing its performance to other time series 
forecasting models available on the dataset. The pre‑
dicted results after training are presented below. 
Fig.4 illustrates the loss function values for various 
models on the validation set during the training pro‑
cess. The x-axis represents the number of training it‑
erations， while the y-axis the value of RMSE. The 
results are obtained by training four different mod‑
els， namely transformer， temporal convolutional 
network （TCN）， deep neural network （DNN）， 
and GRU. From Fig. 4， it can be observed that the 
GRU exhibits faster convergence rate on the given 
dataset. Furthermore， the convergence process is 
relatively stable. The predictive performance of 
TCN is comparable to that of DNN. However， the 
transformer exhibits the poorest predictive efficien‑
cy. Consequently， GRU has a significant advantage 

Fig.3　Model parameter update process
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in predicting material delivery time.
Table 1 shows the metrics of each model on 

the source and target domain validation sets. It can 
be observed that RMSE of GRU model is 0.006 1 

on the source domain validation set and 0.032 9 on 
the target domain validation set， which are smaller 
than those of other models. Most evaluation metrics 
of the GRU model are superior to those of other 
models. This indicates that the GRU model has 
high prediction accuracy and good generalization per‑
formance on the given dataset. The predictive per‑
formance of all models on the target domain is rela‑
tively poor. The RMSE of GRU in the validation 
set increases from 0.006 1 to 0.032 9， indicating a 
growth rate of 439% and suggesting that utilizing a 
fixed-parameter model for real-time material deliv‑
ery time prediction is not a viable option. The data 
that represents the state of the workshop undergoes 
dynamic changes in distribution over time.

The application of the uniform manifold ap‑
proximation and projection （UMAP） algorithm to 
two distinct datasets results in the reduction of their 
dimensionality， allowing for comparison of their dis‑
tributions. This analysis reveals significant differenc‑
es， which are illustrated in Fig.5. This highlights 
the importance of adjusting the real-time delivery 
prediction model in response to the magnitude of its 
bias. In this setting， lifelong learning comes as a nat‑
ural solution.

The concept of lifelong learning is incorporated 
into parameter updates to prevent catastrophic for‑
getting of previous data distributions. Preserving the 
parameters and gradients of the original model and 

computing the importance matrix of the parameters， 
the model is then retrained on the target domain via 
a proxy loss function. In Table 2， GRUPGC refers to 
using parameter P and gradient G to calculate the 
importance matrix， and using the adaptive variable 
C as a penalty coefficient. GRUPG refers to the result 
of using a constant instead of the adaptive variable. 
GRUL2 refers to using L2 regularization to constrain 
the model parameters. GRUEWC refers to using the 
elastic weight consolidation（EWC） to constrain the 
model parameters. GRUSI refers to using synaptic in‑
telligence （SI） ［22］ to constrain the model parame‑
ters. GRUMAS refers to using memory aware synaps‑
es （MAS）［23］ to constrain the model parameters.

Based on the results shown in Table 2， it can 
be observed that after adjustment， the GRUPGC has 
a validation set RMSE of 0.013 3 on the source do‑
main and a validation set RMSE of 0.012 4 on the 
target domain. The model not only adapts to the da‑
ta distribution of the target domain but also does not 
forget the source domain. The L2 algorithm has the 
worst solution performance， followed by EWC， 
SI， MAS and then PG， indicating that the PGC 
method can better maintain the stability of the mod‑
el’s prediction accuracy on this dataset.

Fig.4　Comparison of predictive performance across differ‑
ent methods

Table 1　Prediction of different methods on source and target domain data sets

Model

Transformer
DNN
TCN
GRU

Source domain validation data
RMSE
0.032 2
0.012 2
0.017 6
0.006 1

R2

0.987 3
0.998 5
0.996 2
0.999 6

MAE
0.025 4
0.007 7
0.012 9
0.005 0

SMAPE/%
12.98
4.02
8.51
3.22

RMSE
0.070 8
0.033 5
0.084 1
0.032 9

Target domain validation data
R2

0.940 6
0.986 7
0.912 1
0.987 0

MAE
0.055 7
0.024 3
0.072 8
0.023 3

SMAPE/%
24.90
10.82
17.50
10.27

Fig.5　Data distribution of source and target domains
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Fig.6 shows the descent of the loss function of 
the model on the target domain training set （repre‑
sented by LOSS 1）， validation set （represented by 
VLOSS 11）. The descent of the loss function on 
the source domain is represented VLOSS 10. Dur‑
ing training with regularized constraints， a gradual 
ascent of the loss function on the source domain is 
followed by a decrease in the loss function on the tar‑
get domain， until they both converge to similar val‑
ues. Regularization constraints result in a balanced 
solution space for model parameters， ensuring accu‑
rate predictions for both source and target domains.

Figs.7—9 depict the number of sample points 
on the horizontal axis and the corresponding delivery 
time on the vertical axis， with triangular markers in‑
dicating predicted values and red markers indicating 
actual values. Validation 1 represents the model’s 
prediction performance on the validation set of the 
target domain without training with regularized con‑
straints. Fig.7 shows that the results of this model 
have many deviations. Validation 11 and Validation 
10 represent the prediction performances after com ‑
pleting training with regularized constraints on the 
target domains. It can be seen that regularized con‑
straints are highly effective in avoiding catastrophic 
forgetting.

The following conclusions can be drawn from 
the aforementioned experiments：

（1）In time series prediction models， GRU 
yields higher accuracy in predicting material delivery 
time in the studied helicopter workshop.

（2）In practice， the state data of the workshop 
dynamic changes over time. Fixed parameter mod‑
els experience a gradual decrease in accuracy in real-
time prediction as the data distribution changes.

Table 2　Prediction of different regularization methods on source and target domain datasets

Metric value

GRUPGC

GRUPG

GRUL2

GRUEWC

GRUSI

GRUMAS

Target domain data
RMSE
0.013 4
0.013 8
0.015 3
0.013 2
0.014 1
0.014 2

R2

0.997 8
0.997 7
0.997 2
0.997 9
0.997 6
0.997 6

MAE
0.008 4
0.008 8
0.009 8
0.008 1
0.009 2
0.009 0

SMAPE/%
5.02
5.00
5.43
4.64
5.37
5.32

Source domain data
RMSE
0.013 3
0.013 4
0.014 3
0.014 5
0.015 2
0.013 4

R2

0.997 9
0.997 9
0.997 6
0.997 5
0.997 2
0.997 9

MAE
0.010 8
0.010 8
0.011 4
0.011 5
0.012 2
0.010 8

SMAPE/%
6.34
8.92
7.22
6.42
8.01
6.74

Fig.6　GRUPGC loss functions for training and validation sets 
on source and target domains

Fig.7　Validation effect of GURPGC on the target domain af‑
ter training on the source domain

Fig.8　Validation effect of GURPGC on the target domain af‑
ter training on the target domain

Fig.9　Validation effect of GURPGC on the source domain af‑
ter training on the target domain
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（3）The proposed method has the advantage of 
utilizing adaptive parameter C to trade-off between 
the allowed forgetting and the new task loss. During 
the training， the model can learn the importance 
weights. When learning the new distribution data， 
changes to important parameters are penalized.

（4）Incorporating the concept of lifelong learn‑
ing， the prediction model exhibits high reliability 
and adaptability. This provides data support to 
achieve coordination among material processing， 
component assembly， and production planning de‑
partments， thereby enhancing the feasibility and 
achievability of helicopter assembly plans.

4 Conclusions 

This paper focuses on predicting delivery time 
for helicopter assembly materials with a GRU-based 
model incorporating lifelong learning. First， by com‑
paring the prediction effects of different time-series 
prediction models， it is concluded that GUR pre‑
dicts well on material prediction. Then， it is con‑
firmed that the distribution of data changes dynami‑
cally with time by using dimensionality reduction. 
Finally， we compare different regularized lifetime 
learning methods. By utilizing regularized con‑
straints to fine-tune model parameters， the model 
can not only make predictions on new data， but also 
prevent catastrophic forgetting. The predicted re‑
sults can be used to guide the production plan in the 
assembly workshop， reduce the frequency of chang‑
es to the production plan to some extent， lead to a 
pre-intervention mode and improve production effi‑
ciency in the workshop. In future work， the model’s 
network structure can be pruned or expanded based 
on predicted data to ensure that the model com ‑
pletes predictions with the smallest possible struc‑
ture.
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基于终身学习的直升机装配车间物料送达时间预测

马立俊 1， 阳祥贵 2， 郭 宇 1， 童周强 2， 黄少华 1， 刘道元 1

（1.南京航空航天大学机电学院，南京 210016，中国； 2.江西昌河航空工业有限公司，景德镇 333000，中国）

摘要：关键物料的缺失已成为影响直升机装配生产计划执行的关键因素之一。准确的物料送达时间可指导装配

生产计划的制定，一定程度上避免了由缺料导致的生产计划频繁变更。在直升机车间内部数据共享的基础上，

一种基于终身学习的物料送达时间预测模型被提出。该模型由门控循环单元（Gated recurrent unit， GRU）网络

层、ReLU 激活层和全连接层构成，在实时预测时，可快速存储新的记忆且不遗忘旧的。为避免在实时预测中的

精度大幅度降低，一种正则化的参数约束方式被提出来对模型参数进行调整。该方法的应用使得模型在目标域

数据上的预测误差从 0.032 9 降低到 0.013 4。使用 25 个物料清单数据进行模型验证。通过与 L2 正则化、EWC
正则化等常用的正则化方法进行对比，验证了所建立的模型在实时预测上的准确性与实用性。

关键词：直升机装配车间；物料送达预测；终身学习；参数正则化
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