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Abstract: Modeling of unsteady aerodynamic loads at high angles of attack using a small amount of experimental or 
simulation data to construct predictive models for unknown states can greatly improve the efficiency of aircraft 
unsteady aerodynamic design and flight dynamics analysis. In this paper， aiming at the problems of poor generalization 
of traditional aerodynamic models and intelligent models， an intelligent aerodynamic modeling method based on gated 
neural units is proposed. The time memory characteristics of the gated neural unit is fully utilized， thus the nonlinear 
flow field characterization ability of the learning and training process is enhanced， and the generalization ability of the 
whole prediction model is improved. The prediction and verification of the model are carried out under the 
maneuvering flight condition of NACA0015 airfoil. The results show that the model has good adaptability. In the 
interpolation prediction， the maximum prediction error of the lift and drag coefficients and the moment coefficient does 
not exceed 10%， which can basically represent the variation characteristics of the entire flow field. In the construction 
of extrapolation models， the training model based on the strong nonlinear data has good accuracy for weak nonlinear 
prediction. Furthermore， the error is larger， even exceeding 20%， which indicates that the extrapolation and 
generalization capabilities need to be further optimized by integrating physical models. Compared with the 
conventional state space equation model， the proposed method can improve the extrapolation accuracy and efficiency 
by 78% and 60%， respectively， which demonstrates the applied potential of this method in aerodynamic modeling.
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0 Introduction 

The unsteady aerodynamic characteristics of 
the new generation of advanced fighters with large 
angles of attack represent their maneuverability， so 
accurate simulation or experimental prediction of the 
unsteady aerodynamic forces under various operat⁃
ing conditions becomes an important part of the air⁃
craft design. The method of obtaining aerodynamic 
forces based on computational fluid dynamics
（CFD） or wind tunnel tests is significantly expen⁃
sive due to the high coupling between motion and 
aerodynamics， and the unsteady aerodynamic char⁃

acteristics at high angles of attack exhibit extremely 
complex non-linear characteristics［1-3］. Therefore， 
researchers have developed a new idea of modeling 
large-angle-of-attack unsteady aerodynamic forces 
to predict time-varying aerodynamic forces under dif⁃
ferent operating conditions［4-6］.

Current unsteady aerodynamic modeling meth⁃
ods are divided into two categories. One is the tradi⁃
tional modeling methods based on the physical prop⁃
erties of the flow field［7-9］， including the integral 
model and the differential model. The integral mod⁃
el takes the maneuver as the sum of multiple order 
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of motion and derives a strict mathematical model， 
but it is difficult to analyze or discrete it because of 
its high dimensios. The differential model starts 
from the concept of flow field separation point and 
uses the concept of differential equations or differen⁃
tial-difference to express the decomposition of the 
aerodynamic force， which is easy to understand. 
But this has poor applicability in highly complex sce⁃
narios， where it even loses its own physical mean⁃
ing. The other class of models ignores the physical 
meaning of the flow field and trains the model using 
known sample data by intelligent algorithms［10-13］， 
which are called intelligent modeling methods， such 
as neural network modeling and fuzzy logic model⁃
ing. Although these methods do not consider the 
variation of flow field properties， they have been 
widely developed because their modeling ideas are 
clear and can be extended to the case of longitudinal 
and transverse heading coupling modeling and cross-

speed domain. Li et al.［14-15］ carried out a work on un⁃
steady aerodynamic modeling using machine learn⁃
ing algorithms to verify the feasibility of intelligent 
modeling based on multiple airfoil data. However， 
this modeling technique only considered inter-airfoil 
interpolation and cannot verify its outward extension 
modeling capability. Alkhedher et al.［11］ studied and 
compared the accuracy of various intelligent model⁃
ing methods such as artificial neural network
（ANN）， adaptive neuro fuzzy inference system 
（ANFIS）， and point completion network（PCN） in 
the representation of aerodynamic properties of flat 
plates with large angle of attack. The results 
showed that the prediction accuracy of the deep neu⁃
ral network algorithm-based model was always high 
under wide operating conditions， which demonstrat⁃
ed the prediction effect of multi-layer networks. 
Zhang et al.［16］ applied machine learning algorithms 
to aerodynamic modeling of fan blades to model and 
predict the unsteady aerodynamic characteristics of 
the blades with high speed rotation. The results 
showed that the deep neural network was able to 
learn the aerodynamic variation pattern generated by 
the unsteady motion of the blade effectively， and 
the prediction results performed well. The study did 
not explain the extension capability of the intelligent 

model. It was trained only using existing data， and 
the prediction data was also derived from the model⁃
ing sample data. In general， intelligent modeling 
has been developed rapidly， but there is less re⁃
search on its generalization capability， which seri⁃
ously restricts the expansion of the application of in⁃
telligent modeling methods.

To address the above issues， this paper propos⁃
es a novel aerodynamic modeling method for recur⁃
rent networks. A high angle of attack gated recurrent 
network aerodynamic model is constructed based on 
gated neural units. It fully utilizes the time memory 
ability of gated neural units to learn and predict flow 
field information in unknown states. The model is 
validated with a typical high angle of attack pitching 
motion airfoil. The aerodynamic modeling process is 
enhanced to update and invert the flow field charac⁃
teristics to further improve the applicability of the 
model by introducing the memory unit.

1 Aerodynamic Modeling Methods 
for Large Angles of Attack

1. 1 Unsteady aerodynamic modeling with large 
angles of attack　

During large angle-of-attack maneuvering 
flight， the motion and aerodynamic characteristics of 
the aircraft exhibit highly coupled and delayed ef⁃
fects. The coupling effect is mainly manifested by 
the fact that when the vehicle moves around the cen⁃
ter of gravity position， the corresponding aerodynam ⁃
ic characteristics also show similar unsteady charac⁃
teristics， and the dynamic motion may also lead to 
mutual coupling aerodynamic forces/moments be⁃
tween the longitudinal and transverse directions. For 
example， during the longitudinal large maneuver mo⁃
tion， the coupled roll moment appears due to the 
asymmetric rupture of the vortex system， which in⁃
duces the lateral motion. The delay effect is manifest⁃
ed as the problem of asynchronous start of motion 
and corresponding aerodynamic changes， which is 
caused by the inertia of the airflow itself. The aerody⁃
namic forces accompanying the motion usually exhib⁃
it a hysteresis loop shape because of the delay effect. 
Due to the complexity of high angle of attack maneu⁃

433



Vol. 41 Transactions of Nanjing University of Aeronautics and Astronautics

vering flight， neither conventional experiments nor 
simulation calculations can obtain a large amount of 
accurate data. Therefore， a method has been gradual⁃
ly developed to use less aerodynamic data as sample 
points and adopt physical or large-scale training tech⁃
niques to build aerodynamic models.

The physical aerodynamic models include inte⁃
gral equation models， differential equation models 
and algebraic models， which are derived by rigorous 
mathematical laws. However， because of different  
understanding of physical phenomena and the laws 
of flow field features， the intelligent aerodynamic 
modeling technology with artificial intelligence algo⁃
rithms as the core ignores the physical meaning and 
equates the internal modeling process to the “black 
box” process of training models with data， which 
greatly expands the accuracy and applicability of 
aerodynamic modeling. Certainly， because of the 
lack of physical meaning， the discription of the flow 
field characteristics is weak. Fig.2 shows a typical 

aerodynamic intelligent modeling process based on a 
neural network algorithm. The steps are as follows.

Step 1 Regularize the representation of the 
sample points， i. e.， the aerodynamic data corre⁃
sponding to the form of motion， given by the numer⁃
ical simulation or the experiment.

Step 2 Construct the neural network model 
parameters for model training， including the number 
of network layers， the setting of hyperparameters， 
etc.

Step 3 Perform neural network training on 
the sample data.

Step 4 Obtain the “black box” aerodynamic 
model after the training process.

Step 5 Given the known motion law， output 
the aerodynamic prediction results， and compare  
them with the known results to verify the reliability 
of the model.

Step 6 Given an unknown motion law， the 
model is used to predict the corresponding aerody⁃
namic values.

1. 2 Gated neural networks　

For the large angle unsteady aerodynamic mod⁃
eling， the most important capability is the general⁃
ization ability of the model， which is the ability to 
predict state parameters based on known working 
conditions. Traditional neural network models， 
such as back propagation（BP） neural network and  
radial basis function（RBF） neural network， are ba⁃
sically forward static networks， which cannot reflect 
the dynamic characteristics of the system well. This 
is very different from the characterization of the un⁃
steady dynamic characteristics of large-angle maneu⁃
vering flight， so the generalization ability of these 
models is relatively weak.

The recurrent neural network （RNN）［17］ inputs 
are sequential data. In the forward recursion of the 
sequence， all internal nodes （recursive units） are 
connected into a chain. Based on this special struc⁃
ture， RNNs can reflect the dynamic characteristics 
of the system over time with memorable， parameter 
sharing， and turing completeness. Therefore， they 
have strong non-linear feature learning ability for se⁃
quence data. RNNs have been used in nonlinear sys⁃

Fig.1　Unsteady aerodynamic characteristics at large angles 
of attack

Fig.2　Multi-layer neural network modeling process
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tem identification and are able to model most nonlin⁃
ear systems， and thus have the potential to improve 
the weak generalization properties of aerodynamic 
modeling. However，RNNs have some drawbacks： 
It cannot remember what is too far ahead or too far 
behind due to gradient explosion or vanishing. In or⁃
der to solve the problem of long-term dependence in 
general RNNs， the gate recurrent unit （GRU） mod⁃
el was developed［18］， which features the ability to 
process and predict important events with relatively 
long intervals and delays in time series. The simple 
internal structure of GRU can largely improve the 
learning efficiency and save computational resources 
and time costs.

In this paper， we establish an unsteady aerody⁃
namic intelligence modeling method based on GRU 
to balance the training efficiency and generalization 
ability of intelligent models. The GRU model is a 
special example of the RNN model. The idea of the 
RNN model can be graphically described as fol⁃
lows： The human brain does not start from a blank 
space every time when thinking. For example， in⁃
stead of discarding all the previous information and 
using a blank brain， when reading an article， the 
brain will determine the meaning of the current 
word and predict the next content based on the pre⁃
viously read and learned information. The structure 
of GRU is similar to the internal self-loop structure 
（nodes） of the RNN model， but the repeating mod⁃
ules have a different structure， as shown in Fig.3.

The GRU network removes or adds informa⁃
tion to the cell state through a structure called a 
gate， which selectively decides which information is 
allowed to pass through. Basically， these two gating 
vectors determine which messages end up as the out⁃
put of the gated loop unit. The special feature of 
these two gating mechanisms is that they preserve 
the information in a long sequence and do not clear 
or delete it over time because the information is not 
related to prediction.

（1） Update gate
The update gate selectively passes past and cur⁃

rent information to the future， helping the model de⁃
cide which part of the information and how much in⁃

formation should be passed through， as shown in 
Fig.4. At time step t， the update gate z t is calculat⁃
ed as

z t = σ (W ( z )x t + U ( z )h t - 1 ) (1)
where x t is the input vector at time step t， and it 
completes a linear transformation by multiplying 
with the weight matrix W ( z )； h t - 1 the previous infor⁃
mation passed through， which also undergoes a lin⁃
ear transformation. The update gate adds these two 
parts of information together. After the sigmoid 
function transformation， the result is normalized 
to ［0，1］.

（2） Reset gate
In essence， the reset gate determines which 

past information to be forgotten. Its expression is
r t = σ (W ( r )x t + U ( r )h t - 1 ) (2)

The expression of the reset gate is similar to 
that of the update gate， and the parameter meanings 

Fig.3　GRU structure

Fig.4　GRU update gate diagram
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are also the same.The process is shown in Fig.5.

（3） Memory content at the current time step
The current input information is obtained 

through the reset gate to obtain relevant past infor⁃
mation and storeit. Its calculation expression is 

h 't = tanh (Wx t + r t ⊙hU
t - 1 ) (3)

where ⊙ represents the exclusive NOR mathemati⁃
cal operation， that is， when two input variables 
have the same value， F=1. The current input con⁃
tent x t and the information passed from the previous 
step h t - 1 are first subjected to the linear transforma⁃
tion. Then， the hadamard product of the reset gate 
r t and the update gate hU

t - 1 is calculated. Since the 
reset gate calculated earlier is a vector consisting of 
numbers from 0 to 1， it measures the size of the 
gate opening. If the gate control value corresponding 
to an element is 0， it represents that all the informa⁃
tion of that element is forgotten. Finally， the results 
of these two parts of calculations are added together 
and transformed using the hyperbolic tangent func⁃
tion. The calculation process is shown in Fig.6.

（4） Output at the current time step
In the last step， the network needs to calculate 

the output h t at the current time step. This vector 

will preserve the information of the current unit and 
then pass it on to the next unit. In this process， the 
update gate is required， which determines the infor⁃
mation that needs to be collected in the current 
memory content h t and the previous time steps h t - 1. 
The expression for this process is

h t = z t ⊙h t - 1 +( 1 - z t ) ⊙h 't (4)
where z t is the activation result of the update gate， 
and it also controls the information transmission in a 
gated form. The Hadamard product of z t and h t - 1 
represents the information preserved from the previ⁃
ous time step to the final memory. When it is added 
to the information saved from the current memory 
to the final memory， it becomes the output of the fi⁃
nal gating loop unit. The process is shown in Fig.7.

1. 3 Aerodynamic modeling based on gated net⁃
works　

In this paper， the gated neural unit is combined 
with unsteady aerodynamic data， and the sample da⁃
ta points required for network training are obtained 
by CFD simulation［19⁃20］. The parameters include 
two types： The motion parameters （initial angle of 
attack， motion amplitude， frequency） and the aero⁃
dynamic parameters （Mach number， lift， drag and 
pitch moment coefficients）. The calculated data are 
used as sample points for network training to opti⁃
mize the hyperparameters and construct a gated neu⁃
ral unit-based training model. The existing sample 
data are used to continuously verify the validity and 
accuracy of the training process in real time. Final⁃
ly， the aerodynamic parameters of the unknown mo⁃
tion state are predicted by the model. The whole 
process is shown in Fig.8.

Fig.5　GRU reset gate diagram

Fig.7　Illustration of current output

Fig.6　Illustration of current input content
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2 Validation of Intelligent Neural 
Network Modeling Methods 

2. 1 Interpolation modeling　

Interpolation refers to modeling and predicting 
unknown states within the state boundary using 
known aerodynamic data. In this paper， two sets of 
training data and one set of test data are used for 
modeling prediction. The aerodynamic models are 
tested under different amplitude and deceleration fre⁃
quency. The root mean square error eRMS and the rel⁃
ative error e are used to evaluate the test results

eRMS = 1
n ∑

i = 1

n

( ŷ i - yi )2 (5)

e =

1
n ∑

i = 1

n

( ŷ i - yi )2

1
n ∑

i = 1

n

y 2
i

= eRMS

1
n ∑

i = 1

n

y 2
i

(6)

The states predicted by the interpolation model⁃
ing are shown in Table 1.

When the aircraft performs high angle of attack 
maneuvers， the gating neural network constructed 
in this paper is used to model and predict the aerody⁃
namics of the interpolation state， and the results are 
shown in Figs.9，10. The relative error of the entire 
forecast journey is shown in Table 2.

According to the prediction results， it can be 
seen that the amplitude interpolation prediction re⁃
sults are slightly worse than the frequency predic⁃
tion results. The error range of the lift drag coeffi⁃

Fig.9　Comparison of aerodynamic predication data between 
CFD values and model predication at α4=30° + 
10°sin(4πt）

Fig.8　Process of unsteady aerodynamic modeling based on 
gated neural units

Table 1　Interpolation aerodynamic modeling data

Setting

Serial 
number

Training 
data

Test data
Predict⁃
ed data

Prediction under
 different amplitudes

1

α1 = 30° + 12° sin ( 4πt )
α2 = 30° + 8° sin ( 4πt )

α1 = 30° + 11° sin ( 4πt )

α4 = 30° + 10° sin ( 4πt )

Prediction under 
different contraction 

frequencies

2

α1 = 30° + 10° sin ( 4πt )
α1 = 30° + 10° sin ( 2πt )
α1 = 30°+ 10° sin ( 3.5πt )

α4 = 30° + 10° sin ( 3πt )
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cient is below 5%， but the prediction error of the 
moment coefficient has reached 10%. In terms of 
physical phenomena， an increase in amplitude repre⁃
sents a further increase in the intensity of nonlineari⁃
ty， because the range of instantaneous angle-of-at⁃
tack courses may span more flow regimes. There⁃

fore， the region of expression of nonlinear character⁃
istics is larger， and the difference in flow field char⁃
acteristics between the interpolated training data and 
the predicted data is relatively large at this time. 
Figs. 9，10 also illustrate that the predicted hystere⁃
sis loop of aerodynamic changes is basically consis⁃
tent with CFD calculations， which also reflects the 
ability of RNN to memorize time-dependent histo⁃
ries and thus characterizing the corresponding non⁃
linear features. High deceleration frequency implies 
a larger instantaneous angular velocity. Therefore， 
at the same instantaneous angle of attack， a larger 
rate of change in the approach angle will enhance 
the nonlinearity of the instantaneous flow field. The 
lift， the drag and the pitch moment coefficients can 
be predicted well.

The interpolation modeling results show that 
the intelligent model of gated network， constructed 
for the prediction within the boundary of the training 
state in this paper， can learn to obtain the basic flow 
field characteristics better and provide more accurate 
prediction results. The accuracy of the model will al⁃
so be further improved if the sample points and test 
points can be added in the training.

2. 2 Extrapolation extension modeling　

The nonlinear flow field characteristics of the 
predicted data in interpolation modeling are included 
in the training data， so that better prediction results 
can be obtained. However， it is obvious that the 
learning extension capability of the modeling pro⁃
cess needs to be considered if the prediction is mod⁃
eled for unknown states outside the boundary of the 
training data. In this section， the extrapolation mod⁃
eling validation is carried out based on the NA ⁃
CA0015 large motorized aerodynamic data， and the 
data states of the prediction process are shown in 
Table 3.

Figs.11—14 show the results of extrapolation 
extension modeling predictions using known aerody⁃
namic data， and the errors are shown in Table 4. 
From the results， it can be seen that extrapolation 
modeling will cause the original nonlinear flow field 
characteristics to change， either by changing the am ⁃
plitude or decreasing the frequency. Because the 

Fig.10　Comparison of aerodynamic predication data be⁃
tween CFD values and model predication at α4 =
30° + 10° sin ( 3πt )

Table 2　Error in aerodynamic interpolation modeling of 
NACA0015 airfoil high angle of attack maneu⁃
vering motion

Case

1
2

C l

eRMS

0.0173 0
0.0102 0

e/%
1.99
1.24

C d

eRMS

0.017 7
0.014 9

e/%
2.35
1.37

Cm

eRMS

0.009 1
0.006 5

e/%
8.18
3.72
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flow field itself is already in a large angle-of-attack 
nonlinear state. For the prediction case 1， the large 
amplitude data is used to predict the small amplitude 
case. Although the training data does not contain the 
data of the prediction case， the nonlinear characteris⁃
tics of the training data are developed from the small 
amplitude data. The lift resistance and moment coef⁃

ficients of the prediction case can be predicted more 
accurately. In contrast to the prediction of case 2， 
predicting large amplitude conditions by training 
with small amplitude data has a large difference in 
its nonlinear characteristics. The main reason for 
this result is that the training data with linear and 
weak nonlinear characteristic cannot be strongly non-

Fig.11　Comparison is extrapolation prediction results be⁃
tween CFD values and model predication at state 
α = 30° + 8°sin ( 4πt )

Fig.12　Comparison is extrapolation prediction results be⁃
tween CFD values and model predication at state 
α = 30° + 13°sin ( 4πt )

Table 3　NACA0015 wing extrapolation modeling at high angle of attack maneuvering motion

Case
1
2
3
4

Train test
k = 0.092 32   αm = 12°,αm = 10°

k = 0.092 32   αm = 6°,αm = 9°
αm = 10°   k = 0.092 32,k = 0.069 241
αm = 10°   k = 0.023 08,k = 0.046 160

Prediction data
αm = 8°

αm = 13°
k = 0.046 16
k = 0.080 78

Remark
Constant frequency
Constant frequency
Constant amplitude
Constant amplitude
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linear at large angles. In other words， the strong 
separation law of the flow field under large ampli⁃
tude cannot be trained and learned through the small 
separation phenomenon， so the error of prediction 
case 2 is large. It also shows that the change in am ⁃
plitude strongly affects the development of flow 
field properties， which changes dramatically with 
time course， and that the development of nonlinear 
characteristics of the flow field （especially from 
weakly nonlinear to strongly nonlinear flow field） 
predicted by interpolation needs to be supported by 
more physical models.

The predicted cases 3 and 4 are cases where 

the frequency and amplitude are changed respective⁃
ly with the large non-linear properties of the flow 
field largely unchanged， but the construction time of 
the flow field varies， showing that the aerodynamic 
hysteresis is a change in local slope. The prediction 

Fig.14　Comparison is extrapolation prediction results be⁃
tween CFD values and model predication at state 
α = 30° + 10°sin ( 3.5πt )

Fig.13　Comparison is extrapolation prediction results be⁃
tween CFD values and model predication at state 
α = 30° + 10°sin ( 2πt )

Table 4　Error in aerodynamic extrapolation modeling of 
NACA0015 airfoil high angle of attack maneu⁃
ver motion

Case

1
2
3
4

C l

eRMS

0.009 2
0.187 0
0.006 7
0.012 3

e/%
1.14

20.71
1.01
1.99

C d

eRMS

0.008 3
0.169 7
0.006 7
0.014 8

e/%
1.21

29.81
1.00
1.73

Cm

eRMS

0.006 1
0.018 9
0.003 9
0.012 9

e/%
2.39

26.65
2.03
4.55
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network in this paper is more accurate for the extrap⁃
olation of frequency characteristics， but the predic⁃
tion of working case 4 is obviously slightly higher er⁃
ror， which is similar to the law of amplitude predic⁃
tion. In general， the gated-loop network aerodynam ⁃
ic prediction method constructed in this paper has 
certain extrapolation modeling capability， and its ex⁃
trapolation accuracy can be further improved if the 
physical model characterizing the nonlinear flow 
field is integrated in the subsequent model.

2. 3 Comparative analysis of gate control intelli⁃
gent modeling method and other methods　

An intelligent aerodynamic model based on 
gate controlled neural network is established in this 
paper. By training the aerodynamic data， it is possi⁃
ble to predict other states aerodynamic forces by bet⁃
ter interpolation. By learning and storing the time-

varying characteristics of the aerodynamic data， the 
intelligent model can better reveal the internal law 
of the unsteady aerodynamic performance， so it has 
a better generalization ability in principle.

In order to further verify the efficiency and ac⁃
curacy of the methods constructed in this paper， the 
prediction capabilities of conventional state space 
equation models and conventional intelligent models 
based on BP neural networks are compared. The se⁃
lected object remains the NACA0015 airfoil， with 
the same computing hardware configuration used for 
a comprehensive comparison of its extrapolation and 
extrapolation generalized capabilities， as shown in 
Fig.15. In terms of prediction efficiency， conven⁃
tional state space equation models have the lowest 

prediction efficiency due to the large number of 
equations solved and complex logical relationships. 
Although the intelligent model is based on data train⁃
ing， the prediction efficiency can be improved by 
more than 60% compared to the state space model. 
Since the mechanism of the gated neural network 
model is more complex， its efficiency is slightly low⁃
er than the classical conventional neural network 
model. In terms of the generalized performance， the 
state space equations have the worst extrapolation 
accuracy， and the gated network has the best extrap⁃
olation accuracy， which reflects the effectiveness of 
historical data learning.

3 Conclusions 

An intelligent aerodynamic model based on gat⁃
ed recurrent neural network is constructed to ad⁃
dress the generalization problem of unsteady aerody⁃
namic modeling at large angle of attack. Taking the 
NACA0015 airfoil high angle of attack maneuver as 
an example， the time memory of the gated neurons 
is used to verify the effectiveness of the model and 
improve the model’s ability of generalization， and 
the main conclusions are as follows.

（1） Although ignoring the physical characteris⁃
tics of the flow field， the intelligent model based on 
neural networks has good universality and can be ap⁃
plied to aerodynamic modeling and prediction in var⁃
ious states.

（2） The accuracy of the gated neural unit inter⁃
polating model based intelligent model is high. The 
training data represent flow field characteristics that 
already cover the predicted working conditions， so 
accurate predictions can be made for nonlinear flow 
fields of different frequencies and amplitudes.

（3） The accuracy of the extrapolation predic⁃
tion varies with the development of nonlinear charac⁃
teristics， and the prediction accuracy of the model 
trained with strong nonlinear data to predict the 
weak nonlinear flow field is better. However， when 
using weak linear data to extrapolate the nonlinear 
cases， the prediction error is large. At the same 
time， the prediction error of the model with variable 
amplitude is larger relative to that of the frequency-

Fig.15　Predication efficiency and error of different aerody⁃
namic models(GRNN—Gated recurrent neural net⁃
work; TNN—Traditional neural network; SS—

State-space )
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varying case， because the effect of amplitude varia⁃
tion on the flow field characteristics is more dramat⁃
ic.

（4） The gated network prediction model has a 
greater improvement than other models in terms of 
both generalization ability and prediction efficiency. 
Compared with the state space equation model and 
the traditional neural network model， the extrapola⁃
tion ability is improved by 78% and 45%， respec⁃
tively. The prediction efficiency is 60% higher than 
that of the state space equation model.
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基于门控神经网络的大迎角非定常气动力建模

邓永涛 1， 程诗信 2， 米百刚 3

（1.北京空间机电研究所，北京  100094，中国 2.沈阳飞机设计研究所扬州协同创新研究院有限责任公司，扬州  
110066，中国 3.西北工业大学航空学院，西安  710072，中国）

摘要： 基于少量实验或仿真数据构建未知状态下的大迎角非定常气动力模型，能够极大地提高飞机非定常空气

动力学设计和飞行动力学分析的效率。针对传统气动模型通用性差以及智能模型泛化能力差的问题，提出了一

种基于门控神经单元的智能气动力建模方法。充分利用门控神经单元的时间记忆特性，增强了学习和训练过程

对非线性流场的表征能力，提高了整个预测模型的泛化能力。以 NACA0015 翼型为研究对象，在机动飞行条件

下对其非定常气动力进行了预测和验证，结果表明本文构建的模型具有良好的适应性。在内插预测中，升阻系

数和力矩系数的最大预测误差不超过 10%，基本可以表征整个流场的变化特征；在外推建模预测中，基于强非线

性数据的训练模型对弱非线性预测具有良好的准确性，而反过来预测则误差较大，甚至超过 20%，这也表明外推

和泛化能力需要通过与物理模型融合来进一步优化。与传统的状态空间方程模型相比，本文提出的方法可以将

外推精度和效率分别提高 78% 和 60%，充分说明了该方法在气动力建模中的应用潜力。

关键词：大迎角；非定常气动力建模；门控神经网络；泛化能力
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