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Abstract: A hybrid identification model based on multilayer artificial neural networks （ANNs） and particle swarm 
optimization （PSO） algorithm is developed to improve the simultaneous identification efficiency of thermal 
conductivity and effective absorption coefficient of semitransparent materials. For the direct model， the spherical 
harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer 
problem in an absorbing， emitting， and non-scattering 2D axisymmetric gray medium in the background of laser flash 
method. For the identification part， firstly， the temperature field and the incident radiation field in different positions 
are chosen as observables. Then， a traditional identification model based on PSO algorithm is established. Finally， 
multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the 
identification process. The results show that compared with the traditional identification model， the time cost of the 
hybrid identification model is reduced by about 1 000 times. Besides， the hybrid identification model remains a high 
level of accuracy even with measurement errors.
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0 Introduction 

According to the extent of photon penetration 
into the medium prior to absorption or scattering， 
the medium can be categorized as non-transparent， 
transparent， or semitransparent. Semitransparent 
materials have been extensively utilized in industrial 
production and aerospace applications， such as 
windshields and portholes， ceramic insulation mate⁃
rials in high-temperature furnaces， thermal barrier 
coatings on high-temperature engine components’ 
surface， and heat insulation tiles on missiles and 
high-speed spacecraft surface. The rapid and accu⁃
rate acquisition of thermophysical properties for 
semitransparent materials （such as thermal conduc⁃

tivity， and absorption coefficient） plays an essential 
role in material preparation， performance monitor⁃
ing and performance improvement， which holds sig⁃
nificant importance in ensuring the safety and reli⁃
ability of parts and systems.

The inverse method is a commonly used ap⁃
proach for identifying the thermophysical properties 
of materials. The fundamental concept of inverse 
method involves adjusting the value of one or more 
input parameters of the direct model within a speci⁃
fied range， which aiming to continuously minimize 
the discrepancy between the output values of the di⁃
rect model and those of the real system （supposed 
as known） until reaching a sufficiently small gap. At 
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this point， the current input parameter value in the 
direct model can be approximately considered as the 
value corresponding to that parameter in the real sys⁃
tem. Since the parameters to be identified can be de⁃
rived from the direct model and can be arbitrarily se⁃
lected， on the premise of measuring the output of 
the real system， the simultaneous identification of 
multiple thermophysical parameters of materials un⁃
der real working conditions can be achieved by solv⁃
ing an optimization problem， with relatively simple 
operation and lower cost. Moreover， for semitrans⁃
parent materials， this method can eliminate the in⁃
fluence of thermal radiation and obtain the true ther⁃
mal conductivity of the material.

According to the principle of inverse method， 
any inverse problem can be decomposed into two 
parts： Establishment and resolution of the direct 
model， as well as parameter identification based on 
optimal algorithms or others. Taking the thermo⁃
physical properties identification problem of semi⁃
transparent materials as an example， its direct mod⁃
el involves highly complex nonlinear equations that 
couple thermal conduction and radiation， making it 
nearly impossible to obtain a pure analytical solu⁃
tion. Therefore， the numerical simulation has 
emerged as a crucial approach for studying the inter⁃
nal heat transfer mechanism of such materials. The 
radiation transfer equation （RTE） in the nonlinear 
conduction-radiation coupled equations can be 
solved by using two categories of methods. One cat⁃
egory involves tracking the propagation trajectory of 
photons， such as the ray tracing method［1］， the zon⁃
al method， the Monte Carlo method， the discrete 
transfer method［2］， etc. These methods offer high 
solving accuracy and are suitable for dealing with ra⁃
diation calculation problems involving non-uniformi⁃
ty， anisotropic scattering， complex geometry， vari⁃
able refractive index， etc. However， due to the fact 
that radiation is coupled with conduction or convec⁃
tion， although the calculation time of these methods 
can be reduced under some specific assumptions［3-5］， 
it is still long in general cases. Another category of 
methods aims to discretize and solve partial differen⁃

tial equations， such as the finite volume method［6］， 
the finite element method［7］， the discrete ordinates 
method［8］， the spherical harmonic function meth⁃
od［9］， etc. These methods offer relatively shorter 
computation time and are suitable for coupled calcu⁃
lations. As for the parameter identification part， the 
common optimal algorithms include the gradient 
methods， such as the derivative-based conjugate 
gradient method， which offers fast computation but 
may encounter issues such as falling into local opti⁃
mal solutions. To deal with these challenges， vari⁃
ous approaches have been proposed， including adap⁃
tive gradient algorithms， the momentum algorithm， 
the adaptive momentum algorithm［10］， etc. Besides， 
another class of algorithms represented by heuristic 
algorithms and meta-heuristic algorithms are also ap⁃
plied， such as the liver cancer algorithm （LCA）［11］， 
the parrot optimizer （PO）［12］， the slime mould algo⁃
rithm （SMA）［13］， the binary moth search algorithm 
（BMSA）［14］， the hunger games search algorithm 
（HGSA）［15］ ， the colony predation algorithm 
（CPA）［16］， the weighted mean of vector （INFO）［17］， 
the Harris hawks optimization （HHO）［18］， the rime 
optimization algorithm （RIME）［19］， etc. Taking the 
thermophysical properties identification problem of 
semitransparent materials as an example， various al⁃
gorithms have been applied to solve this problem， 
including the evolutionary algorithm such as the 
PSO algorithm and its improved versions［20-22］， the 
Lie-group shooting method （LGSM）［23］， the im⁃
proved teaching-learning-based optimization algo⁃
rithm （ITLBO）［24］， and the improved Golden sine 
algorithm （IGold-SA）［25］.

The above studies on algorithm development 
strategy have improved the accuracy and robustness 
of the inverse method to a certain extent. However， 
due to the repeated adjustment of parameters value 
and brought into the direct model to approach the ac⁃
tual output value during the identification process， 
for simultaneous identification of multiple parame⁃
ters of complex direct models， such as the simulta⁃
neous identification of thermophysical properties in 
the multidimensional coupled conduction-radiation 
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heat transfer model， the inverse method still suffers 
from relatively long computation time problem. The 
problem of achieving a balance between accuracy 
and speed to meet the demand for highly efficient pa⁃
rameter identification in practical engineering prob⁃
lems is a significant issue that requires careful con⁃
sideration. In order to deal with this problem， sever⁃
al improvement strategies have been proposed. 
These include a hybrid algorithm that combines the 
differential evolution algorithm with the stochastic 
particle swarm optimization （SPSO） algorithm， in 
which the differential evolution algorithm is used to 
enhance the best position of individuals during each 
search［26］. Moreover， an improved social spider opti⁃
mization algorithm has been suggested［27］， as well 
as employing graphics processing unit （GPU） tech⁃
nology to accelerate the resolution of direct model 
solved by the Monte Carlo method［28］. In addition， 
due to its strong self-learning， imitation and predic⁃
tion ability， artificial neural network （ANN） has 
shown the potential to replace traditional methods 
for solving heat transfer problems， and has been in⁃
creasingly applied to related issues such as the esti⁃
mation of radiative flux［29］ and the identification of 
boundary conditions［30］ in inverse heat conduction 
problems， the estimation of gas thermo-physical 
properties［31］， as well as the simultaneous identifica⁃
tion of particle distribution function and optical con⁃
stants in inverse thermal radiation problems［32］. Un⁃
like the inverse method which requires repeated ad⁃
justment of the value of parameters to be identified 
and brought into the direct model， the inverse identi⁃
fication speed of the well-trained neural network is 
nearly instantaneous. However， it should be noted 
that the effectiveness of learning for an ANN heavi⁃
ly relies on its training data. And it exists a certain 
gap in terms of robustness when compared to the 
evolutionary algorithm.

In summary， the current studies on the identifi⁃
cation of thermophysical properties of semitranspar⁃
ent materials primarily focus on improving algo⁃
rithms during the inverse identification process and 
these methods have reached a relatively mature 

stage of development. However， when it comes to 
simultaneous identification of multiple parameters 
under the multidimensional coupled conduction-radi⁃
ation problem， there is still a drawback in terms of 
long identification time. In this context， various 
strategies have been suggested to enhance the pa⁃
rameters identification efficiency， including improv⁃
ing the algorithms， utilizing parallel computing tech⁃
nology to accelerate the direct model， as well as em ⁃
ploying ANNs to solve the inverse problem. How⁃
ever， as far as author’s awareness， there is a scarci⁃
ty of studies focusing on combining ANNs with evo⁃
lutionary algorithms to solve the aforementioned 
problems. Therefore， this paper proposes a hybrid 
identification model based on ANNs and PSO algo⁃
rithm for the simultaneous identification of thermal 
conductivity and effective absorption coefficient of 
2D axisymmetric semitransparent media. Within the 
framework of the inverse method， the ANNs are 
employed to fit and replace the direct model to accel⁃
erate the identification process. Meanwhile， the 
PSO algorithm is retained for its robustness to accu⁃
rately achieve the simultaneous identification of ther⁃
mal conductivity and effective absorption coefficient 
of semitransparent materials.

1 Direct Model 

As shown in Fig.1， the direct model studied is 
a uniform， isotropic， absorbing， emitting， and non-

scattering semitransparent gray cylinder with black 
body surfaces. The height of the cylinder is H， the 
radius is R， the environment temperature is Tf， and 
the convective heat transfer coefficients are hz and 
hr. Since the cylinder satisfies the assumption of axi⁃
al symmetry， heat transfer only occurs along the 
height and radius directions. Initially， the cylinder is 
in thermal equilibrium with the environment. Subse⁃
quently， a heat flux q（r，t） is applied to the front 
surface of the cylinder until t = tp. The convective 
heat transfer between the cylinder outer surface and 
the surrounding air is considered while the radiation 
heat transfer between the cylinder and the environ⁃
ment is neglected.
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Considering the coupled conduction-radiation 
heat transfer mode inside the direct model corre⁃
sponding to Fig.1， the thermophysical properties to 
be simultaneously identified are chosen as the ther⁃
mal conductivity related to the conduction as well as 
the effective absorption coefficient related to the ra⁃
diation. The thermal conductivity quantifies the heat 
conduction capacity of the semitransparent media， 
while the effective absorption coefficient indicates 
the degree of photon attenuation inside the 2D axi⁃
symmetric model.

The spherical harmonic function method， also 
known as the P1 method， is employed to simplify 
the RTE， which is

∇∙ ( ∇G ) - 3κ 2 G = -12κ 2 n2 σT 4 （1）
where G is the incident radiation， T the tempera⁃
ture， κ the effective absorption coefficient， n the re⁃
fractive index， and σ the Stefan-Boltzmann con⁃
stant. The energy equation in the coupled conduc⁃
tion-radiation equations is
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where ρ is the density， c the isobaric heat capacity， 
λ the thermal conductivity， q̇ the internal heat 
source of the medium due to radiation effect， φc the 
conduction heat flux， φr the radiation heat flux un⁃
der P1 approximation， and φ total the total flux.

Boundary conditions and initial conditions of 

the direct model can be written as follows.
For z = 0， ∀（r， t）， we have
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For t = 0， ∀（r， z）， we have
T = T i （8）

G = 4n2 σT 4
i （9） 

where Ti is the initial temperature of the cylinder.
The finite volume method is firstly employed 

to discretize the above coupled equations. Specifical⁃
ly， the second partial derivatives of temperature T 
and incident radiation G with respect to space are ap⁃
proximated by a second-order central scheme， while 
the first partial derivative of temperature with re⁃
spect to time is approximated by a first-order implic⁃
it scheme. Subsequently， the tridiagonal systems 
obtained are iteratively solved by using the Thomas 
algorithm. The specific approach is as follows： At a 
given time， the incident radiation field is assumed as 
known， and the conduction tridiagonal system is 
firstly solved to obtain the temperature field. Then 
this obtained temperature field is brought into the ra⁃
diation tridiagonal system to update the incident radi⁃
ation field. This process is repeated until conver⁃
gence is achieved for both temperature and incident 
radiation fields at that particular moment. Finally， 

Fig.1　2D axisymmetric direct model and boundary condi⁃
tions
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the validation of the direct model is shown in Fig. 2 
and Fig.3. In the case of Fig.2， a step thermal exci⁃
tation is applied on the whole front surface of the cyl⁃
inder［33］， while Fig.3 corresponds to the case where 
a Dirichlet thermal excitation is applied on the same 
surface［34］. The relevant parameter settings are 
shown in Table 1 and Table 2.

The dimensionless time and dimensionless tem ⁃
perature in Fig.3 are respectively defined as λt/ρcH 2 
and ( T 1 - T i ) ρcH/qtp， where T1 is the temperature 
of front face central point， and N defined as 
λκ/ ( 4n2 σT 3

i ) is the conduction-radiation parameter 
which reflects the relative importance of conduction 
and radiation in the semitransparent medium. When 
N ≫ 1， the conduction dominates； when N ≪ 1， 
the radiation dominates； when N ≈ 1， the conduc⁃
tion and radiation are equally important. The results 
show that the strategy of using the spherical harmon⁃
ic method to simplify the RTE and applying the fi⁃
nite volume method to solve the coupled conduction-

radiation heat transfer equations has a very good ac⁃
curacy.

2 Sensibility Study 

The sensitivity of observables to parameters is 
a crucial indicator for assessing the feasibility of pa⁃
rameter identification， which is defined as

S = η
∂Γ
∂η

（10）

where Γ and η represent the observables and the pa⁃
rameters to identify. The higher the sensitivity of 
the observables to the parameters， the easier the 
identification process will be. Considering that the 
parameters to be identified are thermal conductivity 
and effective absorption coefficient， the sensitivity 
of several observables related to the conduction and 

Fig.3　Validation of direct model (Dirichlet thermal excita⁃
tion applied on the whole front surface of the cylinder)

Table 1　Parameter setting in the case of Fig.2

Parameter
Height H / m
Radius R / m

Volumetric heat capacity ρc / (J⋅m-3⋅K-1)
Thermal conductivity λ / (W⋅m-1⋅K-1)
Effective absorption coefficient κ / m-1

Initial temperature Ti / K
Refractive index n

Biot number Biz = hz H/λ

Biot number Bir = hr R/λ

Heat flux q / (kW∙m-2)
Heat flux duration tp / s

Value
0.01
0.05

2.2×106

1.5
512

1 000
1.5
0

1.51
50
1

Fig.2　Validation of direct model (step thermal excitation ap⁃
plied on the whole front surface of the cylinder)

Table 2　Parameter setting in the case of Fig.3

Parameter
Height H / m
Radius R / m

Volumetric heat capacity ρc / (J⋅m-3⋅K-1)
Thermal conductivity λ / (W⋅m-1⋅K-1)

Effective absorption coefficient κ / m-1

Initial temperature Ti / K
Refractive index n

Biot number Biz = hz H/λ

Biot number Bir = hr R/λ

Energy density qtp / (J∙m-2)
Energy density duration tp / s

Value
0.01
0.05

2.15×106

1
10,100,1 000,

10 000
800

1
0
0

8 600
0.01
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radiation are studied in the case of Table 3. These 
observables include the temperature of front surface 
central point T1， the temperature of cylinder central 
point T2， as well as the temperature of rear surface 
central point T3 and the incident radiation of rear sur⁃
face central point G1.

Figs.4—6 show the evolution of sensibility of 
different observables to λ and κ （left axis）， as well 
as evolution of the ratio of sensibilities （right axis） 
under different heat transfer modes. The red dotted 
line and the green solid line respectively represent 

the sensitivity of different observables to λ and κ， 
while the blue dashed line corresponds to the ratio of 
the two sensitivities. In Fig.4（a）， Fig.4（b）， and 
Fig.6（a）， the order of magnitude of the sensitivity 
curves of observables to κ has been amplified 100 

Fig.5　Evolution of sensibility of different observables to (λ, 
κ) and evolution of the ratio of sensibilities under the 
conduction-equivalent mode (N = 0.95)

Table 3　Relevant parameters of the direct model used 
for the identification process

Parameter
Height H / m
Radius R / m

Volumetric heat capacity ρc/ (J⋅m-3⋅K-1)
Initial temperature Ti/ K

Refractive index n
Biot number Biz = hz H/λ

Biot number Bir = hr R/λ

Energy density qtp / (J∙m-2)
Energy density duration tp/ s

Simulation time t/ s

Value
0.002

0.5
1.7×106

1 000
1.36

0
0

3 399
0.05
2.5

Fig.4　Evolution of sensibility of different observables to (λ, 
κ) and evolution of the ratio of sensibilities under the 
conduction dominant mode (N = 3.58)
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times for ease of viewing. According to these fig⁃
ures， the sensibility of G1 to κ is almost the highest 
compared to the other observables. Similarly， the 
observable with the highest sensitivity to λ is T1. In 

addition， the sensitivities of T2 and T3 to λ is in the 
same order of magnitude， but the sensitivity curves 
are different from each other. With the transition of 
the dominant heat transfer mode from radiation to 
conduction， the sensitivity of G1 to κ gradually de⁃
creases.

3 Hybrid Identification Model 

In the framework of inverse method， a hybrid 
identification model based on multilayer ANNs and 
PSO algorithm （for simplicity， hereafter referred to 
as hybrid identification model）， is proposed to im ⁃
prove the efficiency of simultaneous identification of 
multiple thermophysical properties of semitranspar⁃
ent materials. The schematic diagram of the hybrid 
identification model compared with the traditional 
identification model based on PSO algorithm （for 
simplicity， hereafter referred to as traditional identi⁃
fication model）， as well as the flowchart of develop⁃
ing the hybrid identification model are respectively 
illustrated in Fig.7 and Fig.8.

Compared with the traditional identification 
model with the drawback of long identification 
time， the hybrid identification model adopts the 
ANNs to fit the direct model so as to quickly obtain 
its outputs and speed up the whole identification pro⁃
cess. On this basis， instead of using a single com ⁃
plex ANN， four independent neural networks are 
proposed to reduce the training time cost and train⁃
ing difficulty. More details about the development of 
the hybrid identification model are presented as fol⁃
lows.

Fig.6　Evolution of sensibility of different observables to (λ, 
κ) and evolution of the ratio of sensibilities under the 
radiation dominant mode (N = 0.48)

Fig.7　Schematic diagram of the hybrid identification model compared with the traditional identification model
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First of all， a 2D axisymmetric coupled conduc⁃
tion-radiation heat transfer model， hereinafter re⁃
ferred to as the direct model （DM）， is developed 
and validated. Then， the observables are deter⁃
mined within the framework of the inverse method. 
According to the sensibility study， the observables 
include the temperature field at the central point of 
the front surface， as well as at the central points of 
both the rear surface and the cylinder. Additionally， 
the incident radiation field at the central point of the 
rear surface is also encompassed.

Next， considering that the direct model is rela⁃
tively complex and more than one parameter are 
identified at the same time， to accelerate the identifi⁃
cation process， four multilayer ANNs with the error 
back propagation algorithm are used to fit and re⁃
place the different outputs of the direct model. The 
detailed procedure is as follows：

（1） The structure and relevant parameters of 
the neural networks are firstly determined. Consider⁃
ing that there is more than one observable， four neu⁃
ral networks are built at the same time. The thermal 
conductivity and effective absorption coefficient to 
be identified are taken as the inputs of these neural 
networks， and the four observables， namely the 
temperature fields at the center point of the front sur⁃
face and the rear surface， the temperature field at 
the center point of the cylinder， and the incident ra⁃
diation field at the center point of the rear surface 

are respectively taken as the outputs of the four neu⁃
ral networks. Instead of building a single complex 
neural network that taking all observables as out⁃
puts， the strategy mentioned above builds four inde⁃
pendent neural networks. Due to the smaller output 
dimension of each neural network compared to that 
of a single complex neural network， the scale of 
each neural network is smaller （with fewer hidden 
layers and neurons）， which means that the training 
time for each neural network is shorter. Although 
there are four neural networks need to be trained， 
their total training time cost is still much smaller 
than that of a single complex neural network. In ad⁃
dition， for a single complex neural network， owing 
to its outputs containing data of different types such 
as temperature and heat flux， its training is more dif⁃
ficult compared to a neural network with a smaller 
scale and just one type of observable as output. Con⁃
sidering that four independent neural networks are 
much faster and easier to train than a single complex 
neural network， and the purpose of using neural net⁃
work to fit direct model is just to quickly get accu⁃
rate outputs （i. e. the four observables above）， us⁃
ing four independent neural networks instead of a 
single complex neural network is a better choice. 
For each neural network built， there are three hid⁃
den layers， each containing 5， 10 and 15 neurons， 
respectively. The Bayesian regularization function 
has been chosen as the training algorithm， with a 

Fig.8　Flowchart of developing the hybrid identification model
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learning rate of 0.015， a minimum target training er⁃
ror of 10-6， and a maximum number of training iter⁃
ations set to 105. Other relevant parameters of the di⁃
rect model used for the identification process are 
shown in Table 3.

（2） 1 500 sets of data containing the parame⁃
ters to be identified and the corresponding observ⁃
ables information are generated to train these neural 
networks. These 1 500 sets of training data are even⁃
ly divided into three groups based on the different 
heat transfer mechanisms inside semitransparent ma⁃
terials， which are conduction dominant mode （500 
sets）， conduction-radiation equivalent mode （500 
sets）， and radiation dominant mode （500 sets）. 
Taking the case of conduction dominant mode as an 
example， firstly， the thermal conductivity λ is ran⁃
domly and uniformly generated in the range of 0.1—
5 W⋅m-1⋅K-1. Secondly， the conduction-radiation 
parameter N is randomly and uniformly generated in 
the range of 1.5—50， and the effective absorption 
coefficient κ corresponding to the above thermal con⁃
ductivity is derived from the definition of N. Third⁃
ly， each group （λ， κ） generated in the previous step 
is brought into the direct model and four observables 
corresponding to the input （λ， κ） are obtained. Fi⁃
nally， each group （λ， κ） and its corresponding ob⁃
servables is combined as one set of training data， 
and 500 sets of training data under the conduction 
dominant mode are obtained by following the above 
three steps. For the cases of conduction-radiation 
equivalent mode and radiation dominant mode， the 
generation of 500 sets of training data under each 
mode following the same steps， except that the 
range of N varies with the change of dominant mode 
（conduction-radiation equivalent mode： 
N ∈ [ 0.5， 1.5 ]， radiation dominant mode： 
N ∈ [ 0.05， 0.5 ]）.

Compared with generating both λ and κ ran⁃
domly and uniformly in certain ranges， the training 
data obtained by the new strategy is more reason⁃
able and consistent with the heat transfer modes 
within the semitransparent materials， which helps 
enhancing the efficacy of neural network training. 

The mean squared training error for neural networks 
with temperature as output is the order of magni⁃
tudes of 10-8. For the neural network whose output 
is incident radiation， this error has the order of mag⁃
nitudes of 10-2. For the above neural networks， the 
training time cost is generally less than 3 h.

（3） To test the performance of neural net⁃
works trained， a series of comparisons are made be⁃
tween the neural networks and the direct model by 
using 180 sets of test data （60 sets in the case of 
conduction dominant mode， 60 sets in the case of 
conduction-radiation equivalent mode， and 60 sets 
in the case of radiation dominant mode）. The results 
depicted in Figs.9—12 demonstrate that the neural 
networks exhibit an excellent fitting effect in differ⁃
ent heat transfer modes. Specifically， it can be seen 
from Fig.9 that for each possible heat transfer mode 
in the semitransparent material， under different 
combinations of thermal conductivity and effective 
absorption coefficient， the gap between the tempera⁃
ture of front surface central point obtained by the 
ANN （icon*） and that obtained by the direct model 

Fig.9　Performance test of the ANN (Observable T1)
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（icon+） is small enough， which is the same for oth⁃
er observables under three heat transfer modes 

（Figs.10—12）. After enlarging， although it exists 
individual cases where the two curves do not com ⁃
pletely coincide， the fitting errors of both tempera⁃
ture and incident radiation are all the order of magni⁃
tudes of 0.1%. Given that all the possible heat trans⁃
fer modes in the semitransparent materials as well 
as the observables related to conduction and radia⁃
tion are considered and tested， it can be concluded 
that the neural networks trained can well fit the di⁃
rect model established in Section 2， which lays a 
foundation for the subsequent identification part 
based on the hybrid model.

At last， after replacing the direct model by the 
well-trained neural networks， the objective function 
for the identification process is defined as the bino⁃
mial norms of the difference between the direct mod⁃
el observables （subscript ANN） and real system ob⁃
servables （subscript exp）， as shown in Eq.（11）. 
Aiming to reduce the time cost， the value of M， 
representing the number of discrete temperature and 
incident radiation values at a specific position vary⁃
ing with time， is significantly smaller （M =20） 
compared to the total number of time nodes Nt.

Fig.10　Performance test of the ANN (Observable T2)

Fig.11　Performance test of the ANN (Observable T3)

Fig.12　Performance test of the ANN (Observable G1)
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F obj = ∑
i = 1

M

( )T i
1 ANN - T i

1 exp
2

+

∑
i = 1

M

( )T i
2 ANN - T i

2 exp
2

+

∑
i = 1

M

( )T i
3 ANN - T i

3 exp
2

+

∑
i = 1

M

( )G i
1 ANN - G i

1 exp
2

（11）

For the simultaneous identification of λ and κ， 
to verify the performance of the hybrid identification 
model in different cases， three cases are consid⁃
ered， namely the conduction dominant mode， the 
conduction-radiation equivalent mode and the radia⁃
tion dominant mode. The target values for each case 
are respectively set as （λ， κ） = （0.5， 400）， （0.2， 
2 000）， （1.5， 1 000）. A PSO algorithm inspired by 
the cooperation of birds in searching for a target is 
employed during the inverse identification process. 
It has a population size of 15 particles， with a maxi⁃
mum iteration number of 50. The search ranges for 
λ and κ are respectively set to be 0.1—5 W⋅m-1⋅K-1 
and 100—5 000 m-1， corresponding to a bidimen⁃
sional search. Eq.（11） is chosen as the objective 
function and the acceleration coefficients for cogni⁃
tive learning and social learning are set to 1.49. The 
above parameters are the main inputs of the PSO al⁃
gorithm. When the search is finished， for the parti⁃
cle with the global optimal solution， its components 
in two dimensions are respectively the final identi⁃
fied values of the thermal conductivity and the effec⁃
tive absorption coefficient.

For the fitness curves of PSO algorithm （evolu⁃
tion of global optimal value with iteration number）， 
the results of the first five tests of the hybrid identifi⁃
cation model under three heat transfer modes with 
different noises are presented. The results of the tra⁃
ditional identification model are presented together 
for the comparison. For simplicity， the word “Tradi⁃
tional” and “Hybrid” are used in the legend to re⁃
spectively refer to the traditional identification mod⁃
el and hybrid identification model. In fact， these two 
identification models conducted 690 tests in total， 
which are too many to all present. The purpose of 

presenting the first five tests is just to facilitate the 
drawing and distinguishment. Although the quantity 
of tests presented is limited， the overall trend and 
magnitude of the curves presented here is the same 
compared to those which are not presented.

From the fitness curves of PSO algorithm 
shown in the Figs.13—15， with the increase of ran⁃
dom noise， the difficulty of parameter identification 
and the likelihood of encountering local extreme val⁃
ues under three heat transfer modes gradually in⁃

Fig.13　Fitness curves of PSO algorithm for the hybrid iden⁃
tification model and traditional identification model 
under radiation dominant mode and different noise 
intensities
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crease. This is specifically manifested by the pro⁃
gressive rise in magnitude of the final global optimal 
value achieved by the PSO algorithm， which varies 
from 10-6 to 10-3， ultimately reaching 10-2 under 
different noise intensity. Furthermore， when the 
search ends， slight difference can be observed in the 
global optimal values between the two identification 
models due to randomness associated with their ini⁃
tial positions and speeds within the PSO algorithm. 
However， for majority of cases， both identification 

models exhibit final global optimal values that are 
within a similar order of magnitude， thereby affirm ⁃
ing the robustness and stability of the hybrid model.

Moreover， the robustness of the hybrid identifi⁃
cation model is assessed by adding random noise 
I × （rand-0.5） to the corresponding observables， 
where rand represents a random number ranging 

Fig.14　Fitness curves of PSO algorithm for the hybrid iden⁃
tification model and traditional identification model 
under conduction-radiation equivalent mode and dif⁃
ferent noise intensities Fig.15　Fitness curves of PSO algorithm for the hybrid iden⁃

tification model and traditional identification model 
under conduction dominant mode and different 
noise intensities
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from 0 to 1. Besides， the intensity of noise for tem ⁃
perature and incident radiation is respectively repre⁃
sented by I1 and I2 in the following. For each case， 
the rapidity， the accuracy and the robustness of the 
hybrid identification model are verified by compar⁃
ing it with the traditional identification model with 
the same conditions under different noise intensi⁃
ties， which are ( I1， I2 ) = ( 0， 0 )， ( 1， 1 500) and 
( )2， 3 000 . For these three combinations of noise in⁃
tensities， 15， 50 and 50 independent identifications 
are repeated by the hybrid identification model to ob⁃
tain more general results. Considering that the stan⁃
dard deviation of the parameter identification results 
may augment with the increase of noise intensity， 
more repetitions are set for the last two combina⁃
tions of noise intensity. Tables 4—6 show the com⁃

parison results between two kinds of identification 
models under different heat transfer modes， where 
the variables μλ and σλ represent the average identifi⁃
cation value and standard deviation of λ， while μκ 
and σκ representing the average identification value 
and standard deviation of κ. Figs.16—18 represent 
the distribution of the identified （λ， κ） obtained by 
the hybrid model with noise added under different 
cases. Specially， the distribution of identified values 
of （λ， κ） in different intervals is represented in the 
form of histograms. The dashed lines represent the 
Gaussian distribution whose expectation and stan⁃
dard deviation are the average identification value 
and the standard deviation of the identification re⁃
sults obtained by the hybrid model， which are 
shown in Tables 4—6.

Table 4　Comparison between two kinds of identification models in the case of radiation dominant

Parameter

μλ / (W⋅m-1⋅K-1)
σλ / (W⋅m-1⋅K-1)

μκ / m-1

σκ / m-1

Time cost / s

I1=I2=0,
15 identifications

Hybrid
0.499 970
1.72E-16
400.017 7
0.001 586

14.01

Traditional
0.500 000

0
400.000 0

0
10 663.06

I1=1，I2=1 500,
50 identifications

Hybrid
0.499 239
0.039 748
392.039 1
55.592 04

11.55

Traditional
0.499 209
0.039 812
392.175 8
55.503 98
9 875.45

I1=2， I2=3 000,
50 identifications

Hybrid
0.504 641
0.072 462
409.293 4
154.723 9

11.46

Traditional
0.510 484
0.063 405
420.212 9
133.990 6
9 172.65

Table 5　Comparison between two kinds of identification models in the case of conduction⁃radiation equivalent

Parameter

μλ / (W⋅m-1⋅K-1)
σλ / (W⋅m-1⋅K-1)

μκ / m-1

σκ / m-1

Time cost / s

I1=I2=0,
15 identifications

Hybrid
0.199 961
5.16E-06
1 999.756
0.086 293

13.73

Traditional
0.200 000
2.87E-17
2 000.000
0.000 106
12 385.09

I1=1，I2=1 500,
50 identifications

Hybrid
0.197 438
0.013 114
2 050.553
281.384 8

11.00

Traditional
0.197 445
0.013 124
2 049.999
280.873 0
9 191.70

I1=2， I2=3 000,
50 identifications

Hybrid
0.201 788
0.031 788

2 019.125 9
880.336 8

11.91

Traditional
0.211 537
0.035 530

2 096.968 8
805.129 7
8 502.47

Table 6　Comparison between two kinds of identification models in the case of conduction dominant

Parameter

μλ / (W⋅m-1⋅K-1)
σλ / (W⋅m-1⋅K-1)

μκ / m-1

σκ / m-1

Time cost / s

I1=I2=0,
15 identifications

Hybrid
1.500 000
3.42E-05
1 000.213
0.121 457

14.97

Traditional
1.500 000

0
1 000.000
9.00E-05
11 822.77

I1=1，I2=1 500,
50 identifications

Hybrid
1.563 226
0.232 583
1 183.213
733.459 1

9.01

Traditional
1.559 053
0.232 616
1 101.468
602.101 8
7 900.87

I1=2， I2=3 000,
50 identifications

Hybrid
1.602 569
0.391 109
1 235.623
1 319.628

9.59

Traditional
1.543 335
0.407 742
1 601.092
1 521.367
7 056.97
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The above results show that for the simultane⁃
ous identification of λ and κ， whether for the conduc⁃
tion dominant mode， conduction-radiation equiva⁃
lent mode or radiation dominant mode， the hybrid 

identification model has almost the same average 
identification values and standard deviations as the 
traditional identification model. For both two identi⁃
fication models， when there is no noise， the parame⁃

Fig.16　Distribution of identified ( λ, κ ) obtained by the hybrid model with noise added (Radiation dominant mode)

Fig.17　Distribution of identified ( λ, κ ) obtained by the hybrid model with noise added (Conduction-radiation equivalent mode)

Fig.18　Distribution of identified ( λ, κ ) obtained by the hybrid model with noise added (Conduction dominant mode)
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ters identification accuracy is extremely high. With 
the augment of noise intensity， the error and stan⁃
dard deviation of the identification results of two 
models gradually increase and certain identified val⁃
ues appear at the search boundary， which is attribut⁃
ed to inherent limitations of the PSO algorithm. 
Nevertheless， it is evident that most of identified 
values are still concentrated around the target value， 
exhibiting a normal distribution trend overall. More⁃
over， even facing a relatively large noise intensity， 
the expected value of this normal distribution aligns 
closely with the target value， which provides valu⁃
able insights for the final evaluation. In all cases， 
the largest identification errors occur when the con⁃
duction dominates， this phenomenon can be ex⁃
plained by the fact that the parameters to be identi⁃
fied have the smallest sensitivities relative to the ob⁃
servables under the conduction dominant mode， 
which making the identification process more diffi⁃
cult. Finally， with the instantaneous fitting charac⁃
teristics of neural networks， the time cost of the hy⁃
brid identification model has been greatly reduced， 
from the order of magnitude of 10 000 s to 10 s， 
which reaches a remarkable improvement of about 
1 000 times in speed.

4 Conclusions 

A hybrid identification model which combines 
multilayer ANNs with the PSO algorithm is pro⁃
posed to enhance the efficiency of simultaneous iden⁃
tification of thermophysical properties of semitrans⁃
parent materials. For inverse problem， the efficien⁃
cy of parameter identification can be evaluated by its 
accuracy and speed. As for the accuracy， taking the 
simultaneous identification of thermal conductivity 
and effective absorption coefficient studied in this pa⁃
per as an example， the dimension of observables is 
increased by adding incident radiation field informa⁃
tion into the objective function， which can effective⁃
ly improve the identification accuracy of effective ab⁃
sorption coefficient and reduce its standard deviation 
during the identification process. As for the identifi⁃

cation speed， to solve the problem of high time cost 
caused by the increasement of observable dimension 
and the quantity of simultaneous identification pa⁃
rameters， as well as the complexity of the direct 
model， a direct model fitting-replacement strategy 
based on multilayer feedforward ANNs is proposed. 
The main idea of this strategy is to use the strong 
learning ability and instantaneous prediction charac⁃
teristics of neural network to fit and replace the di⁃
rect model to quickly obtain its output， consequent⁃
ly improve the speed of the whole parameter identifi⁃
cation process in a large degree.

The fitting effect of neural network largely de⁃
pends on the quantity and diversity of the training 
data used. Although the traditional strategy of ran⁃
domly generating thermal conductivity and effective 
absorption coefficient in certain ranges can ensure a 
uniforme distribution of the above parameters in the 
training data， it cannot ensure the uniformity of the 
distribution of different heat transfer modes， which 
easily causes the problem that the neural network is 
over-trained in certain heat transfer modes but un⁃
der-trained in others. Considering that the character⁃
istic of coupled heat transfer mechanism in semi⁃
transparent media determines that the priority of the 
distribution uniformity of heat transfer modes is 
higher than that of the parameters’ distribution uni⁃
formity in the training data， a new training data gen⁃
eration strategy based on different heat transfer 
modes （conduction dominant mode， conduction-ra⁃
diation equivalent mode， radiation dominant mode） 
is proposed. The results show that the neural net⁃
works based on the new training data generation 
strategy can deal with the fitting requirements of di⁃
rect model under different heat transfer modes， with 
an extremely high fitting accuracy.

Finally， the time cost of the hybrid identifica⁃
tion model has been greatly reduced， from the order 
of magnitude of 10 000 s to 10 s， which reaches a re⁃
markable improvement of about 1 000 times in 
speed. The robustness of the hybrid identification 
model is also verified after achieving the objective of 
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significantly enhancing the identification efficiency. 
The specific approach involves adding random noise 
into the observables to simulate the measurement er⁃
ror in the actual process. Since the hybrid identifica⁃
tion model retains the PSO algorithm， the identifica⁃
tion error of the model is kept in a relatively small 
range even in the face of relatively large noise. For 
the future research， the feasibility of applying more 
kinds of neural networks directly to parameter identi⁃
fication of semitransparent materials or other com ⁃
plex material will be studied， for which the robust⁃
ness of neural networks will be the focus. In addi⁃
tion， an experimental bench related to the parame⁃
ter identification will also be developed to study the 
performance of identification model in real situa⁃
tions.
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基于人工神经网络与演化算法混合模型的半透明介质热物性

同时反演

刘　洋， 胡少闯
(中国民航大学中欧航空工程师学院，天津  300300，中国)

摘要：为了提高对半透明材料导热系数和等效吸收系数的同时反演效率，本文提出了一种基于多层人工神经网

络（Artificial neural networks， ANNs）和粒子群优化（Particle swarm optimization， PSO）算法的混合反演模型。

对于正向模型，在激光闪光法的背景下，采用球谐法和有限体积法求解了吸收、发射、非散射的二维轴对称灰介

质中的导热⁃辐射耦合传热问题。对于反演部分，首先选取不同位置的温度场和入射辐射场作为观测量，随后建

立了基于 PSO 算法的传统反演模型，最后构建了 ANNs 来拟合并替代传统反演模型中的正向模型，以达到加快

反演速度的目的。结果表明，与传统反演模型相比，混合反演模型的时间成本降低约 1 000 倍。此外，即使在有

测量误差的情况下，混合模型依旧保持了较高的精度。

关键词：半透明介质；导热⁃辐射耦合传热；热物性；同时反演；多层人工神经网络；演化算法；混合反演模型
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