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Abstract: With the rapid development of space technology， the situation awareness ability of spacecraft is increased. 
As compared to the optical sensors， inverse synthetic aperture radars （ISARs） have the capability of high-resolution 
imaging in all day from far range regardless of the light condition. Furthermore， the component recognition is much 
desired by the accurate evaluation of the threat degree of surrounding spacecrafts. In this paper， we propose a 
multitask-you only look once （Multitask-YOLO） network based on the YOLOv5 structure for recognition and 
segmentation of solar panels of satellite ISAR images. Firstly， we add a segmentation decoupling head to introduce 
the function of segmentation. Then， the original structure is replaced with spatial pyramid pooling fast （SPPF） to 
avoid image distortion， and with distance intersection over union （DIoU） to speed up convergence. The accuracy of 
segmentation and recognition is improved by introducing an attention mechanism in the channels. We perform the 
experiments using simulated satellite ISAR images. The results show that the proposed Multitask-YOLO network 
achieves efficient and accurate component recognition and segmentation. As compared to typical recognition and 
segmentation networks， the proposed network exhibits an approximate 5% improvement in mean average precision 
（mAP） and mean intersection over union （mIoU）. Moreover， it operates at a higher speed of 16.4 GFLOP， 
surpassing the performance of traditional multitask networks.
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0 Introduction 

With the rapid development of space technolo⁃
gy， the number of spacecrafts is increasing. The or⁃
bital service technology must observe the target 
when performing operations such as capture， dock⁃
ing， and maintenance. The observation results de⁃
termine whether the final operation can be success⁃
ful. Therefore， it is necessary to study recognition 
technology to monitor the attitude of space targets. 
Current space sensors rely on optical technology， 
these devices are limited by observation periods. In⁃

verse synthetic aperture radars （ISARs） have the 
advantage of providing high-resolution imaging all 
day［1］. These unique properties make ISAR an im ⁃
portant instrument for ensuring the safety of space⁃
craft. From the ISAR images， the feature informa⁃
tion of the target such as shape， size， and attributes 
can be extracted［2］. With the development of radar 
technology， the resolution of ISAR imaging for 
space targets has been greatly improved［3］. The fea⁃
tures of the target are more clearly on ISAR im ⁃
age［4］. Therefore， the research into technology for 
recognition and segmentation of space targets based 
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on ISAR images is more necessary［5］.
Compared to optical images， radar images usu⁃

ally have lower resolution and less defined edges. 
These characteristics make it difficult to recognize 
the details of space targets［6］. Therefore， it is impor⁃
tant to study a suitable algorithm for recognition and 
segmentation of ISAR images of space objects［7］.

At present， most algorithms based on geomet⁃
ric features are used for target recognition of ISAR 
images. Yang et al.［8］ used trace transform in the lon⁃
gest axis region of the space object and generated 
the trace matrix of the ISAR image as feature vec⁃
tors to recognize the target. Ji et al.［9］ extracted the 
image features for space target recognition by two-

dimensional wavelet transform. Ju et al.［10］ proposed 
a novel ISAR image segmentation method using a 
mixed multiscale autoregression model with spatial 
variation to segment ISAR images. However， due 
to the characteristics of ISAR images， these algo⁃
rithms are no longer suitable for component recogni⁃
tion and segmentation. In traditional machine learn⁃
ing algorithms， feature extraction rules are often cre⁃
ated manually， and such methods are not representa⁃
tive and cannot recognize the differences between 
similar categories. The ability of deep learning to 
learn features by itself can handle this problem. The 
features of the original image can be better extracted 
by layer-by-layer transformation. Pei et al.［11］ pro⁃
posed a parallel network topology with multiple in⁃
puts for SAR image recognition. Li  et al.［12］ de⁃
signed a network that can recognize SAR ships by 
interactively updating the parameters of sub-net⁃
works. Deep learning is currently used in target rec⁃
ognition of SAR images［13］. Aiming at the problem 
that the traditional method used in the segmentation 
of ISAR images does not achieve the ideal result. 
Zhu et al.［14］ used U-Net and Siamese network to 
complete the binary semantic segmentation and bina⁃
ry mask matching of ISAR images and assign the 
MASK to the corresponding ISAR component. Kou 
et al.［15］ proposed a novel semantic segmentation 
method for ISAR images of space targets to over⁃
come the relatively weak problem of the supervised 
learning model. Deep learning is gaining increasing 
attention in ISAR images［16］， but there is still a lack 

of application for target component segmentation， 
especially for ISAR images. Therefore， it is neces⁃
sary to develop a suitable algorithm for segmenting 
ISAR images into target components.

To improve the segmentation of components of 
space objects in ISAR images， the multitask-you 
only look once （Multitask-YOLO） network is pro⁃
posed based on the YOLO framework， and a seg⁃
mentation decoupling head is added. At the same 
time， the original structure is replaced with spatial 
pyramid pooling fast （SPPF） to avoid image distor⁃
tion and distance intersection over union （DIoU） to 
accelerate convergence. Moreover， the proposed 
network is faster than classical recognition and seg⁃
mentation networks.

1 Multitask⁃YOLO Network 
Architecture

YOLO is an efficient deep neural network for 
object recognition and localization. YOLOv5［17］ in⁃
herits the advantages of YOLO’s predecessor while 
improving optimization and recognition accuracy， 
being less complex， and faster than other models. 
Therefore， we choose YOLOv5 as the base model.

The proposed Multitask-YOLO network con⁃
sists of input， backbone network and neck network 
for feature extraction， and head output layer for out⁃
put. The specific framework is shown in Fig. 1. The 
improved network mainly consists of the following 
functional modules： （1） Focus module—Reducing 
the amount of computation； （2） cross-stage backbone 
learning （CBL） module—Ensuring accuracy and re⁃
ducing the amount of computation； （3） bottleneck 
with cross stage partial network （BottleneckCSP） 
module—Enhancing the capability of nonlinear mod⁃
eling and feature representation in deep networks； 
（4） SPPF module—Facilitating feature fusion.

（1） Input： In the training phase of the net⁃
work， the dataset of space objects is extended by 
image mosaic operation. The algorithm combines 
four images by random scaling， cropping， and or⁃
dering. This method can combine multiple images 
into one， which improves the training speed of the 
network and enriches the dataset.
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（2） Benchmark networks （Backbone）： Bench⁃
mark networks are high-performance classifiers for 
extracting general features. The focus structure is 
used in the improved network， which is used to 
scale the size of the input image. Through this struc⁃
ture， attention is directed from a single image to 
multiple images， so that the speed of model infer⁃
ence can be improved. The main idea is to crop the 
input image by slicing operation. The original size of 
input image is 608×608×3， after slicing and con⁃
catenation， a feature map with a size of 304×304×
12 is output. After the map is put into the Concat 
layer with 32 channels for the convolution opera⁃
tion， a feature map with a size of 304×304×32 is 
output.

The squeeze-and-excitation network （SE Net） 
attention mechanism［18］ is added to the original back⁃
bone to improve the accuracy. The attention of each 
channel in the feature map is determined. The atten⁃
tion weight is assigned to each feature channel， so 
that the attention is directed to the useful channels 
of the feature map for the current task， and the use⁃
less feature channels for the current task are sup⁃
pressed.

SE Net can learn the correlation between the 
channels and draw the attention to the channels. 
Fig.2 shows the schematic diagram of SE Net mod⁃
el， which can improve the accuracy of part recogni⁃
tion.

First， we should input the feature map with di⁃
mensions H×W×C into the global average pool⁃
ing. Then the global average pooling of the input is 
squeezed so that the spatial features are compressed 
to obtain a 1×1×C feature map. At the same time， 
a weight is generated for each feature channel. The 
channel feature learns the compressed feature graph 
to obtain with channel attention. Finally， the feature 
map is multiplied by the normalized weight coeffi⁃
cients obtained channel by channel and then com ⁃
bined with the original input feature map to produce 
the feature map with channel attention. The method 
is based on the following three operations to rescale 
the previous features.

① Squeeze： The compression of features is 
performed along the spatial dimensions. After the 
image is put to global average pooling， the opera⁃
tion transforms each two-dimensional feature chan⁃
nel into a real number with a global perceptual field. 
The output dimensions must match the number of 
feature channels. This symbolizes the global distri⁃
bution of the responses to the feature channels and 
makes the global perception available to the layers 
near the input.

Fig.2　Schematic diagram of SE Net structure

Fig.1　The proposed Multitask-YOLO network structure
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② Excitation： This step is a mechanism simi⁃
lar to gates in recurrent neural networks. Weights 
are generated for each feature channel by selecting 
sigmoid as the activation function after double fully 
connected （FC） layers. In this way， the parameters 
learn the correlation between feature channels.

③ Scale： The weights of Excitation’s output 
are considered as the importance of each feature 
channel after feature selection. The original features 
are rescaled by multiplying the weights channel by 
channel with the previous features.

（3） Neck network： The neck network is be⁃
tween the base network and the head network， and 
can improve the diversity and robustness of features. 
The radar cross section（RCS） fluctuation caused by 
changes in perspective leads to the different scatter⁃
ing intensities of each component， which affects the 
segmentation results. To solve the problem， the 
sampling structure has been improved in the Neck 
network， using the SPPF structure combined with  
feature pyramid network （FPN） and pixel aggrega⁃
tion network （PAN）. The effective feature layer ob⁃
tained in the backbone is fused with the features， so 
spatial pyramid pooling （SPP） is used with FPN 
and PAN. Since the radar image has the characteris⁃
tic of side flap information interference， the redun⁃
dant features are unnecessary. Therefore， we re⁃
place SPP with SPPF for multi-scale feature fu⁃
sion， so that the characteristics of the target region 
with strong scattering can be accurately obtained. 
The structure of SPPF is shown in Fig.3.

This substitution can improve the calculation 
speed. After the FPN part is sub-sampled， the 
PAN is up-sampled to achieve feature fusion， so the 
detailed and semantic information from different 
scales can be effectively fused， the region features 
with weak scattering can be learned more accurate⁃
ly， and the features are not split too finely. The 

structure of the sampling is shown in Fig.4.

（4） Head output layer： The head output layer 
is responsible for finalizing the output of the compo⁃
nent recognition results of the spacecraft ISAR im ⁃
age. The total loss function consists of classification 
loss， localization loss， and confidence loss. The 
overall loss is the sum of the three. To mitigate the 
decrease in speed， the training method incorporates 
the semantic segmentation loss. The DIoU is used 
instead of the Smooth L1 Loss function to improve 
the realism of prediction and the convergence speed. 
The calculation formula is shown as

DIoU = IoU - ρ2 ( b,bgt )
c2 = IoU - d 2

c2 (1)

-1 ≤ DIoU ≤ 1 (2)
where b represents the parameter for the predicted 
center coordinates， which is the center point of the 
red box； bgt represents the parameter of the center of 
the real target bounding box， which is the center 
point of the blue box； the value of ρ2 corresponds to 
the square of the distance between the two center 
points represented by d； and c represents the length 
of the diagonal of the minimum outer rectangle of 
the two rectangles. The specific definitions of the 
variables are illustrated in Fig.5. There are two rect⁃
angular boxes A and B. Shape C is the smallest box⁃
es containing both A and B. If two boxes overlap ex⁃
actly， d = 0， IoU = 1， and DIoU = 1 - 0 = 1. If 

Fig.3　Schematic diagram of SPPF structure

Fig.4　Schematic diagram of sampling structure

Fig.5　Schematic diagram of DIoU
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the two boxes are far apart and d/c converges to 1， 
IoU = 0， DIoU = 0 - 1 = -1. Therefore， DI⁃
oU takes values in the range ［-1，1］.

Since the segmentation head is added as Deep⁃
Labv3+［19］ to segment， by utilizing preceding fea⁃
ture layers as its input， the network effectively mini⁃
mizes computation by establishing parallel connec⁃
tions between channels. The segmented portion im ⁃
proves the characteristics and enhances the accuracy 
of recognition.

2 Experimental Results and Analy⁃
sis 

As there is no public dataset for radar images of 
space objects， we utilize the FEKO software to cre⁃
ate a database of radar images［19］. Satellites are pri⁃
marily categorized as reconnaissance satellites， com⁃
munication satellites， and remote sensing satellites 
based on their function. The physical structures of 
each type of satellite are generally comparable. We 
conducted simulations using three types of satellites 
as prototypes as shown in Fig.6. Note that the satel⁃
lites shown in Figs. 6（a， d，e） belong to reconnais⁃
sance satellites with a size ranging from 0.5 m to 
50 m. The satellites in Figs.6（a，b，c） have size over 
10 m. These two types of satellites in Figs.6（d，e） 

have sizes below 10 m.
We used the FEKO software to simulate the ra⁃

dar images［20］. The simulation parameters are shown 
in Table 1.

The range resolution is 0.115. The rotation an⁃
gle accumulated for imaging is 5°， and accordingly 
the cross-range resolution is 0.191. With this imag⁃
ing ability， the target with the size larger than 10 m 
may be imaged appropriately for component recogni⁃
tion. Since we are concerned with component recog⁃
nition， the satellites larger than 10 m are selected to 
form the training image set.

We generated the database by imaging with dif⁃
ferent pitch angles. To obtain effective imaging of 
the solar panels of the satellites， we select pitch an⁃
gles of 20° —89° . A simulated model at each pitch 

angle is continuously observed with the azimuth an⁃
gle varying from 0° to 360°， where imaging by accu⁃
mulating every 5° in azimuths. We produced 5 040 
images in 20°—89° pitch angles of each mode. In the 
experiment， we employ the range doppler （RD） al⁃
gorithm to achieve the images.

After the ISAR images are acquired， we uti⁃
lized the LabelME software to annotate the image to 
generate the COCO dataset. The satellite solar pan⁃
els in the images are labeled by polygons. Following 
the process of labeling， a JSON file is produced for 
every image， recording the identified category and 

Fig.6　Schematic diagram of FEKO satellite model 
simulation

Table 1　Setting of FEKO parameters

Parameter

Value

Start frequency/
GHz
8.35

End frequency/
GHz
9.65

Carrier frequency/
GHz

9

Bandwidth/GHz

1.3

Number of 
range cells

100

Number of 
pulses

100
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its corresponding spatial coordinates.
The original images have dimensions of 1 680 

pixels by 800 pixels. Before input， the images are 
resized to dimensions of 800×600 to ease training. 
The training consists of 100 iterations， with a start⁃
ing learning rate of 0.000 1 and an epoch size of 8. 
We constructed a database containing 5 040 images 
of each satellite. The dataset is divided into a train⁃
ing set and a validation set randomly， with the train⁃
ing set consisting of 80% of the database and the 
validation set consisting of 20% of the database.

Fig.7 shows a comparison of the training loss 
curve between the Multitask-YOLO network and 
the original network structure. The horizontal coor⁃
dinate refers to the length of each step. The pro⁃
posed network achieves convergence at approxi⁃
mately the 50th epoch， demonstrating faster in con⁃
vergence and superior performance compared to the 
original YOLOv5. We evaluate the Multitask-YO⁃
LO network by comparing it to several existing algo⁃
rithms， including YOLOv3［21］， BlendMask［22］， 
DeepLabv3+， YOLACT［23］， and Mask-RCNN［24］.

The ISAR images of satellites are input to the 
different networks. YOLOv3 is used to recognize 
the left and right solar panels of the satellite. The 
panels are segmented using DeepLabv3+ ， Blend⁃
Mask， YOLACT， Mask-RCNN， and Multitask-

YOLO. Fig.8 displays the results， where left imag⁃
es are sense satellites， middle images are communi⁃
cation satellites and right images are reconnaissance 
satellites. Fig.8（a） presents the original ISAR imag⁃
es utilized as inputs， and Fig.8（b） presents the im ⁃
ages with real annotations. Figs.8（c—h） present the 
segmentation results of solar panel using Deep⁃
Labv3+ （after covering the mask）， BlendMask， 
YOLOv3， Mask-RCNN， YOLACT， and the pro⁃
posed Multitask-YOLO. The green masks in Figs.8

（b—d） represent the left solar panels and the red 
masks represent the right solar panels.

Comparing Figs.8（c—h）， it is evident that 
both the DeepLabv3+ and BlendMask networks on⁃
ly focus on performing the segmentation task. Ac⁃
cording to Fig.8（c）， there is a lack of clarity in the 
connection between the main body and the solar pan⁃

Fig.8　Input images and segmentation results using different 
networks

Fig.7　Train loss curves
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els， Additionally， due to the similarities in shape， 
parts of the main body are mistakenly recognized as 
solar panels. As shown in Fig.8（d）， the BlendMask 
network fails to accurately differentiate between the 
right and left solar panels when the satellite is rotat⁃
ing， resulting in a low segmentation accuracy. The 
YOLOv3 network only performs the recognition 
task. Based on the information presented in 
Fig.8（e）， it is evident that the localization accuracy 
of the candidate anchors are poor， and the major 
body cannot be accurately detected and localized. It 
is because the similarity of color and morphological 
features between components， leading the network 
to prioritize speed above accurate calculations. Ac⁃
cording to Fig. 8（f）， the Mask-RCNN network 
demonstrates higher accuracy in recognizing and seg⁃
menting solar panels. However， it occasionally mis⁃
classifies the left and right solar panels. It is due to 
the lack of judgment on the direction of the main 
body. The complexity of the network is relatively 
high and makes the computational time longer. The 
image in Fig.8（g） shows the output obtained by uti⁃
lizing the YOLACT network. It can be seen that 
when the main body shape is similar to that of the 
solar panels， the method cannot accurately distin⁃
guish the target regions. The proposed Multitask-

YOLO network can perform both recognition and 
segmentation tasks simultaneously. The result imag⁃
es are shown in Fig. 8（h）. The accuracy of separa⁃
tion between the main body and the solar panels has 
been significantly increased as compared with the 
previous networks.

Table 2 presents the quantitative evaluation of 
the results using different networks including mean 

average precision （mAP）， mean intersection over 
union（mIoU）， and running speed. It can be seen 
that the proposed network， which performs multiple 
tasks， operates at a speed of 16.4 GFLOP. It is 
much faster than other networks that perform a sin⁃
gle task. In the meanwhile， the recognition and seg⁃
mentation accuracy surpasses single task networks， 
exhibiting a 5% enhancement， which outperforms 
YOLOv3， DeepLabv3+， and Blendmask net⁃
works in terms of performance. The multitask-YO⁃
LO network has a recognition accuracy that is 0.4% 
higher and a segmentation accuracy that is 0.3% 
lower when compared to complicated networks such 
as Mask-RCNN. The inference speed of Multitask-

YOLO is decreased to 1/13 of the inference speed 
of Mask-RCNN， while maintaining a comparable 
level of accuracy in recognition and segmentation. 
YOLACT achieves a speed of 23.4 GFLOP， but 
its recognition accuracy is approximately 20% lower 
than the proposed network， and there is a nearly 
6% disparity in the segmentation accuracy.

In summary， the Multitask-YOLO network 
shows the improved performance in solar panels recog⁃
nition and segmentation compared to a single task net⁃
work. The capability of both recognition and segmen⁃
tation is improved. The running speed is significantly 
greater than that of traditional multitask networks.

An ablation experiment was done on the Multi⁃
task-YOLO network to assess the efficiency of each 
module. Table 3 displays the results from the experi⁃
ment.

The experimental results in Table 3 demon⁃
strate that incorporating SPPF and DIOU modules 
enhances both the network’s speed and the recogni⁃

Table 2　Performance comparison of different networks

Network model
DeepLabv3+（Segmentation）

BlendMask (Segmentation)
YOLOv3（Recognition）

Mask⁃RCNN
(Recognition + Segmentation）

YOLACT
(Recognition + Segmentation)

Multitask⁃YOLO
(Recognition + Segmentation）

mAP (Recognition)/%

78.04

86.18

63.43

86.58

mIoU (Segmentation)/%
78.59
56.32

84.03

76.44

83.72

Operation speed/ GFLOP
25.8

170.8
23.6

213.6

23.4

16.4
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tion accuracy by 1%. The introduction of the SE 
module increases the recognition accuracy by nearly 
4%. YOLONet 4 verifies that the correlation mod⁃
ules can effectively improve the reduction of seg⁃
mentation accuracy caused by RCS fluctuations. At 
the same time， upon incorporating the segmentation 
head， the network acquires the ability to segment， 
and the recognition accuracy is also improved. Addi⁃
tionally， the network has a reduction in computa⁃
tional complexity by 0.2 GFLOP.

3 Conclusions 

Currently， there is no efficient algorithm for 
recognizing and segmenting ISAR images of space 
target components. To address this， a Multitask-

YOLO network is proposed. This network is capa⁃
ble of simultaneously recognizing and segmenting 
components. Its effectiveness is tested by simulated 
ISAR image dataset of space targets. Compared to 
other single task networks， the proposed Multitask-

YOLO network can significantly improve the accu⁃
racy of recognition and segmentation. It demon⁃
strates a notable 5% increase in mAP and mIoU， 
because the result of recognition provides more accu⁃
rate target location for segmentation. In addition， its 
speed can reach up to 16.4 GFLOP， surpassing that 
of traditional multi-task networks. The proposed 
method is not limited to solar panels and is applica⁃
ble to the recognition and segmentation of various 
other components.
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基于 Multitask⁃YOLO 网络的卫星帆板 ISAR图像快速分割

姚雨晴 1， 汪 玲 1， 王莲子 1， 张 弓 1， 吴 斌 2， 朱岱寅 1

（1.南京航空航天大学电子信息工程学院雷达成像与微波光子技术教育部重点实验室，南京 211106，中国；

2.上海宇航系统工程研究所，上海 201109，中国）

摘要：随着空间技术的飞速发展，空间态势感知能力需求不断增加。与传统光学传感器相比，逆合成孔径雷达

（Inverse synthetic aperture radar，ISAR）具有全天候、远距离高分辨率成像的能力，且成像不受光照条件的影响。

此外，空间态势感知系统需要对周围航天器进行准确的评估，因此对空间目标部件识别能力的需求日益迫切。

本文提出了一种基于 YOLOv5 结构的 Multitask⁃YOLO 网络，用于卫星 ISAR 图像中卫星帆板的识别和分割。首

先，本文添加了分割解耦头来实现网络的分割功能。然后用空间金字塔池快速算法（Spatial pyramid pooling 
fast， SPPF）和距离交并比算法（Distance intersection over union， DIoU）代替原有结构，避免图像失真，加快收敛

速度。通过在通道中引入注意机制，提高了分割和识别的准确性。最后使用模拟卫星的 ISAR 图像进行实验。

结果表明，所提出的 Multitask⁃YOLO 网络高效、准确地实现了部件的识别和分割。与其他的识别和分割网络相

比，该网络的平均精度（mean Average precision， mAP）和平均交并比（mean Intersection over union， mIoU）提高

了约 5%。此外，该网络的运行速度高达 16.4 GFLOP，优于传统的多任务网络的性能。

关键词：Multitask⁃YOLO；空间目标；逆合成孔径雷达图像；目标识别与分割
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