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Abstract: Lift-type aircraft has the characteristics of wide flight airspace， large range of speed changes， strong 
maneuverability requirements， which makes it a research focus in recent years. Aiming at difficulties of large 
uncertainty and strong external disturbance in the control model of lift-type aircraft， an improved discrete-time sliding 
mode variable structure control method based on disturbance observer is presented. Firstly， the discrete control model 
of the pitch channel is established. Secondly， an improved discrete-time sliding mode variable structure control system 
based on disturbance estimation is designed and its stability is proved. Thirdly， the influence of parameter selection on 
control system is analyzed， and the validity of control law is verified. Finally， the comparison with the traditional 
discrete sliding mode variable structure control system is carried out. The control system’s simulation results 
demonstrate that， compared with the traditional discrete-time sliding mode control system， the proposed control 
system has higher control accuracy， stronger robustness， faster convergence to zero and less chattering. The proposed 
control law can effectively improve the flight quality， and can realize stable control for complex mission of lift-type 
aircraft.
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0 Introduction 

Lift-type aircraft is a kind of aircraft with a 
large lift-drag ratio. They utilize aerodynamic force 
to glide in the atmosphere and realize fast long-dis‑
tance navigation［1-10］. The flight mission will cause 
the aircraft to face wide flying airspace， wide speed 
range， high maneuverability requirement， complex 
and changeable external environment. Besides， the 
model of the aircraft has strong nonlinear， strong 
coupling， fast time-varying［11］. Those factors cause 
large model uncertainties and strong external distur‑
bances in the control system of the aircraft. The tra‑
ditional linear system design method will linearize 
the control object with small disturbances， and de‑
sign the control system based on the linearized con‑
trol model. This method can ensure the system is 

stable， as long as the difference between the linear‑
ized control mode and the real model is not signifi‑
cant. Since the lift-type aircraft has the characteris‑
tics of large model uncertainties and strong external 
disturbances in the control system， there is a signifi‑
cant difference between the linearized control model 
and the real model. Therefore the traditional linear 
system design method is no longer applicable. How 
to achieve high-precision robust control under large 
model uncertainties and strong external disturbances 
has become the focus of the lift vehicle research in 
recent years.

The sliding mode variable structure control 
（SMVSC） has been widely concerned since its in‑
ception due to its insensitivity to parameter perturba‑
tion and external disturbances［12-18］. In recent years， 
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scholars have applied it to control systems’ design 
of lift-type aircraft. Shtessel et al.［19］ introduced slid‑
ing mode control based on X-33 model to realize de‑
coupling control of inner loop angular velocity and 
outer loop attitude angle. Cheng et al.［20］ proposed a 
fixed-time method for the tracking control of a quad‑
copter subject to external disturbances. Li et al.［21］ 
proposed a time delay estimation based adaptive 
sliding mode control technique with the exponential 
reaching law to achieve high-precision coordinated 
control between the spacecraft base and the robotic 
arm. Guo et al.［22］ presented a fixed-time sliding 
mode control law to track the velocity and altitude 
references. To sum up， most scholars have studied 
sliding mode variable structure control for continu‑
ous-time systems. But the practical systems are dis‑
crete. Due to the limitation of sampling frequency， 
the control systems can not only produce chattering 
in the sliding mode， but also make the sliding mode 
that is originally stable in the continuous-time sys‑
tems become unstable. The ideal robustness of the 
continuous-time systems will not exist in the practi‑
cal systems. The study of sliding mode variable 
structure control for discrete-time systems is of 
great significance in engineering practice［23-24］.

In this paper， a discrete-time sliding mode vari‑
able structure control method is studied. The mathe‑
matical model is given in Section 1. The design pro‑
cess is given in Section 2. The stability proof is giv‑
en in Sections 3 and 4. Simulation analysis is given 
in Section 5. Conclusions are given in Section 6.

Aiming to investigate the problems encoun‑
tered in the engineering practice of lift-type aircraft， 
this paper’s research and innovation points are as 
follows： （1） Propose a discrete-time sliding method 
which is more suitable for engineering implementa‑
tion； （2） design a disturbance observer which can 
effectively estimate the internal and external distur‑
bances for lift-type aircraft；（3） provide a discrete in‑
tegral sliding mode surface which can improve the 
control accuracy for complex flight mission； （4） an‑
alyze the influence of parameter selection， and pro‑
vide a basis for parameter tuning.

1 Mathematical Model 

Lift-type aircraft realizes the flight speed and al‑
titude change through the attitude adjustment of the 
pitch channel， so the control system of the pitch 
channel is significant. Therefore， this paper only an‑
alyzes the attitude control problem of the pitch chan‑
nel.

Ignoring the motion of the center of mass， we 
can define that the rate of the change of flight path 
angle is 0. Therefore， the kinematic and dynamic 
equations of the lift-type aircraft can be described as

ì
í
î
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α̇ = ωz

ω̇z = M z

Jz
+ f ( ωz ) (1)

where α is the angle of attack；ωz the pitch angular 
velocity；Jz the the moment of inertia of the pitch 
channel；M z the control moment of the pitch chan‑
nel；and f ( ωz ) the external disturbance.

We define the state variables x=[ α ωz ]T，

u= δ z， then the attitude control model of the lift-
type aircraft pitch channel can be written as

ẋ= Ax+ Bu+ H (2)
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where C α
mz is the pitch channel static stability deriva‑

tive；C ωz
mz the pitch channel damping moment coeffi‑

cient；C δ z
mz the rudder effect of the pitch channel；Q  

the dynamic pressure；S the reference area；and l the 
reference length.

Discretize Eq.（2） to Eq.（3）， and use the Z-

transform theory， we have
x ( k+ 1 )= Gx ( k )+ Fu ( k )+ Df ( k ) (3)

where G and F are the coefficient matrixes of the 
discrete-time system. Df ( k ) is the discretized ex‑
pression of the disturbances. G→R2x2， F→R2x， →
R2x.

Suppose the conditions are met，Df ( k )=
FD͂f ( k )， Eq.（3） can be written as
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ì
í
î

x ( k + 1 )= Gx ( k )+ F ( u ( k )+ d ( k ) )
d ( k )= D͂f ( k )

(4)

2 Control Law Design 

We set that the command signal as r ( k )， and 
its rate of change is rd ( k ).

Define R=[ r ( k ) rd ( k ) ]T， R 1 =
[ r ( k + 1 ) rd ( k + 1 ) ]T.

The linear exploration is used to forecast r ( k +
1 ) and rd ( k + 1 )， and we can define that R 1 =

[ r ( k + 1 ) rd ( k + 1 ) ] T， r ( k + 1 )= 2r ( k )-
rd ( k - 1 )，rd ( k + 1 )= 2rd ( k )- rd ( k - 1 ).

Define e ( k )= r ( k )- x 1 ( k ).
Using the sliding mode surface discretization 

method in Ref.［25］，the continuous sliding mode 
surface with integral term is discretized. The contin‑
uous sliding mode surface with integral term is

s ( t )= ė ( t )+ c1e ( t )+ c2∫
0

t

e ( τ ) dτ (5)

The discrete sliding mode surface after intro‑
ducing the integral term is

ì
í
î

s ( k )= C e ( R- x ( k ) )+ θ ( k )
θ ( k )= θ ( k - 1 )+ c2Te ( k - 1 )

(6)

where C e = [ c1 1 ]， and T is the sampling time.
The discrete exponential approach rate is
s ( k + 1 )= s ( k )- qTs ( k )- εT sgn ( s ( k ) ) (7)

where q is the approach rate parameter；ε the gain 
parameter of the sign function， and ε > 0，q > 0，
( 1 - qT )> 0.

Let t = ( k + 1 )T，Eq.（6） can be written as
s ( k + 1 )= C e ( R 1 - x ( k + 1 ) )+ θ ( k )+ c2Te ( k )

(8)
According to Eqs.（4，7，8）， it can be known 

that the improved discrete sliding mode variable 
structure control law is
ì

í

î

ïïïï

ïïïï

u ( k )= -d ( k )+(C eF )-1 { C eR 1 - C eGx ( k )-
( 1 - qT ) s ( k )+ εT sgn ( s ( k ) )+ Δ ( k ) }

Δ ( k )= θ ( k )+ c2Te ( k )
(9)

A disturbance observer is designed and applied 
to the improved discrete sliding mode variable struc‑
ture control law. The design formulas of the sliding 
mode controller and disturbance observer are ob‑
tained as

ì
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u ( k )=- d̂ ( k )+(C eF )-1 { C eR 1 -C eGx ( k )-
( 1- qT ) s ( k )+ εT sgn ( s ( k ) )+Δ ( k ) }

d̂ ( k )= d̂ ( k- 1 )+(C eF )-1 g { ( 1- qT ) s ( k- 1 )-
εT sgn ( s ( k- 1 ) )- s ( k ) }

Δ ( k )= θ ( k )+ c2Te ( k )
(10)

where d̂ ( k ) is the estimated disturbance，and d͂ ( k ) 
the estimated disturbance error， d͂ ( k )= d̂ ( k )-
d ( k )，g > 0.

3 Inference Proof 

3. 1 Corollary 1　

The dynamic characteristics of sliding mode 
and disturbance estimation errors satisfy the follow ‑
ing expression
s ( k+ 1 )=( 1- qT ) s ( k )- εT sgn ( s ( k ) )+C eFd͂ ( k )
d͂ ( k+ 1 )=d ( k )-d ( k+ 1 )+( 1- g ) d͂ ( k )

(11)
Proof：
Substituting Eqs.（4，10） into Eq.（12）， we ob‑

tain
s ( k+ 1 )=C e ( R 1 -x ( k+ 1 ) )+ θ ( k )+ c2Te ( k )=

C e ( R 1 -Gx ( k )-F [ u ( k )+d ( k ) ] )+Δ ( k )=
s ( k )- qTs ( k )- εT sgn ( s ( k ) )+C eFd͂ ( k )

(12)
Substituting Eqs.（10，12） into Eq.（13）， we 

get
d͂ ( k+1 )= d̂ ( k+1 )-d ( k+1 )=
d̂ ( k )+(C eF )-1 g { ( 1-qT ) s ( k )-εT sgn ( s ( k ) )-

s ( k+1 ) }-d ( k+1 )= d̂ ( k )-gd͂ ( k )-d ( k+1 )=
d ( k )-d ( k+1 )+( 1-g ) d͂ ( k ) (13)

Certificate completed.

3. 2 Inference 2　

There is a positive constant m， If | d ( k )-
d ( k + 1 ) |< m，then there is k0，when k > k0，

d͂ ( k ) < m/g，where 0 < g < 1.
Proof：
Firstly， decompose d͂ ( k ) into d͂ ( k )= d͂ 1 ( k )+

d͂ 2 ( k ).
Set d͂ 1 ( k )= 0， then d͂ 2 ( k )= 0，due to
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d͂ ( k + 1 )= d͂ 1 ( k + 1 )+ d͂ 2 ( k + 1 ), d͂ 1 ( k+ 1 )=
( 1- g ) d͂ 1 ( k )+d ( k )-d ( k+ 1 ), d͂ 2 ( k + 1 )=
( 1 - g ) d͂ 2 ( k )
Prove by induction.
Secondly， prove d͂ 1 ( k ) < m/g.
（1）When k = 0，it is known that，d͂ 1 ( 0 )= 0 <

m/g.
（2）Assuming d͂ 1 ( k ) < m/g，then

d͂ 1 ( k + 1 )= ( 1 - g ) d͂ 1 ( k )+ d ( k )- d ( k + 1 ) ≤

( 1 - g ) | d͂ 1 ( k ) |+ | d ( k )- d ( k + 1 ) |≤

( 1 - g ) m/g + m = m/g (14)
Therefore，d͂ 1 ( k ) < m/g, k ≥ 0, d͂ 2 ( k + 1 )=

( 1 - g ) d͂ 2 ( k ) ≤ d͂ 2 ( k ).
Therefore，d͂ 2 ( k ) decreases gradually. There is 

k0， when k > k0，d͂ 2 ( k ) can be arbitrarily small.
It can be seen from the above analysis that 

there is k0，when k > k0

d͂ ( k )= d͂ 1 ( k )+ d͂ 2 ( k ) ≤ | d͂ 1 ( k ) |+ | d͂ 2 ( k ) |≤ m/g

(15)

4 Stability Analysis 

Set Q = 1 - qT，η = εT，v ( k )= C eFd͂ ( k )，
then

s ( k + 1 )= Qs ( k )- η sgn ( s ( k ) )+ v ( k ) (16)
Assuming that the following conditions are 

met：
（1）0 < Q < 1，0 < g < 1；
（2）There is a positive constant m，| d ( k )-

d ( k + 1 ) |< m；

（3）C eF ( m/g ) < η.
According to corollary 2， d͂ ( k ) < m/g，then 

| v ( k ) |< C eF ( m/g ) < η.
The stability analysis is divided into the follow ‑

ing four cases for discussion.
（1）When s ( k )≥ C eF ( m/g )+ η.

s ( k+ 1 )- s ( k )=( Q - 1 ) s ( k )- η+v ( k )< 0 (17)
s ( k + 1 )+ s ( k )= ( Q + 1 ) s ( k )- η + v ( k )≥

( Q + 1 )(C eF ( m/g )+ η )- η + v ( k )=
Q (C eF ( m/g )+ η )+ C eF ( m/g )+ v ( k )> 0

(18)

Then
s2 ( k + 1 ) < s2 ( k ) (19)

（2） When s ( k ) ≤ -C eF ( m/g )- η ≤ 0
s ( k + 1 )- s ( k )= ( Q - 1 ) s ( k )+ η + v ( k )> 0(20)
s ( k + 1 )+ s ( k )= ( Q + 1 ) s ( k )+ η + v ( k ) ≤

-C eF ( m/g )- η + η + v ( k )=
-C eF ( m/g )+ v ( k ) < 0 (21)
Then

s2 ( k + 1 ) < s2 ( k ) (22)
（3） When 0 < s ( k ) < C eF ( m/g )+ η

s ( k + 1 )= Qs ( k )- η + v ( k ) <
Q { C eF ( m/g )+ η }- η + v ( k ) <
Q { C eF ( m/g )+ η } <
C eF ( m/g )+ η (23)

s ( k + 1 )= Qs ( k )- η + v ( k )>
-η + v ( k )> -C eF ( m/g )- η (24)

Then
| s ( k + 1 ) |< C eF ( m/g )+ η (25)

（4） When -C eF ( m/g )- η < s ( k ) < 0
s ( k + 1 )= Qs ( k )+ η + v ( k )>
-C eF ( m/g )- η + η + v ( k )>
-C eF ( m/g )- η (26)
s ( k + 1 )= Qs ( k )+ η + v ( k ) <

η + v ( k ) < C eF ( m/g )+ η (27)
Then

| s ( k + 1 ) |< C eF ( m/g )+ η (28)
Through the above analysis， the following con‑

clusions can be drawn：
When | s ( k ) |≥ C eF ( m/g )+ η， the discrete 

sliding mode arriving conditions are met
s2 ( k + 1 ) < s2 ( k ) (29)

When | s ( k ) |≥ C eF ( m/g )+ η，if C eF ( m/g )+

η is small enough，s ( k ) will be close to zero，| s ( k +

1 ) |< C eF ( m/g )+ η.
The Lyapunov function is set as V ( k )=

1
2 s

2 ( k ).According to the above analysis， the condi‑

tions ΔV ( k )= s2 ( k + 1 )- s2 ( k ) < 0，s ( k )≠ 0 are 
satisfied， then we can prove that the discrete sliding 
mode exists and can be reached， and the stability of 
the system can be guaranteed.
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5 Simulation Analysis

The improved discrete sliding mode variable 
structure controller based on disturbance observer 
has five adjustable parameters： The sliding mode 
surface parameters c1 and c2， the approach speed pa‑
rameter q， the sign function gain parameter ε and 
the disturbance observer parameter g. This section 
analyzes parameter selection on control system per‑
formance and robustness. The effect of stickiness is 
also given， and the verification of the validity of the 
control law is given.

Taking a lift-type aircraft as an example， we 
define that the reference length is 5.0 m，the refer‑
ence area is 0.4 m2， the moment of inertia of the 
pitch channel is 1 200 kg·m2， the center of mass is 
2.6 m， the flight speed is 1 950 m/s， the flight alti‑
tude is 35 km and the sampling period is 0.005 s.

5. 1 Influence of control system’s parameter se⁃
lection　

We define that the initial angle of attack is 
-3°， the pitch rate is 0 °/s， and the command sig‑
nal is a sinusoidal signal with an amplitude of 0.5° 
and a step signal with an amplitude of 1°. The influ‑
ence of parameter selection on the performance of 
an improved discrete sliding mode variable structure 
control system based on disturbance observer is 
analyzed. The conclusion is as follows， which pro‑
vides a basis for the control system’s parameter ad‑
justment.

（1）According to the simulation results in Figs. 
1，2， without considering parameter perturbation 
and external interference， the increase of parame‑
ters c1 and q will improve the response speed of the 
control system and make it track the command sig‑
nal faster.

（2） According to the simulation results in 
Fig.3， the increase of parameter c2 will reduce the 
stable error and improve the quality of the control 
system. Those results also prove the effectiveness 
of the integral sliding surface proposed in this paper.

（3） According to the simulation results in 
Fig. 4， with the influence of disturbance， when we 
set g = 0， then the tracking performance of the con‑
trol system is poor， and the sliding mode surface 
cannot converge to zero stably after being affected 

Fig.1　Effect of parameter changes on the rapidity of an 
improved discrete sliding mode variable struc‑
ture control system based on disturbance observ‑
er (c2=5,q=5,ε=1,g=0)

Fig.2　Effect of parameter changes on the rapidity of an 
improved discrete sliding mode variable struc‑
ture control system based on disturbance observ‑
er (c1=10,c2=1,ε=1,g=0)
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by the disturbance. The increase of parameter g will 
improve the tracking accuracy of the control sys‑
tem， and the sliding mode surface can converge to 
zero stably. The effectiveness of the disturbance ob‑
server proposed is verified.

（4） According to the simulation results of 
Fig.5， with the disturbance influence， the increase 
of parameter ε will reduce the disturbance effectively 
and improve the robustness of the control system， 
as well as increase the chattering accordingly.

Fig.3　Effect of parameter changes on the stable error of an improved discrete sliding mode variable structure control sys‑
tem based on disturbance observer (c1=5,q=1,g=0,ε=1)
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Fig.4　Effect of parameter changes on the robustness of an improved discrete sliding mode variable structure control system 
based on disturbance observer (c1=10,c2=0,ε=1,q=1)
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5. 2 Simulation results of the control system　

Compared with the traditional discrete-time 
sliding mode variable structure control system， the 
improved discrete sliding mode variable structure 
controller based on the disturbance observer pro‑
posed in this paper has the following improvements：

（1） This controller uses the disturbance observ‑
er， which compensates the disturbance and increas‑
es the robustness of the system；

（2） This controller adds the integral link to the 
sliding surface， which reduces the stable error and 

improves the quality of the system.
Given that the initial attack angle is -3°， the 

pitching angular velocity is 0 °/s， and a Gaussian 
white noise interference signal is added to the input 
part of the system control quantity. If we set c2 = 0 
and g = 0， the system is the traditional discrete-

time sliding mode variable structural control system. 
That is， Fig.6 shows the simulation results of the 
traditional discrete-time sliding mode variable struc‑
tural control system. If we set c2 = 1 and g = 0.95， 
the system takes into account disturbance observa‑

Fig.6　Traditional discrete sliding mode variable structure control system （c1 = 5,c2 = 0,g = 0,q = 2,ε = 1）

Fig.5　Effect of parameter changes on the robustness of an improved discrete sliding mode variable structure control system 
based on disturbance observer (c1=10,c2=1,q=1)
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tion compensation and integral sliding mode surface. 
That is， Fig.7 shows the simulation results of the 
improved discrete-time sliding mode variable struc‑
ture control system proposed in this paper.

Comparing the two control systems， we get 
that， under a Gaussian white noise interference， the 

response curves in Fig.7 allow for better tracking of 
reference signal. And the sliding mode surfaces can 
converge to the vicinity of zero faster and with less 
chattering in Fig.7. Therefore， the simulation re‑
sults in Fig.7 verify the effort of the improved con‑
trol system proposed in this paper.

6 Conclusions

An improved discrete-time sliding mode vari‑
able structure control system based on disturbance 
observer has been developed for a lift vehicle. The 
main research contents are summarized as follows：

（1）Based on the analysis of the forces acting 
on the lift-type vehicle， the discrete control model 
of the pitch channel has been established. The dis‑
crete attitude control model of the pitch channel has 
been derived. The expressions of external distur‑
bance， model parameter uncertainty and model 
cross-link coupling terms have been given， which 
could provide model reference for the control sys‑
tem research of lift-type aircraft in the atmosphere.

（2）An improved discrete-time sliding mode 
variable structure control system based on distur‑
bance estimation has been designed and its stability 

has been proved. Based on the traditional discrete 
sliding mode variable structure controller， the fol‑
lowing improvements are made： Firstly， a discrete 
integral sliding mode surface is proposed to reduce 
the steady state error of the control system and im ‑
prove the control quality； secondly， a disturbance 
observer is proposed to estimate the internal and ex‑
ternal disturbances in order to improve the robust‑
ness of the control system. At the same time， the 
Lyapunov function is designed to prove that the dis‑
crete sliding mode exists and is reachable， and the 
stability of the system is guaranteed.

（3）The influence of parameter selection on 
control system is analyzed， and the validity of con‑
trol law is verified. The conclusion are as follows： 
The increase of parameters c1 and q would improve 
the response speed of control system； the increase of 
parameter c2 would reduce the steady error of control 

Fig.7　Improved discrete sliding mode variable structure control system based on disturbance observer (c1 = 5, c2 = 1, 
g = 0.95, q = 2,ε = 1)
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system； the increase of parameter g would improve 
the robustness of control system under disturbance； 
the increase of parameter ε would suppress the dis‑
turbance effectively， but increase the chattering.

（4）The comparison with the traditional dis‑
crete sliding mode variable structure control system 
is carried out. Compared with the traditional dis‑
crete-time sliding mode control system， the pro‑
posed control system in this paper had higher con‑
trol accuracy， stronger robustness， faster conver‑
gence to zero and less chattering.
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基于干扰观测器的升力式飞行器改进离散滑模控制研究

陈升泽 1， 张 旋 1， 袁建平 2， 郑子轩 2

（1.中国运载火箭技术研究院,北京  100076, 中国； 2.西北工业大学航天学院,西安  710072, 中国）

摘要：升力式飞行器具有飞行空域宽、速度变化范围大、机动性强等特点，是近年来国内外的研究热点。本文针

对升力式飞行器模型大不确定及外界干扰强带来的控制难题，提出了一种基于干扰观测器的改进离散滑模变结

构控制方法。首先，建立了俯仰通道的离散控制模型。其次，设计了一种基于干扰估计的改进离散滑模变结构

控制律，并证明了其稳定性。再次，分析了参数选择对控制系统的影响，验证了控制律的有效性。最后，与传统

的离散滑模变结构控制方法进行了比较。仿真结果表明，与传统的离散滑模控制方法相比，本文提出的控制律

控制精度更高、鲁棒性更强、滑模面收敛速度更快及抖振更小，可有效提高升力式飞行器的飞行品质，实现复杂

任务的稳定控制。

关键词：升力式飞行器；干扰观测器；离散滑模控制；鲁棒控制；抖振
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