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Abstract: To facilitate collaborative decision making in future air traffic management systems under the trajectory 
based operation framework， a collaborative conflict-free four-dimensional （4D） trajectory planning method is 
proposed. Firstly， a multi-objective integer linear optimization model is developed to improve flight efficiency and 
inter-airline equity under conflict-free constraint. Secondly， a Gini coefficient-based metric is formulated to quantify 
the inter-airline equity of operation cost allocation. Thirdly， to improve the problem-solving efficiency， a grid-based 
conflict detection method is employed to accelerate conflict detection and a multi-objective hybrid-metaheuristic 
optimization algorithm （MHMOA） is designed to approximate the optimal non-dominated solutions by combining the 
simulated annealing （SA） and hill-climbing local search algorithms. Finally， the optimization results of the 
MHMOA， SA and two conventional multi-objective optimization algorithms are compared and analyzed using the 
actual flight plan and route network data. The results indicate that MHMOA can obtain higher-quality non-dominated 
solutions with lower delays， flight level shifts and better equity than other three algorithms， and outperform in terms 
of three multi-objective optimization performance metrics. The obtained solution can provide more detailed decision 
support for air traffic managers.
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0 Introduction 

With the ever-growing demands of civil avia‑
tion transportation， air traffic flow continues to in‑
crease， which puts tremendous pressure on current 
air traffic management systems， and has become a 
serious problem in the development of the aviation 
industry. In order to ensure the safe and efficient op‑
eration of the future air traffic with increasing de‑
mands， the concept of trajectory based operations 
（TBO） has been proposed. The functionality of air 
traffic management （ATM） in the TBO framework 
is to manage flights’ trajectories and their interac‑
tions to achieve the optimum system outcome with 

minimal deviation from the user-requested flight tra‑
jectory［1］. The four-dimensional （4D） trajectories 
planning is conducive to ensuring flight safety， im‑
proving airspace operation efficiency and the eco‑
nomic benefits of flight operations.

According to the time horizon， the flight trajec‑
tories planning process can be roughly classified into 
three phases， which are the strategic-level， the pre-

tactical and the tactical phases. The strategic-level 
trajectory planning involves large-scale flights， 
which are optimized based on a network-wide view 
before the day of operations. Its primal intent is for 
demand and capacity balancing （DCB） and efficien‑
cy improvement through network operational plan‑
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ning. Early works on strategic trajectory planning fo‑
cused on flow optimization with a macroscopic-level 
description. Bertsimas et al. proposed a mixed 0—1 
integer trajectory-based models to minimize flight 
delays with constraints of airports and sector capaci‑
ties［2］. The first model to consider 4D trajectories in 
air traffic flow management （ATFM） context was 
proposed by Sherali et al.［3］， which assigns flights to 
trajectories. Diao et al.［4］ proposed a mathematical 
formulation of ATFM model with 4D trajectories to 
minimize total delay， cancellation cost， and fuel 
burn. Ntakolia et al.［5］ proposed a mixed integer non‑
linear ATFM model based on 4D trajectories for 
free flight operation concept to minimize the delay 
and cancellation costs. However， the macroscopic 
models failed to consider the detailed traffic situa‑
tion， and it is challenging to ensure flight operation 
safety solely through the implementation of DCB 
measures.

Under TBO context， the 4D trajectory infor‑
mation with greater predictability and precision sup‑
ported by advanced navigation and communication 
technology enables the network-wide trajectory de‑
confliction in strategic phase， which alleviates the 
workload of air traffic controllers （ATCos） at tacti‑
cal intervention. Therefore， instead of focusing on 
DCB requirements like macroscopic models， recent 
works have concerned on a microscopic-level traffic 
situation. These advanced works solve a potential 
conflict between two aircraft trajectories through dif‑
ferent approaches， such as departure time adjust‑
ment， rerouting， flight level allocation， or a combi‑
nation of them. In the STREAM project， spon‑
sored by EUROCONTROL， a new data structure 
for the grid-based conflict detection method was de‑
signed， and a causal model based on flight routing 
allocation was proposed in view of the “domino ef‑
fect” of strategic 4D trajectory deconfliction［6-7］. 
Wang et al.［8］ combined entry slot allocation and 
speed control maneuvers to separate trajectories and 
introduced a physical programming method to ad‑
dress the problem. Juntama［9］ proposed an optimiza‑
tion approach to address the strategic deconfliction 
problem with the mitigation strategies of departure 

time adjustment， rerouting， and flight level alloca‑
tion， and an extended robust model was designed 
with the consideration of time uncertainty. Baneshi 
et al.［10］ proposed a strategic conflict assessment and 
resolution framework based on the speed control for 
the climate-optimal trajectories. Zhou et al.［11］ for‑
mulated a deconfliction model based on the time ge‑
ography， which combined the flight level alloca‑
tion， the rerouting and the speed control to solve 
conflicts between trajectories. Pérez-Castán et al.［12］ 
proposed a probabilistic strategic conflict-manage‑
ment method with speed adjustment and rerouting 
for 4D trajectories in free-route airspace.

With the introduction of accurate 4D trajecto‑
ries， the trajectories planning problem at the strate‑
gic phase may involve thousands of decision vari‑
ables， which contributes to the application of heuris‑
tic algorithms for problem resolution. Liu et al.［13］ 
combined an ant colony algorithm and the artificial 
potential field method to improve the efficiency of 
solving the conflict resolution problem. Courchelle 
et al.［14］ employed a simulated annealing metaheuris‑
tic approach considering the complexity of the strate‑
gic aircraft deconfliction problem under wind and 
temperature uncertainties. Xu et al.［15］ proposed a 
heuristic approach within the framework of the coop‑
erative co-evolution evolutionary algorithm， which 
decomposed the problem into sub-problems that 
evolved separately. Li et al.［16］ combined a genetic 
algorithm and the adaptive local search operator to 
propose a memetic algorithm for large-scale strate‑
gic conflict resolution. Guo et al.［17］ introduced a 
knee-guided evolutionary algorithm for large scale 
4D trajectories optimization.

A core feature of TBO context is the collabora‑
tive decision making （CDM） in sharing and manag‑
ing trajectories across the ATM system participants. 
Therefore， the trade-offs exist between different 
needs and objectives of ATM stakeholders should 
be considered in trajectories planning. For instance， 
safety is the primary objective of ATCos， while the 
airlines and airport operators concern more about 
the operation efficiency. Dal et al.［18］ responded to 
stakeholders’ diverse priorities by developing a tri-
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objective optimization method that facilitates CDM 
through a trade-off between performance metrics. 
Xu et al.［19］ introduced a collaborative ATFM frame‑
work integrating trajectory planning by airlines and 
ATFM conducted by ATCos. Expanding from 
this， Zhang et al.［20］ integrated the user-driven priori‑
tization process concept into the collaborative AT ‑
FM framework， proposing models to minimize total 
delay costs. Chen et al.［21］ proposed a visualized tra‑
jectory planning method to facilitate CDM between 
controllers and pilots through trajectory negotiation 
mechanism.

The problem of strategic-level trajectories plan‑
ning generally involves the allocation of operation 
cost or scarce resources among multiple airspace us‑
ers. Therefore， it is essential to consider equity ob‑
jective in the strategic-level trajectories planning. 
The current studies with the explicit use of equity 
metrics in the ATM field focus on the ATFM initia‑
tives， such as the Ground Delay Program［22］， and 
airport scheduling［23］. These equity metrics can be 
classified into two groups， which are flight-level eq‑
uity and airline level equity. The flight-level equity 
metrics consider the fair allocation of cost or re‑
source among individual flights. Most airline-level 
equity metrics are derived from the equity ratio that 
measures to what extent the share of airline’s cost is 
proportional to its traffic volume share［24］. Few re‑
searchers incorporate equity consideration in the tra‑
jectory conflict resolution. Rey et al.［25］ proposed an 
equity-oriented approaches for conflict resolution 
with introduction of flight-level equity metric to fair‑
ly distribute the marginal costs among individual 
flights. However， the inter-airline equity has not 
been discussed in the studies on strategic conflict-
free trajectory planning.

The existing studies on strategic conflict-free 
trajectory planning mainly focus on minimizing po‑
tential conflicts between trajectories， and cannot 
support the implementation of the CDM philosophy 
in a TBO environment. In terms of the overall oper‑
ational efficiency of air traffic， if the safety is the on‑
ly consideration， unfavorable situations， such as ex‑
cessive flight costs and maldistribution of flight 
costs among airlines， may occur， which are incon‑

sistent with the concept of CDM with airspace users 
under the TBO environment. Therefore， the aim of 
this study is the development of a bi-objective con‑
flict-free flight trajectories planning model able to 
minimize total trajectory costs and maximize the fair‑
ness of cost allocation among different airlines. An 
equity metric based on the Gini coefficient is em ‑
ployed to assess the inter-airline equity. The grid-

based conflict detection method is employed and po‑
tential conflicts are resolved through departure time 
adjustment， rerouting， and flight level allocation. In 
addition， a multi-objective hybrid-metaheuristic op‑
timization algorithm （MHMOA） is designed to 
solve this large-scale multi-objective optimization 
problem. Finally， an empirical study is conducted to 
evaluate the performance of the proposed algorithm 
on real data， and solutions achieved by the proposed 
approach allow air traffic managers to identify the 
trade-off between total cost and fairness and to facili‑
tate the planning of commonly accepted trajectories 
by all airspace users.

1 Problem Formulation 

In this paper， the airspace structure is modeled 
as a bounded region S ⊂ R3. The vertical space of 
the region is divided into a set of flight levels L and 
the horizontal space is represented by a directed 
graph ( N，E )， where N is the set of nodes represent‑
ing all the waypoints and airports involved， and E is 
the set of arcs that stands for airways. Latitudes and 
longitudes on the earth surface are converted into 
( x，y ) coordinates through the Gauss-Kruger projec‑
tion with the center of the projection located at the 
center of the airspace. For each flight f ∈ F， the sub‑
graph G f = ( G f，E f ) that represents all the feasible 
waypoints and arcs that flight may cross is defined. 
Since only the cruising phase of flight operation is 
considered， the flight level of starting and ending 
arc refer to the top of climb and descent， respective‑
ly， and the starting arc for subgraph G f is denoted as 
orig f ∈ E f. Meanwhile， flights are assumed to fly at 
constant cruising speeds along the planed trajecto‑
ries. The notation for model formulation is listed in 
Table 1.
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1. 1 Decision variables and objectives　

The following binary variables are introduced 
as the decision variables for the model
xf

e,l ( t )=
ì
í
î

1 Flight f  traverses arc e at flight level l by time t
0 Otherwise

To avoid potential conflicts， the flight may de‑
viate from its planned trajectory， which results in 
the extra flight operation cost. Thus， the first objec‑
tive considered in the model is to minimize the total 
trajectory modification cost （TTMC）， which con‑
sists of ground delay cost （CostGH）， route flight 
cost （CostRT） and flight level allocation cost 
（CostFL）. It can be expressed as a weighted sum of 
these three normalized costs

min TTMC = ( λGH CostGH + λRT CostRT + λFL CostFL )
(1)

where λGH，λRT，λFL are the cost coefficients for the 
three parts， which reflect the relative importance of 
each cost from the airline perspective.

(1) Ground delay cost　
In the strategic planning phase， airborne hold‑

ing and speed adjustment are not the commonly 
used maneuver options for the conflict resolution 
process. Therefore， only the ground delay cost de‑
rived from the departure time adjustment is consid‑
ered.
CostGH = ∑

f∈ F,t∈ T,l∈ Lf

( t- t f
sche ) ( xf

orig f,l ( t )- xf
orig f,l ( t- 1 ) )

(2)
(2) Route flight cost　
To improve the flight operation efficiency and 

participation of airspace users in collaborative deci‑
sion-making process of air traffic management， air‑
lines can provide air traffic managers with the sets of 
alternative planned routes and corresponding route 
costs C f

e，l for their flights.
CostRT = ∑

f ∈ F,e ∈ E f,l ∈ Lf

C f
e,l x f

e,l ( T̄ f
e ) (3)

(3) Flight level allocation cost　
Deviating from the most economical flight lev‑

el， namely the scheduled flight level， causes the ex‑
tra flight operation costs. The flight level allocation 
cost is related to the number of the flight levels that 
a flight deviates from its scheduled flight level.
CostFL = ∑

f∈ F,t∈ T,l∈ Lf

|| l f - l f
sche ( xf

orig f,l ( t )- xf
orig f,l ( t- 1 ) )

(4)
If the conflict resolution process only concen‑

trates on the flight cost reduction， the proposed tra‑
jectory plan may force some airlines to pay higher 
trajectory modification cost in order to avoid con‑
flicts and reduce TTMC， which results in the mald‑
istribution of airline’s total trajectory modification 
cost （ATTMC）， and undermines the fairness of 
the aviation market. As a generally accepted metric 
of fairness， Gini coefficient has been adopted in the 
field of air traffic management to assess the inequali‑
ty of resource allocation between different stakehold‑
ers［26-28］. Therefore， the Gini coefficient is intro‑

Table 1　Notations and definitions

Notation
F

A

G f = ( N f,E f )

Lf

T

Fa

O f
e

I f
e

T f
e = é

ë
êêêêT

-

f

e
,T

- f

e
ù
û
úúúú

αf
e

t f
sche

l f
sche

C f
e,l

r f

Φ f

K f

δf

ρf

λGH

λRT

λFL

Definition
Set of flights, f ∈ F

Set of airlines, a ∈ A

Feasible network for flight f
Set of feasible flight levels for flight f,

l f ∈ Lf

Set of time‑slots, t ∈ T

Set of flights belonging to airline a
Set of arcs leaving the head node of

arc e ∈ E f

Set of arcs entering the tail node of
arc e ∈ E f

Set of feasible time periods to fly arc e
for flight f

Flight time to travel arc e by flight f
Scheduled departure time for flight f

Scheduled flight level for flight f
Cost of traveling arc e at level l for

flight f
Number of alternative routes for flight f

Number of conflicts for flight f
Number of sampled points for flight f
Maximum allowed ground delay for

flight f
Maximum allowed flight level shift for

flight f
Coefficient for ground delay cost
Coefficient for route flight cost

Coefficient for flight level allocation cost
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duced to measure the overall fairness in ATTMC al‑
location of the proposed trajectory plan. The origi‑
nal way to define Gini coefficient is based on the rel‑
ative mean difference. Specifically， given n income 
observations ( x 1，x2，⋯，xn )， the Gini coefficient， 
denoted as GINI， can be calculated as

GINI =
∑
i = 1

n

∑
j = 1

n

|| xi - xj

2n ∑
i = 1

n

xi

(5)

After sorting the n income observations in a 
non-decreasing order ( x ∗

1 ≤ x ∗
2 ≤ ⋯ ≤ x ∗

n )， the Gini 
coefficient can be rewritten as

GINI = n + 1
n

-
2∑

i = 1

n

( n + 1 - i ) x ∗
i

n ∑
i = 1

n

xi

(6)

Now we adapt the above GINI to the 4D trajec‑
tory planning context. We replace xi by the ATT‑
MC of each airline， and sort the airlines by their 
ATTMC in a non-decreasing order. The ATTMC 
of the airline a in the sorted airline set A* is denoted 
as ATTMC∗

a. The number of airlines in set A is de‑
noted as | A |. The inter-airline equity is calculated as

GINI= || A + 1
|| A

-
2 ∑

a ∈ A*

( )|| A + 1 - a ATTMC∗
a

|| A ∑
a ∈ A

ATTMC a

(7)

ATTMC a = ∑
f ∈ Fa

TTMC f (8)

1. 2 Constraints　

1. 2. 1 Conflict⁃free constraint　

When the distance between two aircraft vio‑
lates the minimum separation requirement enforced 
by the International Civil Aviation Organization 
（5 NM horizontally and 1 000 ft vertically）， the air‑
craft involved are considered to be in conflict. Due 
to excessive computation time requirements of the 
traditional pairwise conflict detection method， the 
grid-based conflict detection method［29-30］ is em‑
ployed in this paper to improve the efficiency of con‑
flict detection. The main process of this method is 
described as follows.

The airspace is firstly discretized through a 4D 
space-time grid. Then， trajectory sampled points 

Pf，k of each flight f are mapped to the corresponding 
grid cells according to their 4D coordinates. This de‑
tection method only needs to check 33 = 27 neigh‑
boring cells around the corresponding cell of the 
sampled point Pf，k， which serves as the preliminary 
selection process to avoid unnecessary pairwise com ‑
parisons. As depicted in Fig.1， if there are trajecto‑
ry sampled points of other flights in the surrounding 
cells， the horizontal distance and vertical distance 
between this pair of sampled points are calculated 
for judgment. If the minimum separation require‑
ment is violated， the flight f  has a conflict at the kth 
trajectory sampled point Pf，k （Φ f，k = 1）. The total 
number of conflicts for one flight is calculated by 
summing up the conflict number of all sampled 
points along its flight trajectory.

Φ f = ∑
k = 1

K f

Φf,k (9)

The sum of conflicts associated with every 
flight in the airspace can be used for conflict con‑
straint representation.

Φ total = ∑
f ∈ F

Φf (10)

When the total number of conflicts is zero， the 
generated trajectories are ensured to be conflict-free.

Φ total = 0      ∀f ∈ F (11)
1. 2. 2 Other constraints　

Constraints （12—14） ensure that each flight 
follows one single feasible trajectory. Constraint 
（15） imposes that the departure time of one flight 
does not exceed its pre-defined upper limit. Con‑
straint （16） means that the maximum number of al‑

Fig.1　Grid-based conflict detection in horizontal plane
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ternative routes for one flight is n. Constraint （17） 
indicates that the flight level shift for one flight 
needs to be within certain range. Constraint （18） de‑
scribes the upper boundary l f

max and lower boundary 
l f

min of feasible flight level for each flight， which is 
determined by the operational regulation and perfor‑
mance envelope of specific aircraft type provided by 
base of aircraft data （BADA）.

ì
í
î

ïïïï

ïïïï

xf
e,l ( t ) ≤ ∑

e' ∈ O f
e,l' ∈ Lf

xf
e',l' ( t + αf

e )

∀f ∈ F,e ∈ E f,l ∈ Lf,t ∈ T f
e

(12)

ì
í
î

ïïïï

ïïïï

∑
l ∈ Lf

xf
e,l ( T̄ f

e ) ≤ ∑
e' ∈ I f

e,l' ∈ Lf

xf
e',l' ( T̄ f

e' )

∀f ∈ F,e ∈ E f
(13)

ì
í
î

xf
e,l ( t - 1 )- xf

e,l ( t ) ≤ 0
∀f ∈ F,e ∈ E f,l ∈ Lf,t ∈ T f

e

(14)

ì
í
îïï

( t - t f
sche ) ( xf

orig f,l ( t )- xf
orig f,l ( t - 1 ) ) ≤ δf

∀f ∈ F,l ∈ Lf,t ∈ T f
e

(15)

1 ≤ r f ≤ n      ∀f ∈ F (16)
ì
í
î

ïï
ïï

|| l f - l f
sche ( xf

orig f,l ( t )- xf
orig f,l ( t - 1 ) ) ≤ ρf

∀f ∈ F,l ∈ Lf,t ∈ T f
e

(17)

ì
í
îïï

l f
min ≤ l f ( xf

orig f,l ( t )- xf
orig f,l ( t - 1 ) ) ≤ l f

max

∀f ∈ F,l ∈ Lf,t ∈ T f
e

(18)

2 Resolution Algorithm 

To solve the large-scale multi-objective optimi‑
zation problem mentioned above， a multi-objective 
hybrid-metaheuristic optimization algorithm （MH‑
MOA） is presented to approximate the Pareto opti‑
mal frontier. The proposed MHMOA combines sim ‑
ulated annealing algorithm （SA） and the hill-climb‑
ing local search such that the local search is consid‑
ered as an inner-loop of the SA， which will be per‑
formed when a pre-defined condition is satisfied. 
The local search algorithm is used to intensify the 
search of the solution space around a potential feasi‑
ble solution， while SA can avoid the algorithm be‑
ing trapped into the local optimum by accepting de‑
graded solutions with probability. An external ar‑
chive is introduced to store the non-dominated solu‑
tions. The structure of the proposed hybrid multi-ob‑
jective algorithm of SA and hill-climbing local 
search methods is depicted in Fig.2.

2. 1 Algorithm execution probability　

The condition of algorithm execution is con‑
trolled by pre-defined parameters that control the 
probabilities to conduct each algorithm.

（1） The probability of carrying out SA is de‑
fined as

PSA ( Γ )= PSA, min +( PSA, max - PSA, min ) ⋅ Γ 0 - Γ
Γ 0

(19)

where PSA，min and PSA，max are the minimum and maxi‑
mum probabilities of running SA； and Γ 0 and Γ the 
initial temperature and the current temperature， re‑
spectively.

（2） The probability of performing the local 
search algorithm is defined as

PLOC ( Γ )= PLOC, min +( PLOC, max - PLOC, min ) ⋅ Γ 0 - Γ
Γ 0

(20)
where PLOC，min and PLOC，max are the minimum and the 
maximum probabilities to carry out the local search 
algorithm， respectively.

（3） The probability of running both SA and 
the local search algorithm in sequence is

PSL ( Γ )= 1 -( PSA ( Γ )+ PLOC ( Γ ) ) (21)

2. 2 Neighborhood structure and external ar⁃
chive

The definition of the neighborhood structure is 
a key part of MHMOA， which contributes to the 
neighborhood solution generation of both SA and 
hill-climbing local search. A neighborhood solution 
is generated by applying a local change from the 
neighborhood structure to trajectory i selected from 
current solution. To increase the number of feasible 
solutions that satisfy the conflict constraint， the rou‑

Fig.2　Structure of the proposed MHMOA
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lette selection method is adopted to select the trajec‑
tory for the local change.

According to the conflict detection result， if 
the conflict exists， the probability for each trajectory 
to be selected is determined in proportion to its con‑
flict number Φ i. Then， the cumulative probability is 
calculated based on the trajectory selection probabili‑
ty. A value in ［0，1］ is generated randomly， and the 
trajectory i is selected according to the cumulative 
probability interval in which this random value lies. 
If there is no conflict， the trajectory for local change 
is randomly selected. For the selected trajectory i， 
three maneuver options could be used for conflict 
resolution， including ground delays， rerouting and 
flight level allocations. To allow airspace users to 
express their preference on the maneuver options of 
conflict resolution， two user-defined parameters，
PGH and PFL， between ［0，1］ are introduced， which 
control the probability of performing ground delay 
and the flight level allocation on the trajectory i， re‑
spectively. Therefore， the probability of rerouting 
trajectory i is 1 - PGH - PFL. The process of neigh‑
borhood structure in this paper is presented in Fig.3.

After evaluating the generated neighborhood 
solution， the algorithm needs to determine whether 
it improves objectives compared with the current so‑
lution and whether to accept it as the new current so‑
lution. Hence， it is necessary to specify the accep‑
tance criterion. If the neighborhood solution violates 
the conflict constraint， the solution with the reduced 

number of conflicts will be accepted. Conversely， if 
the conflict constraint is satisfied， TTMC and the 
Gini coefficient of the neighborhood solution are 
evaluated， and the algorithm accepts the solution 
that reduces the value of either objective. Then， the 
updated solution is adopted to determine nondomi‑
nated solutions.

An external archive E is introduced to save the 
current nondominated solutions during the optimiza‑
tion process. In the initialization phase， the external 
archive E is an empty set. Whenever a new solution 
X current is generated， we firstly determine whether 
X current dominates any solution of the current external 
population E. If this situation exists， the solutions 
dominated by X current will be removed out of E， and 
X current will be added to E. If there is no solution in E 
dominated by X current， then we determine whether 
there are solutions in E dominate X current. If there is 
no individual dominating X current， X current and all indi‑
viduals in E are mutually nondominated. X current will 
then become a new non-dominated solution and will 
be added to E. At the end of the algorithm， E is just 
the Pareto-optimal set. The detailed steps of updat‑
ing the external archive are shown in Algorithm 1.
Algorithm 1　　The external archive update
Input：A current solution X current；

Output：An external archive E.
（1）　If (| E |= 0) then
（2）　　Add X current to E；

（3）　Else if （X current dominates any archive member） 
then

（4）　　Delete dominated members in E；

（5）　　Add X current to E；

（6）　Else if （X current is dominated by any archive 
member） then

（7）　　Exit；
（8）　Else
（9）　　Add X current to E；

（10）　End if
（11）　End

2. 3 Simulated annealing and local search algo⁃
rithm

The simulated annealing algorithm is a stochas‑

Fig.3　Flow chart of neighborhood structure
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tic searching optimization algorithm based on the 
Monte Carlo iterative method， and the Metropolis 
algorithm is used to simulate this evolution of the 
physical system toward a thermal equilibrium［31］. 
For the temperature Γ of each iteration， the deci‑
sion variables are modified based on the neighbor‑
hood structure mentioned above to generate a neigh‑
borhood solution. If the generated neighborhood so‑
lution satisfies the pre-defined acceptance criterion， 
this solution is accepted. Otherwise， the degraded 
solution is accepted with probability

p = e
ΔE
Γ (22)

where ΔE refers to the degradation of the fitness 
function value. In order to calculate ΔE， the weight‑
ed sum method is used in this paper to combine the 
values of two objectives， and the number of con‑
flicts is added as a penalty term. ΔE is the difference 
in the results of weighted sum method between the 
current solution and the new solution， which is de‑
fined as

ΔE = fit ( X current ) - fit (X neighbor) (23)
fit = M ⋅ Φ total + TTMC'+ GINI' (24)

where fit ( X current )， fit ( X neighbor ) are the values of fit‑
ness function for current and newly generated solu‑
tions， respectively； TTMC' and GINI' are the nor‑
malized values of TTMC and Gini coefficients， re‑
spectively； M is the conflict penalty weight coeffi‑
cient， which is set as 2 to ensure that weighted con‑
flict number exceeds the sum of normalized values 
of the two considered objectives.

If the maximum number of iterations N I at a 
given temperature is reached， the temperature is de‑
creased with Γi + 1 = α ⋅ Γi， and this process is re‑
peated until the pre-defined final temperature Γ f is 
reached. At each iteration of the hill-climbing local 
search algorithm， the solution space around the cur‑
rent solution is searched for a local optimal solution 
to update the current solution. First， a neighbor‑
hood solution is generated by applying local change 
to the current solution according to the above-men‑
tioned neighborhood structure. Then， the algorithm 
only accepts the neighborhood solution， which 
meets the acceptance criteria， as the new current so‑

lution. This process is repeated until reaching the 
maximum number of iterations n I. The MHMOA is 
detailed in Fig.4.

3 Numerical Results 

In this paper， real domestic historical flight 
plan data and flight route network data of China 
were used to test the performance of the proposed 
model and algorithm. The selected flight plan was 
between 8：00 am and 9：00 am on July 3， 2019， in‑
volving 2 122 waypoints， 58 airports， and 100 
flights. The examples of the flight plan and airway 
point data are listed in the appendix （Tables A1， 
A2）. It should be noted that the speed of each flight 
is set based on the corresponding reference vertical 
profile for its aircraft type provided by BADA. The 
initial flight trajectories were generated based on the 
initial flight plan. Besides the flight planned route， 
the Dijkstra’s algorithm was employed to generate 
the first three shortest rerouting paths between each 

Fig.4　Flow chart of MHMOA
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city pair as alternative routes. Since airlines are re‑
luctant to share the information about the cost of al‑
ternative routes， the route flight cost of each alterna‑
tive route for each city pair is expressed by its extra 
airborne flight time relative to the shortest route， 
namely the airborne delay time. The algorithms 
were all implemented in MATLAB R2016a， in‑
stalled on a Windows Server with 2.10 GHz CPU 
and 16 GB RAM， and all experimental results were 
collected and analyzed based on 20 independent 
runs.

3. 1 Parameter sensitivity analysis　

The parameter settings of the optimization 
model and MHMOA are listed in Tables 2， 3， re‑
spectively. According to the estimation by Cook and 
Tanner［32］， the ground delay should be less costly 
than airborne delay and the cost of one-minute air‑
borne delay is two to three times higher than the 
cost of one-minute delay on the ground. The rela‑
tionship between flight level shift costs and time-re‑
lated costs is rarely studied and is beyond the scope 
of this paper. For simplification， the flight level allo‑
cation costs are assumed to be equally important as 
ground delay costs in this paper， and thus the 
weight coefficients for three normalized costs are set 
to 1∶3∶1 as shown in Table 2.

As a preliminary step for the calculation of the 
initial temperature Γ 0， the average value of ΔE is 
calculated based on 100 random disturbances of the 
initial solution. Then， Γ 0 could be derived from： 
eΔE/Γ 0 = τ0， where τ0 is the initial rate of acceptance 
of degraded solutions. Some of the MHMOA pa‑

rameters were well-tuned based on the sensitivity 
analysis results shown in Fig.5. In this paper， the 
hypervolume （HV） metric is introduced to assess 
the quality of the non-dominated solution obtained 
by MHMOA. The parameter values with the high‑
est average HV value were selected and recorded in 
Table 3.

3. 2 MHMOA effectiveness　

In order to assess the efficiency of MHMOA， 

multiple comparison analyses between MHMOA 

and other algorithms were conducted. Firstly， to 

Table 3　Parameters related to MHMOA

Parameter
N I

n I

τ0

Temperature reduction coefficient α
Γ f

PFL

PGH

PSA, min

PSA, max

PLOC, min

PLOC, max

Value
100

5
0.4

0.99
Γ 0 /1 000

0.7
0.1
0.8
0.9
0.4
0.6

Table 2　Parameters related to the optimization model

Parameter
Length of grid cell/NM

Height of grid cell/ft
Discretization time step Δt/s

λGH

λRT

λFL

δf/min
Discretization step of departure time/min
Maximum number of alternative routes n

ρf

Value
5

1 000
20
1
3
1

60
5
4
3

Fig.5　Sensitivity analysis of different parameters for MHMOA
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verify the advantages in conflict resolution of combi‑
nation of SA with local search and roulette selection 
strategy adopted in MHMOA， another three algo‑
rithms with same parameter setting and different 
strategies were conducted for comparison. Fig.6 de‑
picts the change in the average value of total conflict 
number with the number of iterations. Comparing 
the corresponding decline curve of MHMOA and 
SA， it is shown that the MHMOA can reduce the 
number of conflicts faster than SA， indicating that 
adding a local search algorithm can effectively im ‑
prove the effectiveness of deconfliction between tra‑
jectories. In addition， two different strategies of tra‑
jectory selection in the neighborhood structure were 
tested， including roulette selection and random se‑
lection. The curves of different trajectory-selection 
strategies in Fig.6 show that the roulette selection 
method based on the number of conflicts can signifi‑
cantly increase the efficiency of conflict resolution.

To verify the efficiency of proposed MHMOA 
in multi-objective optimization， comparison tests 
were conducted with SA and two commonly used 
multi-objective algorithms， including nondominated 
sorting genetic algorithm （NSGA-Ⅱ） and multi-ob‑
jective evolutionary algorithm based on decomposi‑
tion （MOEA/D）. Fig.7 shows the non-dominated 
solutions of four compared algorithms over 20 inde‑
pendent runs. It can be seen that the non-dominated 
solutions obtained by MHOMA totally dominate 
those obtained by other three algorithms， in terms 
of both total trajectory modification cost and Gini co‑

efficient. This indicates that MHMOA outperforms 
other three algorithms with respect to computational 
efficiency.

To quantitatively evaluate the set of the non-

dominated solutions calculated by the four algo‑
rithms， three favorable metrics， namely HV， the 
generational distance （GD） and the spread （Δ） 
were introduced to assess the convergency， diversi‑
ty and overall performance， respectively. The GD 
indicator measures how far the non-dominated solu‑
tions are away from the Pareto optimal frontier. The 
smaller this indicator is， the better the approxima‑
tion of the Pareto frontier the algorithm gets. The 
spread indicator measures the extent of spread by 
the set of non-dominated solutions. This indicator 
takes a zero value for an ideal distribution， pointing 
out a perfect spread of the solutions in the Pareto 
frontier. The HV is a comprehensive indicator， 
which calculates the volume in the objective domain 
covered by the set of non-dominated solutions. For 
the minimum optimization， a higher HV value 
means the non-dominated solutions has a better con‑
vergence and diversity. The average values and stan‑
dard deviations （in brackets） of HV， GD， and Δ 
for the four algorithms are listed in Table 4. Com‑
pared with the other three algorithms， the non-domi‑
nated solutions obtained by MHMOA have the low‑
est average values of GD and Δ， and highest aver‑
age values of HV， which indicates that the MH ‑
MOA can generate non-dominated solutions with 
better convergency， diversity and overall perfor‑

Fig.6　Curves of average number of conflicts versus number 
of iterations resulted from different algorithms

Fig.7　Non-dominated solutions of four compared algo‑
rithms
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mance for the large-scale multi-objective model 
mentioned in this paper than the other three algo‑
rithms.

3. 3 Analysis of optimization results　

Fig.8 exhibits the distribution of the ground de‑
lay， airborne delay and flight level shift of the solu‑
tions obtained by the four compared algorithms. 
With regard to the ground delay distribution， based 
on the four algorithms， most flights departed on 
time without any ground delay. Compared to the 
other three algorithms， the solutions of MHMOA 
provide a higher proportion of flights without ground 
delay and a lower proportion of flights in each delay 
time interval. For the four compared algorithms， 
the airborne delay time of most flights lied within 

the interval of （0，5） min. In addition， the propor‑
tion of flights without airborne delay derived from 
MHMOA is slightly higher than those derived from 
the other three algorithms. The distribution of the 
flight level shift exhibits similar characteristics with 
the ground delay distribution. The flights with no 
flight level shift account for the largest proportion 
for the both algorithms. In the solutions obtained by 
MHMOA， the proportion of flights without flight 
level shift is higher than that obtained by the other 
three algorithms， while in each range of flight level 
shift， the proportion of flights is relatively lower.

In Table 5， the average ground delay time 
（avrGH）， average airborne delay time （avrAD）， aver‑
age flight level shift （avrFL） and standard deviation 
of ATTMC allocation among airlines （stdAirlines） de‑
rived from the four compared algorithms are present‑
ed. The comparison of the average values of the first 
three metrics reveals that MHMOA has superior op‑
timization performance than the other three algo‑
rithms with respect to flight cost reduction. Accord‑
ing to the standard deviation of ATTMC alloca‑
tion， the MHMOA solutions have smaller differ‑
ence in ATTMC allocation among different airlines 
compared to the other three algorithms， which indi‑
cates that MHMOA outperforms the other three al‑
gorithms in terms of fairness metric optimization.

To validate the advantages of using Gini coeffi‑
cient in inter-airline fairness measurement， other 
two approaches were conducted for comparison， 
with inter-airline metric based on the maximum devi‑
ation of equity ratio （MDER）［23］ and the inter-flight 
metric based on the Gini coefficient. Fig.9 exhibits 
the ATTMC distribution of the optimal fairness so‑
lutions obtained through three approaches with dif‑
ferent fairness metrics. It can be seen that both ap‑

Fig.8　Distribution of ground delays, airborne delays and 
flight level shift based on four compared algorithms

Table 5　Comparison of the optimization results of four 
algorithms

Method
MHMOA

SA
NSGA‑Ⅱ
MOEA/D

avrGH /s
466.85
675.19
571.54
557.65

avrAD /s
152.65
189.24
168.33
165.15

avrFL /ft
516.92
546.78
527.36
525.14

stdAirlines

2.04
5.92
3.11
3.23

Table 4　Comparison of the solving efficiency of four al⁃
gorithms based on three different metrics

Method
MHMOA

SA
NSGA‑Ⅱ
MOEA/D

HV
0.592 (0.006)
0.501 (0.012)
0.563 (0.009)
0.557 (0.011)

GD
0.067 (0.038)
0.122 (0.071)
0.087 (0.020)
0.091 (0.033)

Δ
0.850 (0.110)
0.883 (0.133)
0.861 (0.105)
0.867 (0.097)
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proaches based on the inter-airline metrics can ob‑
tain solutions with more evenly distributed ATT ‑
MC among airlines compared with the method 
based on inter-flight metric. In addition， the ATT‑
MC distribution of the proposed approach with Gini 
coefficient is more evenly than the MDER-based ap‑
proach.

To analyze the optimization results from the in‑
dividual level， the flight with the maximum number 
of conflicts in the initial flight plan was selected as 
an example. The selected flight had 84 conflicts 
with seven flights belonging to other airlines in the 
initial plan， all of which were resolved in the opti‑
mized solutions. Table 6 exhibits the ground delay 
（GD）， airborne delay （AD）， flight level shift 
（FLS） and ratio of cost （ROC） of the selected 
flight in the solutions with minimum TTMC and 
minimum Gini coefficient respectively. The ROC re‑
fers to the ratio of the trajectory modification cost of 
the selected flight to the total cost of all eight con‑
flicting flights. Compared with the solution with 
minimum Gini coefficient， the selected flight in the 
solution with minimum TTMC has lower deviations 

from initial planned trajectory in terms of GD， AD 
and FLS， while it bears a larger ROC in the group 
of conflicting flights， leading to a degradation of fair‑
ness in cost distribution among airlines.

4 Conclusions 

An efficient methodology to address flight tra‑
jectories planning at the strategic phase is intro‑
duced， based on the concept of TBO. Compared 
with the previous work， a multi-objective optimiza‑
tion model for the conflict-free flight trajectories 
planning is developed， which relies on approaches 
including departure time adjustment， rerouting and 
flight level allocation to modify the initial flight plan 
for conflict resolution. To take more factors into 
consideration in the flight trajectory planning pro‑
cess， the minimization of the total trajectory modifi‑
cation cost and the maximization of fairness are set 
as objectives of the model. In addition， the Gini co‑
efficient is introduced as an indicator to measure the 
fairness of the trajectory modification cost distribu‑
tion among airlines. To improve the efficiency of the 
optimization， a grid-based conflict detection method 
is employed to accelerate the conflict detection pro‑
cess between trajectories， and a hybrid-metaheuris‑
tic optimization algorithm， which combines the sim ‑
ulated annealing and hill-climbing local search algo‑
rithm， is developed to solve the model. The pro‑
posed methodology is tested with real flight plan 
and route network data of China. The results dem ‑
onstrate that the proposed hybrid-metaheuristic opti‑
mization algorithm is superior to SA， NSGA-Ⅱ 
and MOEA/D in both the effectiveness and optimi‑
zation performance， which suggests that it can effec‑
tively deal with the problem of conflict-free flight 
trajectories planning.

In the future research， we will further investi‑
gate the impact of the aircraft performance on trajec‑
tory planning. More precise trajectory adjustment 
methods will be adopted， such as speed regulation. 
In addition， the fuel-related costs will be introduced 
to quantify the impact of the deviation from user-pre‑
ferred trajectories.

Fig.9　Distribution of ATTMC for solutions obtained by 
three approached with different fairness metrics

Table 6　Comparison of deviation and fairness metrics 
for selected flight in optimal cost and optimal 
fairness solutions

Indicator
GD/s
AD/s

FLS/ft
ROC/%

Min. TTMC
1 200
252
300
64

Min. Gini
1 500
306
600
37
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Appendix：
Table A1　Examples of flight plan data used in the test case

Callsign
CCA1835
CSH9345
DKH1360
CSZ9539
CES2035
CSN3578
CES2152
CHH7604

Aircraft type
A333
B738
A320
B738
B738
A321
A321
B738

Departure AD
ZBAA
ZSPD
ZSPD
ZSWX
ZBAA
ZSNJ
ZSSS
ZSSS

Arrival AD
ZSPD
ZHCC
ZYTX
ZBYN
ZPPP
ZGSZ
ZLXY
ZBAA

ETD
8:05:00
8:05:00
8:10:00
8:10:00
8:15:00
8:15:00
8:20:00
8:25:00

Scheduled FL/ft
33 100
34 100
35 100
32 100
36 100
34 100
35 100
34 100

Table A2　Examples of airway point data used in the test case

Airway point name

DAWANGZHUANG

PUDONG

BUTPO

IRVAG

TEDIB

LADIX

Code

VYK

PD

BUTPO

IRVAG

TEDIB

LADIX

Latitude/(°)

39.193 28

31.170 61

41.835 83

40.535 28

38.432 22

39.129 44

Longitude/(°)

116.573 52

121.782 41

112.904 17

111.850 56

113.839 44

116.992 22
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基于多目标混合启发式算法的协同无冲突 4D航迹规划

周 逸 1，2， 胡明华 1，2， 杨 磊 1，2， 张 颖 2，3

（1.南京航空航天大学民航学院，南京  211106，中国； 2.空中交通管理系统全国重点实验室，南京  211106，中国； 
3.南京航空航天大学通用航空与飞行学院，南京  211106，中国）

摘要：为促进基于航迹运行的框架下未来空中交通管理系统的协同决策，本文提出了一种协同无冲突 4D 航迹规

划方法。首先以提高航班效率和航空公司间的公平性为目标，以无冲突为约束构建了一个多目标整数线性优化

模型。其次，提出了一种基于基尼系数的指标以量化航空公司间的成本分配公平性。为了提高问题求解效率，

采用了基于网格的探测方法以加速冲突检测，并设计了一种多目标混合启发式算法（Multi‑objective hybrid‑meta‑
heuristic optimization algorithm， MHMOA），通过结合模拟退火（Simulated annealing， SA）和爬山局部搜索算法

来近似最优的非支配解。最后，利用实际航班计划和航路网络数据比较和分析了 MHMOA、SA 和两种常规多目

标优化算法的优化结果。结果表明，MHMOA 所获得的非支配解的质量更高、延误更低且航空公司间公平性更

优，在 3 个多目标优化性能指标方面表现优异，可为空中交通管理员提供更详细的决策支持。

关键词：空中交通管理；航迹规划；混合启发式算法；4D 航迹；多目标优化
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