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Abstract: With the rapid development of space technology, the situation awareness ability of spacecraft is increased.
As compared to the optical sensors, inverse synthetic aperture radars (ISARs) have the capability of high-resolution
imaging in all day from far range regardless of the light condition. Furthermore, the component recognition is much
desired by the accurate evaluation of the threat degree of surrounding spacecrafts. In this paper, we propose a
multitask-you only look once (Multitask-YOLO) network based on the YOLOV5 structure for recognition and
segmentation of solar panels of satellite ISAR images. Firstly, we add a segmentation decoupling head to introduce
the function of segmentation. Then, the original structure is replaced with spatial pyramid pooling fast (SPPF) to
avoid image distortion, and with distance intersection over union (DIoU) to speed up convergence. The accuracy of
segmentation and recognition is improved by introducing an attention mechanism in the channels. We perform the
experiments using simulated satellite ISAR images. The results show that the proposed Multitask-YOLO network
achieves efficient and accurate component recognition and segmentation. As compared to typical recognition and
segmentation networks, the proposed network exhibits an approximate 5% improvement in mean average precision
(mAP) and mean intersection over union (mloU). Moreover, it operates at a higher speed of 16.4 GFLOP,
surpassing the performance of traditional multitask networks.
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0 Introduction

With the rapid development of space technolo-
gy, the number of spacecrafts is increasing. The or-
bital service technology must observe the target
when performing operations such as capture, dock-
ing, and maintenance. The observation results de-
termine whether the final operation can be success-
ful. Therefore, it is necessary to study recognition
technology to monitor the attitude of space targets.
Current space sensors rely on optical technology,

these devices are limited by observation periods. In-
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verse synthetic aperture radars (ISARs) have the
advantage of providing high-resolution imaging all
day''. These unique properties make ISAR an im-
portant instrument for ensuring the safety of space-
craft. From the ISAR images, the feature informa-
tion of the target such as shape, size, and attributes
can be extracted”’. With the development of radar
technology, the resolution of ISAR imaging for
space targets has been greatly improved™'. The fea-
tures of the target are more clearly on ISAR im-
age'". Therefore, the research into technology for

recognition and segmentation of space targets based
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on ISAR images is more necessary"’’.

Compared to optical images, radar images usu-
ally have lower resolution and less defined edges.
These characteristics make it difficult to recognize

[6]

the details of space targets'”. Therefore, it is impor-

tant to study a suitable algorithm for recognition and
segmentation of ISAR images of space objects'”.

At present, most algorithms based on geomet-
ric features are used for target recognition of ISAR
images. Yanget al."® used trace transform in the lon-
gest axis region of the space object and generated
the trace matrix of the ISAR image as feature vec-

1 [9]

tors to recognize the target. Jiet a extracted the

image features for space target recognition by two-

1.1 proposed

dimensional wavelet transform. Juet a
a novel ISAR image segmentation method using a
mixed multiscale autoregression model with spatial
variation to segment ISAR images. However, due
to the characteristics of ISAR images, these algo-
rithms are no longer suitable for component recogni-
tion and segmentation. In traditional machine learn-
ing algorithms, feature extraction rules are often cre-
ated manually, and such methods are not representa-
tive and cannot recognize the differences between
similar categories. The ability of deep learning to
learn features by itself can handle this problem. The
features of the original image can be better extracted
by layer-by-layer transformation. Pei et al.""!’ pro-
posed a parallel network topology with multiple in-
puts for SAR image recognition. Li et al.''*' de-
signed a network that can recognize SAR ships by
interactively updating the parameters of sub-net-
works. Deep learning is currently used in target rec-
ognition of SAR images'"”'. Aiming at the problem
that the traditional method used in the segmentation
of ISAR images does not achieve the ideal result.
Zhu et al.'"*' used U-Net and Siamese network to
complete the binary semantic segmentation and bina-
ry mask matching of ISAR images and assign the
MASK to the corresponding ISAR component. Kou

et al.l™

proposed a novel semantic segmentation
method for ISAR images of space targets to over-
come the relatively weak problem of the supervised
learning model. Deep learning is gaining increasing

attention in ISAR images'®', but there is still a lack

of application for target component segmentation,
especially for ISAR images. Therefore, it is neces-
sary to develop a suitable algorithm for segmenting
ISAR images into target components.

To improve the segmentation of components of
space objects in ISAR images, the multitask-you
only look once (Multitask-YOLO) network is pro-
posed based on the YOLO framework, and a seg-
mentation decoupling head is added. At the same
time, the original structure is replaced with spatial
pyramid pooling fast (SPPF) to avoid image distor-
tion and distance intersection over union (DIoU) to
accelerate convergence. Moreover, the proposed
network is faster than classical recognition and seg-

mentation networks.

1 Multitask-YOLO
Architecture

Network

YOLO 1s an efficient deep neural network for
object recognition and localization. YOLOv5"" in-
herits the advantages of YOLO’ s predecessor while
improving optimization and recognition accuracy,
being less complex, and faster than other models.
Therefore, we choose YOLOV5S as the base model.

The proposed Multitask-YOLO network con-
sists of input, backbone network and neck network
for feature extraction, and head output layer for out-
put. The specific framework is shown in Fig. 1. The
improved network mainly consists of the following
functional modules: (1) Focus module—Reducing
the amount of computation; (2) cross-stage backbone
learning (CBL) module—Ensuring accuracy and re-
ducing the amount of computation; (3) bottleneck
with cross stage partial network (BottleneckCSP)
module—Enhancing the capability of nonlinear mod-
eling and feature representation in deep networks;
(4) SPPF module—F acilitating feature fusion.

(1) Input: In the training phase of the net-
work, the dataset of space objects is extended by
image mosaic operation. The algorithm combines
four images by random scaling, cropping, and or-
dering. This method can combine multiple images
into one, which improves the training speed of the

network and enriches the dataset.
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Fig.1 The proposed Multitask-YOLO network structure

(2) Benchmark networks (Backbone) : Bench-
mark networks are high-performance classifiers for
extracting general features. The focus structure is
used in the improved network, which is used to
scale the size of the input image. Through this struc-
ture, attention is directed from a single image to
multiple images, so that the speed of model infer-
ence can be improved. The main idea is to crop the
input image by slicing operation. The original size of
input image 1s 608X 608X 3, after slicing and con-
catenation, a feature map with a size of 304X 304X
12 1s output. After the map is put into the Concat
layer with 32 channels for the convolution opera-
tion, a feature map with a size of 304X 304X 32 is
output.

The squeeze-and-excitation network (SE Net)
attention mechanism'** is added to the original back-
bone to improve the accuracy. The attention of each
channel in the feature map is determined. The atten-
tion weight is assigned to each feature channel, so
that the attention is directed to the useful channels
of the feature map for the current task, and the use-
less feature channels for the current task are sup-
pressed.

SE Net can learn the correlation between the
channels and draw the attention to the channels.
Fig.2 shows the schematic diagram of SE Net mod-
el, which can improve the accuracy of part recogni-

tion.

Squeeze Excitation
Global average|, | Double FC
pooling lw‘

Fig.2 Schematic diagram of SE Net structure

First, we should input the feature map with di-
mensions HX WX C into the global average pool-
ing. Then the global average pooling of the input is
squeezed so that the spatial features are compressed
to obtain a 1 X 1 X C feature map. At the same time,
a weight is generated for each feature channel. The
channel feature learns the compressed feature graph
to obtain with channel attention. Finally, the feature
map is multiplied by the normalized weight coeffi-
cients obtained channel by channel and then com-
bined with the original input feature map to produce
the feature map with channel attention. The method
is based on the following three operations to rescale
the previous features.

D Squeeze: The compression of features is
performed along the spatial dimensions. After the
image is put to global average pooling, the opera-
tion transforms each two-dimensional feature chan-
nel into a real number with a global perceptual field.
The output dimensions must match the number of
feature channels. This symbolizes the global distri-
bution of the responses to the feature channels and
makes the global perception available to the layers

near the input.
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@ Excitation: This step is a mechanism simi-
lar to gates in recurrent neural networks. Weights
are generated for each feature channel by selecting
sigmoid as the activation function after double fully
connected (FC) layers. In this way, the parameters
learn the correlation between feature channels.

® Scale: The weights of Excitation’ s output
are considered as the importance of each feature
channel after feature selection. The original features
are rescaled by multiplying the weights channel by
channel with the previous features.

(3) Neck network: The neck network is be-
tween the base network and the head network, and
can improve the diversity and robustness of features.
The radar cross section(RCS) fluctuation caused by
changes in perspective leads to the different scatter-
ing intensities of each component, which affects the
segmentation results. To solve the problem, the
sampling structure has been improved in the Neck
network, using the SPPF structure combined with
feature pyramid network (FPN) and pixel aggrega-
tion network (PAN). The effective feature layer ob-
tained in the backbone is fused with the features, so
spatial pyramid pooling (SPP) is used with FPN
and PAN. Since the radar image has the characteris-
tic of side flap information interference, the redun-
dant features are unnecessary. Therefore, we re-
place SPP with SPPF for multi-scale feature fu-
sion, so that the characteristics of the target region
with strong scattering can be accurately obtained.

The structure of SPPF is shown in Fig.3.

MaxPool MaxPool MaxPool
[ CBL ™ 2p 2D 2D ]
[ CBL ]——[ Concat }7

Fig.3 Schematic diagram of SPPF structure

This substitution can improve the calculation
speed. After the FPN part is sub-sampled, the
PAN is up—sampled to achieve feature fusion, so the
detailed and semantic information from different
scales can be effectively fused, the region features
with weak scattering can be learned more accurate-

ly, and the features are not split too finely. The

structure of the sampling is shown in Fig.4.

Sub- Up-
sampling sampling
f v FPN * PAN

Fig.4 Schematic diagram of sampling structure

(4) Head output layer: The head output layer
is responsible for finalizing the output of the compo-
nent recognition results of the spacecraft ISAR im-
age. The total loss function consists of classification
loss, localization loss, and confidence loss. The
overall loss is the sum of the three. To mitigate the
decrease in speed, the training method incorporates
the semantic segmentation loss. The DIoU is used
instead of the Smooth 1.1 Loss function to improve
the realism of prediction and the convergence speed.

The calculation formula is shown as

2 b’bgt dz

ploU=10U — 220 oy - )
C c

— 1< DIoU<1 (2)

where & represents the parameter for the predicted
center coordinates, which is the center point of the
red box; 6* represents the parameter of the center of
the real target bounding box, which is the center
point of the blue box; the value of o* corresponds to
the square of the distance between the two center
points represented by ; and ¢ represents the length
of the diagonal of the minimum outer rectangle of
the two rectangles. The specific definitions of the
variables are illustrated in Fig.5. There are two rect-
angular boxes A and B. Shape C is the smallest box-
es containing both A and B. If two boxes overlap ex-
actly, d = 0, IoU = 1, and DIoU=1—0=1. If

i

Fig.5 Schematic diagram of DIoU
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the two boxes are far apart and d/c converges to 1,
IoU = 0, DIoU = 0 — 1 = —1. Therefore, DI-
oU takes values in the range [ —1,1].

Since the segmentation head is added as Deep-
Labv3+"" to segment, by utilizing preceding fea-
ture layers as its input, the network effectively mini-
mizes computation by establishing parallel connec-
tions between channels. The segmented portion im-
proves the characteristics and enhances the accuracy

of recognition.

2 Experimental Results and Analy-

SIS

As there is no public dataset for radar images of
space objects, we utilize the FEKO software to cre-

19 Satellites are pri-

ate a database of radar images
marily categorized as reconnaissance satellites, com-
munication satellites, and remote sensing satellites
based on their function. The physical structures of
each type of satellite are generally comparable. We
conducted simulations using three types of satellites
as prototypes as shown in Fig.6. Note that the satel-
lites shown in Figs.6(a, d,e) belong to reconnais-
sance satellites with a size ranging from 0.5 m to

50 m. The satellites in Figs.6(a,b,c) have size over

10 m. These two types of satellites in Figs.6(d, e)

(a) Reconnaissance satellite 1

(b) Communication satellite

(c) Sensing satellite

(d) Reconnaissance satellite 2

(e) Reconnaissance satellite 3

Fig.6 Schematic diagram of FEKO satellite model

simulation

have sizes below 10 m.

We used the FEKO software to simulate the ra-
dar images'®'. The simulation parameters are shown
in Table 1.

Table 1 Setting of FEKO parameters

Start frequency/  End frequency/ Carrier frequency/ i Number of Number of
Parameter Bandwidth/GHz
GHz GHz GHz range cells pulses
Value 8.35 9.65 9 1.3 100 100

The range resolution is 0.115. The rotation an-
gle accumulated for imaging is 5°, and accordingly
the cross-range resolution is 0.191. With this imag-
ing ability, the target with the size larger than 10 m
may be imaged appropriately for component recogni-
tion. Since we are concerned with component recog-
nition, the satellites larger than 10 m are selected to
form the training image set.

We generated the database by imaging with dif-
ferent pitch angles. To obtain effective imaging of
the solar panels of the satellites, we select pitch an-

gles of 20°—89°. A simulated model at each pitch

angle is continuously observed with the azimuth an-
gle varying from 0° to 360°, where imaging by accu-
mulating every 5° in azimuths. We produced 5 040
images in 20°—89° pitch angles of each mode. In the
experiment, we employ the range doppler (RD) al-
gorithm to achieve the images.

After the ISAR images are acquired, we uti-
lized the LabelME software to annotate the image to
generate the COCO dataset. The satellite solar pan-
els in the images are labeled by polygons. Following
the process of labeling, a JSON file is produced for

every image, recording the identified category and
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its corresponding spatial coordinates.

The original images have dimensions of 1 680
pixels by 800 pixels. Before input, the images are
resized to dimensions of 800X 600 to ease training.
The training consists of 100 iterations, with a start-
ing learning rate of 0.000 1 and an epoch size of 8.
We constructed a database containing 5 040 images
of each satellite. The dataset is divided into a train-
ing set and a validation set randomly, with the train-
ing set consisting of 80% of the database and the
validation set consisting of 20% of the database.

Fig.7 shows a comparison of the training loss
curve between the Multitask-YOLO network and
the original network structure. The horizontal coor-
dinate refers to the length of each step. The pro-
posed network achieves convergence at approxi-
mately the 50th epoch, demonstrating faster in con-
vergence and superior performance compared to the
original YOLOvV5. We evaluate the Multitask-YO-
LLO network by comparing it to several existing algo-
including  YOLOv3*', BlendMask'*',
DeepLabv3+, YOLACT", and Mask-RCNN'**',

rithms,
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Fig.7 Train loss curves

The ISAR images of satellites are input to the
different networks. YOLOv3 is used to recognize
the left and right solar panels of the satellite. The
panels are segmented using Deeplabv3+ , Blend-
Mask, YOLACT, Mask-RCNN, and Multitask-
YOLO. Fig.8 displays the results, where left imag-
es are sense satellites, middle images are communi-
cation satellites and right images are reconnaissance
satellites. Fig.8(a) presents the original [ISAR imag-
es utilized as inputs, and Fig.8(b) presents the im-
ages with real annotations. Figs.8(c—h) present the
segmentation results of solar panel using Deep-
Labv3-+ C(after covering the mask) , BlendMask,
YOLOv3, Mask-RCNN, YOLACT, and the pro-
posed Multitask-YOLO. The green masks in Figs.8

(a) Original input satellite ISAR images

(b) Images with real annotations

(c) DeepLabv3+ segmentation results

(d) BlendMask segmentation result images
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(g) YOLACT recognition segmentation result images
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(h) Multitask-YOLO recognition segmentation result images
Fig.8 Input images and segmentation results using different

networks

(b—d) represent the left solar panels and the red
masks represent the right solar panels.

Comparing Figs.8(c—h) , it is evident that
both the Deepl.abv3+ and BlendMask networks on-
ly focus on performing the segmentation task. Ac-
cording to Fig.8(c), there is a lack of clarity in the

connection between the main body and the solar pan-
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els, Additionally, due to the similarities in shape,
parts of the main body are mistakenly recognized as
solar panels. As shown in Fig.8(d), the BlendMask
network fails to accurately differentiate between the
right and left solar panels when the satellite is rotat-
ing, resulting in a low segmentation accuracy. The
YOLOv3 network only performs the recognition
task. Based on the information presented in
Fig.8(e), it is evident that the localization accuracy
of the candidate anchors are poor, and the major
body cannot be accurately detected and localized. It
is because the similarity of color and morphological
features between components, leading the network
to prioritize speed above accurate calculations. Ac-
cording to Fig. 8 (f) , the Mask-RCNN network
demonstrates higher accuracy in recognizing and seg-
menting solar panels. However, it occasionally mis-
classifies the left and right solar panels. It is due to
the lack of judgment on the direction of the main
body. The complexity of the network is relatively
high and makes the computational time longer. The
image in Fig.8(g) shows the output obtained by uti-
lizing the YOLACT network. It can be seen that
when the main body shape is similar to that of the
solar panels, the method cannot accurately distin-
guish the target regions. The proposed Multitask-
YOLO network can perform both recognition and
segmentation tasks simultaneously. The result imag-
es are shown in Fig.8(h). The accuracy of separa-
tion between the main body and the solar panels has
been significantly increased as compared with the
previous networks.

Table 2 presents the quantitative evaluation of

the results using different networks including mean

average precision (mAP) , mean intersection over
union (mIoU) , and running speed. It can be seen
that the proposed network, which performs multiple
tasks, operates at a speed of 16.4 GFLOP. It is
much faster than other networks that perform a sin-
gle task. In the meanwhile, the recognition and seg-
mentation accuracy surpasses single task networks,
exhibiting a 5% enhancement, which outperforms
YOLOv3, Deeplabv3—+,

works in terms of performance. The multitask-YO-

and Blendmask net-

LO network has a recognition accuracy that is 0.4 %
higher and a segmentation accuracy that is 0.3%
lower when compared to complicated networks such
as Mask-RCNN. The inference speed of Multitask-
YOLO is decreased to 1/13 of the inference speed
of Mask-RCNN, while maintaining a comparable
level of accuracy in recognition and segmentation.
YOLACT achieves a speed of 23.4 GFLOP, but
its recognition accuracy is approximately 20% lower
than the proposed network, and there is a nearly
6% disparity in the segmentation accuracy.

In summary, the Multitask-YOLO network
shows the improved performance in solar panels recog-
nition and segmentation compared to a single task net-
work. The capability of both recognition and segmen-
tation is improved. The running speed is significantly
greater than that of traditional multitask networks.

An ablation experiment was done on the Multi-
task-YOLO network to assess the efficiency of each
module. Table 3 displays the results from the experi-
ment.

The experimental results in Table 3 demon-
strate that incorporating SPPF and DIOU modules

enhances both the network’s speed and the recogni-

Table 2 Performance comparison of different networks

Network model

mAP (Recognition)/ %

mloU (Segmentation)/ % Operation speed/ GFLOP

DeeplLabv3+ (Segmentation)
BlendMask (Segmentation)

YOLOv3(Recognition) 78.04
Mask-RCNN
. . 86.18
(Recognition + Segmentation )
YOLACT
63.43

(Recognition + Segmentation)
Multitask-YOLO

(Recognition + Segmentation)

86.58

78.59 25.8
56.32 170.8

23.6
84.03 213.6
76.44 23.4
83.72 16.4
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Table 3 Ablation experiment
Network SPPF DIoU SE Net Seg Head mAP/% mloU/% Speed/GFLOP
YOLONet 1 79.11 17.4
YOLONet 2 N 80.95 16.6
YOLONet 3 N NG 81.67 16.2
YOLONet 4 N/ N/ 83.61 16.7
YOLONet 5 N/ N N/ 84.32 16.3
Multitask-YOLO N/ N N/ 86.58 83.72 16.4

tion accuracy by 1%. The introduction of the SE
module increases the recognition accuracy by nearly
4%. YOLONet 4 verifies that the correlation mod-
ules can effectively improve the reduction of seg-
mentation accuracy caused by RCS fluctuations. At
the same time, upon incorporating the segmentation
head, the network acquires the ability to segment,
and the recognition accuracy is also improved. Addi-
tionally, the network has a reduction in computa-
tional complexity by 0.2 GFLOP.

3 Conclusions

Currently, there is no efficient algorithm for
recognizing and segmenting ISAR images of space
target components. To address this, a Multitask-
YOLO network is proposed. This network is capa-
ble of simultaneously recognizing and segmenting
components. Its effectiveness is tested by simulated
ISAR image dataset of space targets. Compared to
other single task networks, the proposed Multitask-
YOLO network can significantly improve the accu-
racy of recognition and segmentation. It demon-
strates a notable 5% increase in mAP and mloU,
because the result of recognition provides more accu-
rate target location for segmentation. In addition, its
speed can reach up to 16.4 GFLOP, surpassing that
of traditional multi-task networks. The proposed
method is not limited to solar panels and is applica-
ble to the recognition and segmentation of various

other components.
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E F Multitask-YOLO M 28 B T 2 MK ISAR B 1§ R % 43 £

weREE, 2 B, ZETFL, Kk B, F2 R, ABKE'
(1. R M MR KT B TR R BRGSO F AR Y EHE S L=,/ 211106, FH ;
2. Bl TR GE TR, 1l 201109, H )

WEMATRAEAKRG CELR, ZASBRIWENTERAG MW, 5EALFHEASAL, E5RILETE
(Inverse synthetic aperture radar, ISAR) B- 7 4 RAZ2 L IE & & 9 P FE AL, ARG R ZRB LMYk
WP, E R AR B R E A BMR B RATEH GRS, DS 0 B AR RIS FRE £18 %J]C,
AR BT —HET YOLOVS 4 #y#9 Multitask-YOLO M4, A T EZ 2 ISAR B T2 WA R A fe 2, &
B, A T 5B FABK R ERARMBG i, KRB M E R A& F 8k bk % (Spatial pyramid pooling
fast, SPPF)%\?EE%E%% 7 :% (Distance intersection over union, DIoU) /X % & 4 4y, 8 %, B 1% % A, he Bk 8%
M, Wit EBEPINEENGREHT S E ARG EANE, REEAEN TR ISARBRRTEE,
«u%iﬂﬂ,ﬁﬁfmﬁéﬁ Multitask-YOLO P % % 2 o # 3 5 9L T 3R4F 09 25 Ao 5 10 L5 Jo A 0 37 50 Fo 2 21 1) 2648
Yo, 3% W % 9 -F ¥ 45 & (mean Average precision, mAP) f2 -F # 2 5f b (mean Intersection over union, mloU) 42 &
TH5%, eI, ZE ML EAITiR B &R 16.4 GFLOP, & T4 $ 454 M 4% ag ik,

K4 : Multitask-YOLO ;2 18] B 47 ; & & R 3L 12 F & B4 ; B 479750 5 24



