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Abstract: A computational framework for parachute inflation is developed based on the immersed boundary/finite 
element approach within the open-source IBAMR library. The fluid motion is solved by Peskin’s diffuse-interface 
immersed boundary （IB） method， which is attractive for simulating moving-boundary flows with large deformations. 
The adaptive mesh refinement technique is employed to reduce the computational cost while retain the desired 
resolution. The dynamic response of the parachute is solved with the finite element approach. The canopy and cables 
of the parachute system are modeled with the hyperelastic material. A tether force is introduced to impose rigidity 
constraints for the parachute system. The accuracy and reliability of the present framework is validated by simulating 
inflation of a constrained square plate. Application of the present framework on several canonical cases further 
demonstrates its versatility for simulation of parachute inflation.
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0 Introduction 

Parachute inflation involves the complex fluid-

structure interaction （FSI） phenomena which is 
highly nonlinear and unsteady， therefore making it 
quite challenging to simulate.

The last few decades have seen tremendous de⁃
velopment of numerical methods for solving the FSI 
problem of parachute inflation. One of the most pop⁃
ular methods is the deforming-spatial-domain/stabi⁃
lized space-time （DSD/SST） method［1-2］， by which 
the detailed description of the flow field and structur⁃
al response during the parachute inflation process 
can be obtained. This method has been continuously 
developed by involving new version and special tech⁃

niques to address the computational challenges， 
such as the geometric complexities of the parachute 
canopy and the contact between parachutes in a clus⁃
ter［3-7］. As a commercially available transient dynam ⁃
ic finite element code， LS-DYNA has been well 
adapted to FSI simulation of parachute inflation in a 
number of real-world applications［8-12］. The im⁃
mersed boundary （IB） method［13］ is an attractive nu⁃
merical method for FSI simulation of parachute in⁃
flation because it does not require dynamic genera⁃
tion of body-fitted meshes， making it suitable for 
tackling problems involving large structural deforma⁃
tions or displacements. Kim and Peskin［14-15］ used 
the IB method to study the semi-opened parachute 
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in both two and three dimensions. Liu et al.［16］ pro⁃
posed an IB-lattice Boltzmann （LB） based FSI solv⁃
er to study the inflation process of several types of 
parachute systems.

IBAMR is a distributed-memory parallel imple⁃
mentation of the IB method with support for adap⁃
tive mesh refinement （AMR） of the Cartesian 
grid［17］. Core IBAMR functionality relies upon sev⁃
eral high-quality open-source libraries［17］， including： 
SAMRAI［18］， PETSc［19］， libMesh［20］， and hypre［21］. 
IBAMR has been widely used in simulations of vari⁃
ous FSI problems involving large deformations［22-26］.

In this work， a computational framework for 
parachute inflation is developed based on the im ⁃
mersed boundary/finite element approach within the 
open-source IBAMR library. The fluid motion is 
solved by the diffuse-interface IB method prposed 
by Peskin［13］. Adaptive mesh refinement is em ⁃
ployed to reduce the computational cost while retain⁃
ing the desired resolution. The dynamic response of 
the parachute is solved with the finite element ap⁃
proach. The flow field and structural response are 
analyzed to demonstrate the capability of the devel⁃
oped framework for solving parachute inflation prob⁃
lems. The framework could be further extended to 
study the inflation process of various parachute sys⁃
tems for different aerospace missions. Simulation of 
parachute inflation is mainly based on the conven⁃
tional body-fitted methods， e.g.， the arbitary 
Lagrangian⁃Eulerian （ALE） method and the DSD/
SST method. Application of the IB method for para⁃
chute inflation is still rare. When dealing with large 
deformation objects， the body-fitted methods may 
suffer from severe mesh distortion， while this issue 
can be avoided by using the IB method. To our 
knowledge， this is the first endeavor to implement 
the computational framework for parachute inflation 
within the IBAMR library. The remainder of this pa⁃
per is organized as follows. In Section 1， the numer⁃
ical methods are introduced. In Section 2， the infla⁃
tion of the constrained square plate is simulated to 
validate the accuracy and reliability of the present 
FSI framework. In Section 3， applications of the 
present FSI framework for simulating parachute in⁃
flation are presented and discussed. Section 4 sum⁃

marizes the study and shows some prospects to the 
future work.

1 Numerical Methods 

1. 1 Governing equations　

In the present study， the parachute system im ⁃
mersed in a viscous incompressible fluid is modeled. 
Let Ω = Ω f ∪ Ω s denote the computational domain 
occupied by the fluid-structure system， where Ω f 
and Ω s are respectively the fluid and structure do⁃
main， x denotes the Eulerian Cartesian coordinates， 
and χ ( X，t ) represents the physical position of La⁃
grangian point X at time t. The governing equations 
which can be used for solving parachute inflation 
are［27-28］

ρ
Du
Dt

( x,t ) = -∇p ( x,t ) + μ∇2u ( x,t ) + f ( x,t )

(1)
∇ ⋅ u ( x,t ) = 0 (2)

f ( x,t )=∫Ω s

∇X⋅P s( )X,t δ ( )x-χ ( )X,t dX-

∫∂Ω s

P s( )X,t N ( )X δ ( )x-χ ( )X,t dA ( )X

(3)
∂χ
∂t

( X,t ) =∫Ω
mu ( )x,t δ ( )x- χ ( )X,t dx (4)

where ρ is the mass density， Du
Dt

( x，t ) the material 

derivative， p ( x，t ) the pressure， u ( x，t ) the Euleri⁃
an velocity field， f ( x，t ) the Eulerian elastic force 
density， μ the dynamic viscosity of the fluid， δ ( x ) 
the Dirac delta function， N ( X ) the outward unit 
normal along the structure boundary， dA the area 
differentials， and P s( X，t ) the first Piola-Kirchhoff 
stress tensor which is used for describing the struc⁃
ture response. P s( X，t ) can be derived from the 
strain energy function depending on the constitutive 
law of the material， and the expression will be given 
in the following subsection.

A two-dimensional （2D） schematic of the Eu⁃
lerian-Lagrangian grid layout is illustrated in Fig.1 
to introduce the discretization of the governing equa⁃
tions. In the Eulerian framework， the mesh spacing 
is denoted as （Δx1，Δx2）. For a given cell ( i，j)， the 
pressure is approximated at the cell center as pi，j， 
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whereas the velocity components are approximated 

at the center of cell edges， i.e.， x
i - 1

2 ，j
= ( iΔx1，( j +

1
2 ) Δx2) and x

i，j - 1
2

= (( i + 1
2 ) Δx1，jΔx2) as ( u1 )

i - 1
2 ，j

 

and ( u2 )
i，j - 1

2
， respectively. A second-order stag⁃

gered-grid finite difference method is used to dis⁃
cretize the incompressible Navier-Stokes equations. 
In the Lagrangian framework， as shown in Fig.1， 
the structure is superimposed on the background Eu⁃
lerian mesh and represented by discretized marker 
points at positions { X l }m

l = 1， where m is the number 
of marker points. A nodal finite element （FE） meth⁃
od is employed to discretize the structure equations 
with the FE basis functions denoted as { ϕl( X ) }m

l = 1. 
The Eulerian-Lagrangian interaction is achieved by 
passing information between the two frameworks 
through the Dirac delta function in Eq.（3）. For 
more details， Refs.［27， 29］ can be referred.

1. 2 Material models　

In the present study， the fabrics of the canopy 
and cable are modeled with the hyperelastic nonlin⁃
ear material， specifically the Neo-Hookean model 
and Saint Venant-Kirchhoff model［30］. Note that the 
material for the cable is assumed with uniaxial exten⁃
sion， therefore only the axial stress of the cable is 
considered and other stress components are negligi⁃
ble by comparison.
1. 2. 1 Neo⁃Hookean model　

By introducing volumetric stabilization to the 
structural stress， the modified strain energy function 
for the Neo-Hookean model can be split into the de⁃
viatoric and dilatational part［29］

Ψ = G
2 ( J -2/3 I1 - 3)+ κ stab

2 ( ln J ) 2 (5)

where J is the Jacobian determinant of the deforma⁃
tion gradient F； I1 the first invariant of the right 
Cauchy-Green deformation tensor， i. e.， I1 = λ2

1 +
λ2

2 + λ2
3 and λi are the principal stretches； G the 

shear modulus which can be calculated as G =
E

2( )1 + ν
 with E the Young’s modulus and ν the 

Poisson’s ratio； κ stab the numerical bulk modulus 

which can be related to G via κ stab = 2G ( )1 + νstab

3 ( )1 - 2νstab
 

with νstab the numerical Poisson’s ratio.
The corresponding first Piola-Kirchhoff stress 

tensor can then be expressed as［29］

P s = GJ -2/3 (F- I1

3 F
-T)+ κ stab ln JF-T (6)

1. 2. 2 Saint Venant⁃Kirchhoff model　

The strain energy function for the Saint Ve⁃
nant-Kirchhoff model can be expressed as

Ψ = λ
2 ( tr ( E ) ) 2

+ μ tr ( E 2 ) (7)

where E is the Green-Lagrange strain tensor with 
the expression of

E= 1
2 (C- I ) (8)

where C= F TF is the right Cauchy-Green deforma⁃
tion tensor and I the identity tensor. The coefficients 
μ and λ are the Lamé constants， which are related to 
the material properties through the Young’s modu⁃
lus E and the Poisson’s ratio ν.

μ = E
2( )1 + ν

, λ = Eν
( )1 + ν ( )1 - 2ν

(9)

The corresponding first Piola-Kirchhoff stress 
tensor can then be expressed as

P s = F ( λ tr ( E ) I+ 2μE ) (10)

1. 3 Tether forces　

Note that the intersection point where the para⁃
chute cables meet should be fixed， therefore a tether 
force needs to be imposed on that point. The tether 
force is approximated by a Lagrange multiplier 
F ( X，t )［27］， shown as

F ( X,t ) = κ ( χ ( X,0) - χ ( X,t ) )- η
∂χ
∂t

( X,t )

(11)

Fig.1　Schematic of the Eulerian-Lagrangian grid layout
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where κ is a stiffness penalty parameter and η a 
damping penalty parameter for reducing numerical 
oscillations from moderate to high Reynolds num ⁃
bers. Note that the values of κ and η are case-depen⁃
dent and determined with the trial-and-error method.

1. 4 Numerical implementation　

The developed framework for FSI simulation 
of the parachute inflation is established within the 
IBAMR library. Specifically， the IBFE module in 
IBAMR based on the IB-finite element （FE） meth⁃
od［27］ is employed， where adaptive mesh refinement 
of the background Cartesian mesh relies on SAM ⁃
RAI［18］， FE analysis of the parachute system relies 
on libMesh［20］， and the IB and FE solver rely on the 
PETSc library［19］.

2 Validation 

The canopy is the main component of the para⁃
chute system that undergoes large deformations dur⁃
ing inflation. Therefore， inflation of a constrained 
square plate is chosen as a benchmark case to model 
the canopy-solely situation such that the accuracy 
and reliability of the present FSI solver can be vali⁃
dated.

Following the computational setup in Ref.
［16］， a square elastic plate is placed in a uniform 
flow U ∞ = 1  m/s， and the length and thickness of 
the plate are L = 0.812 8 m and h = 5 × 10-3  m， 
respectively. The inflation model of the plate is 
shown in Fig.2. Note that the corners of the plate 
are constrained by the tether forces， and the plate is 
discretized with 2 704 hexahedral elements. The 
Neo-Hookean hyperelastic material model is applied 
to the plate with a shear modulus of G = 3.85 ×
102  Pa， equivalent to a Young’s modulus E = 1 ×
103  Pa. In addition， the Saint Venant-Kirchhoff hy⁃
perelastic model with the same Young’s modulus 
and Poisson’s ratio is also used for comparison.

The computational domain is shown in Fig.3. 
The size of the domain is 8  m × 4  m × 4  m in the 
x，y and z directions. The left side of the domain is 
the inlet with a Dirichlet velocity boundary condi⁃
tion， and the right side of the domain is the outlet 

with a Neumann velocity boundary condition. The 
other four sides of the domain are specified with the 
free-slip-wall boundary condition. The computation⁃
al domain is discretized with an adaptively refined 
Cartesian mesh with three nested mesh levels （high⁃
lighted in red， green and blue in Fig.3） and the re⁃
finement ratio between adjacent levels is 4. In 
Fig.3， the subscripts 1， 2 and 3 correspond to the 
x，y and z directions， respectively. The number of 
cells on the coarsest mesh level is N = 16. The 
mesh interval on the finest level is Δx = 1.5 ×
10-2 m and the computational time step is Δt = 1 ×
10-4 s. The mesh factor ratio between the finest Eu⁃
lerian mesh and Lagrangian mesh is M FAC = 1.0. 
The drag coefficient of the plate CD is defined as

CD = FD

1
2 ρU 2

∞ A
(12)

where FD and A are the drag force and nominal area 
of the plate， respectively. Note that the drag coeffi⁃

Fig.3　Computational domain of the constrained square plate

Fig.2　Inflation models
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cient for the subsequent parachute cases can also be 
calculated by Eq.（12）.

Time history of the drag coefficient for the 
plate with different material properties is plotted in 
Fig.4（a）. The peak value of CD obtained by the 
Saint Venant-Kirchhoff model is much higher than 
that obtained by the Neo-Hookean model， whereas 
the stable value of CD for the Saint Venant-Kirch⁃
hoff model is a bit lower than that obtained by the 
Neo-Hookean model. The stable values of CD for 
both models are around 1.2. Time traces of CD ob⁃
tained by an IB-LB FSI solver［16］ with the same 
computational setup are superimposed on this figure 
for comparison. Note that in their computation， dif⁃
ferent values of Young’s modulus of the plate are 
tested. The peak values of CD obtained by the pres⁃
ent solver is larger than those obtained by the IB-LB 
FSI solver， and this could be attributed to the differ⁃
ent material models used in the literature. For the 
same value of E = 1 × 103  Pa， comparison of the 
stable value of CD is listed in Table 1. From Table 
1， it can be seen that the relative error between the 

stable values of CD obtained by the IB-LB FSI solv⁃
er and the present solver is around 7%， thus validat⁃
ing the accuracy and reliability of the present FSI 
solver.

Time history of the displacement for the center 
point of the plate （red dot in Fig.2（a）） in the x di⁃
rection is illustrated in Fig.4（b）. Note that the re⁃
sults for different material models are also com ⁃
pared. The peak and stable displacements for the 
Neo-Hookean model are approximately 0.52 m and 
0.3 m， while those for the Saint Venant-Kirchhoff 
model are around 0.46 m and 0.26 m. The Neo-

Hookean material can bear larger deformation than 
the Saint Venant-Kirchhoff material for this canopy-

solely case. Moreover， the deformed shapes of the 
plate at different time instants are shown in Fig.5， 
where the pseudocolor indicates the magnitude of 
displacement in the x direction. Bulges at the four 
corners gradually become larger and expand to the 
plate center to reach a steady shape of the plate. 
Similar phenomenon can be observed in Ref.［16］.

3 Application 

In this section， the present FSI solver is ap⁃
plied for simulation of parachute inflation under sev⁃
eral scenarios.Fig.4　Time history results of the constrained square plate

Table 1　Comparison of the stable value of CD for the 
constrained square plate with E= 1 × 103 Pa

Parameter
CD

Liu et al.[16]

1.1
Present

1.18
Relative error

7.3%

Fig.5　Deformation of the constrained square plate
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Note that due to the challenge of IB methods 
for simulating turbulent flows［31］， the Reynolds num ⁃

ber is reduced to Re = ρU ∞ L
μ f

= 1 × 104 without in⁃

volving any turbulence model for all the cases in the 
numerical experiments， where ρ is the mass densi⁃
ty， U ∞ the incoming flow velocity， L the length of 
the canopy， and μ f the dynamic viscosity of the air. 
Since the inflated canopy can be treated as a bluff 
body， the dominant source of drag comes from the 
pressure drag， therefore this treatment is acceptable.

It should also be mentioned that the full infla⁃
tion process of the parachute starts from the folded 
form. However， this work is focused on simulating 
from the flat unfolded state which is also important 
for understanding the parachute inflation pro⁃
cess［7，15-16］.

3. 1 Inflation of a square canopy parachute　

In this subsection， the inflation process of a 
square parachute in a uniform flow is simulated. 
Fig.2（b） shows the inflation model of the square 
parachute. The four cables are connected to a fixed 
point by the tether forces and tied to the corners of 
the canopy surface to move together with the cano⁃
py. Following the case setup in Ref.［16］， the 
length of the cable is l = 1.27 m， and the fixed point 
is placed at the origin of the coordinate system. The 
cross section of the cable is approximated as a circle 
with the radius r = 1 × 10-3 m. The Neo-Hookean 
and Saint Venant-Kirchhoff material models are ap⁃
plied. The Young’s modulus of the cable is E =
1 × 107 Pa， and the Poisson’s ratio is zero to allow 
for uniaxial extensions of the cable. For the canopy， 
we keep the Poisson’s ratio the same as that for the 
square plate case， while the Young’s modulus is 
E = 1 × 104  Pa which corresponds to a stiffer mate⁃
rial. The geometry parameters of the canopy， size 
of the computational domain， boundary conditions， 
mesh interval on the finest mesh level， and the 
mesh factor ratio M FAC are kept the same as those 
for the square plate case.

Time history of the drag coefficient and center 
point displacement of the canopy in the x direction 

for the square parachute with different material mod⁃
els is plotted in Figs.6（a） and （b）， respectively. 
From these figures， it can be observed that for this 
stiffer material， the discrepancies between the Neo-

Hookean and Saint Venant-Kirchhoff models are rel⁃
atively small. The stable value of CD is approximate⁃
ly 1.1. Compared with the stable value of CD report⁃
ed in Ref.［16］， the relative error between them is 
within 10%. The peak and stable displacements of 
the center point are approximately 0.5 m and 0.3 m， 
respectively， which are also very close to the values 
reported in Ref.［16］. The deformation of the square 
parachute obtained by the Neo-Hookean model at 
different time instants is shown in Fig.7， where the 
pseudocolor indicates the magnitude of displacement 
in the x direction. Due to the effect of dynamically 
changing fluid and elastic forces， the breathing phe⁃
nomenon of the parachute can be observed from this 
figure. The deformation of the parachute is signifi⁃
cant within the first one second， and after that the 
shape of the parachute does not change much.

Fig.8 shows the instantaneous vortex iso-sur⁃
face Q = 40 of the plate for the Neo-Hookean mod⁃
el. Note that for each time instant， the correspond⁃
ing adaptively refined mesh with three nested mesh 
levels is also illustrated. From Fig.8， it can be ob⁃
served that dynamic evolution of the vortex shed⁃
ding behind the plate can be accurately captured by 

Fig.6　Time history results of the square parachute

Fig.7　Deformation of the square parachute
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the adaptively refined mesh.

3. 2 Inflation of a cross canopy parachute　

In this subsection， the inflation process of a 
cross parachute with twenty elastic cables is simulat⁃
ed. Fig.2（c） shows the inflation model of the cross 
parachute. The twenty cables are connected to a 
fixed point by the tether forces and tied to the outer 
edges of the canopy surface to move together with 
the canopy. Following the case setup in Ref.［16］， 
the distance from the fixed point to the initial canopy 
surface is equal to that for the square parachute case. 
The computational setup and material properties of 
the canopy and cables are also the same as those for 
the square parachute.

Time history of the drag coefficient for the 
cross parachute with different material models is 
plotted in Fig.9（a）. For this case with softer materi⁃
al， the peak value of CD obtained by the Saint Ve⁃
nant-Kirchhoff model is higher than that obtained by 
the Neo-Hookean model， whereas the stable value 
for both models are almost the same. Note that for 
both material models， two peaks can be observed 
during the inflation process which correspond to the 
significant breathing phenomenon. The stable value 
of the drag coefficient is CD = 0.8， which falls into 
the typical range （0.6—0.85） of the drag coefficient 
for a cross parachute［32］.

In addition， time history of the displacement 
for the center point of the canopy in the x direction 
with different material models is illustrated in 
Fig.9（b）. From this figure， we can see that the 
time instants where the two peaks happen are consis⁃
tent with those in Fig.9（a） for both models. The de⁃
formation of the cross parachute obtained by the 
Neo-Hookean model at different time instants is 
shown in Fig.10， where the pseudocolor indicates 
the magnitude of displacement in the x direction. 
The breathing phenomenon of the cross canopy can 
be observed from this figure.

3. 3 Inflation of double cross canopy parachutes

In this subsection， the inflation process of dou⁃
ble cross canopy parachutes is studied to demon⁃
strate the capability of the present framework for 
multiple parachutes simulation.

Fig.11 shows the deployment of the double 
cross parachutes. The geometric model of each 
cross parachute is identical to the one used for the 
single cross parachute case. The layout of the dou⁃
ble cross parachutes is obtained by rotating the ini⁃
tial model （see Fig. 2（c）） about the z axis with an 
angle of 2π/15 and -2π/15， respectively， and 
therefore a gap can exist between the two canopies 
to avoid any possible overlap or contact. The cables 

Fig.9　Time history results of the cross parachute

Fig.10　Deformation of the cross parachute

Fig.8　Instantaneous vortex iso-surface Q = 40 of the 
square parachute
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are connected to a fixed point by the tether forces 
and tied to the outer edges of the canopy surface to 
move together with the canopy. The computational 
setup and material properties of the canopy and ca⁃
bles are the same as the single parachute case. For 
this case， only the Neo-Hookean material model is 
used.

Comparison of the drag coefficient for the sin⁃
gle and double cross parachutes is plotted in Fig.12. 
The time instants corresponding to peak values of 
CD for both parachutes are almost the same， where⁃
as the whole inflation process of double cross para⁃
chutes is more stable than the single cross parachute 
due to the larger canopy area. The stable value of 
drag coefficient for double cross parachutes is CD =
1.0， which is approximately 1.25 times the drag co⁃
efficient for the single parachute.

The deformation of the double cross parachutes 
at different time instants are shown in Fig.13. Com⁃
pared with the deformation of single cross parachute 
in Fig.10， it takes less time for the double cross 

parachutes to reach a stable inflated shape.
Fig.14 depicts the slice view of the velocity 

field around the canopies at different time instants. 
At the beginning stage of the inflation process， the 
wake flow behind the canopies is symmetrical and a 
jet flow is formed through the gap between cano⁃
pies. The jet flow is then mixed with the shedding 
vortex behind the canopies， and the flow structure is 
gradually evolved to turbulent flow.

We need to point out that further simulation for 
inflation of parachute clusters can be readily imple⁃
mented in the present framework with minimal ef⁃
forts.

Fig.13　Deformation of double cross parachutes
Fig.11　Deployment of double cross parachutes

Fig.12　Comparison of the drag coefficient for single and 
double cross parachutes

Fig.14　Near-canopy velocity field of double cross para⁃
chutes
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3. 4 Deployment of windows on cross parachute 
canopy

In this subsection， the effect of window deploy⁃
ment on the inflation of the cross parachute is inves⁃
tigated.

As shown Fig.15， three types of window de⁃
ployment are chosen： （1） One window on the cen⁃
ter of the canopy； （2） one window on the center of 
one arm； （3） two windows on adjacent arms with 
each on the center of the arm. The window is square 
with an area L2 /81， where L is the canopy length. 
For different window deployments， the computa⁃
tional setup is the same as the baseline case in Sub⁃
section 3.2， and the Neo-Hookean material model is 
considered.

Comparison of the drag coefficient for different 
window deployments on the canopy is shown in 
Fig.16. From this figure， we can draw several con⁃
clusions： （1） Window deployment can generally im ⁃
prove the air permeability of the canopy； （2） for 
one window deployment， the position of the win⁃
dow has little effect on CD； （3） increasing number 
of windows can significantly reduce the maximum 
value of CD， but cannot significantly reduce the sta⁃
ble value of CD； （4） for one-window deployment， 

CD can be approximately reduced by 18%， while for 
two-window deployment， CD can be further reduced 
by approximately 3%. In general， these findings are 
consistent with those observed from a ringsail-type 
parachute with windows deployment［33］.

Furthermore， Fig.17 shows the instantaneous 
near-canopy velocity field for different window de⁃
ployments. Note that for cases with one-window de⁃
ployment， the slice is cut through the xy plane， 
while for the case with two-window deployment， 
the slice is cut through the xz plane to view the flow 
through the second window. The jet flow is formed 
through the window at different locations and mixed 
with the shedding vortex. The phenomenon of cano⁃
py curling along the edge of the window can also be 
observed.

3. 5 Active tension on cross canopy parachute

In this subsection， we propose a solution to 
modulate the parachute deformation and the sur⁃
rounding flow field within the present framework， 
which could be used for the design of the low-cost 
steerable parachutes［11，34］.

An active tension prescribed by a time-depen⁃
dent stress is used on cables of the cross parachute 
to play the role of muscle actuators. Similar to the 
elastic stress P s， this active stress can be expressed 
in the form of the first Piola-Kirchoff stress tensor 
as［35］

Fig.16　Comparison of drag coefficient for different deploy⁃
ments of windows on cross parachute canopy

Fig.15　Deployment of windows on cross parachute canopy

Fig.17　Near-canopy velocity field for different window de⁃
ployments of cross parachute
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P a = JTFf0 f T
0 (13)

where J is the Jacobian determinant of the deforma⁃
tion gradient F， T the magnitude of prescribed ac⁃
tive tension， and f0 the direction vector of the pre⁃
scribed tension with respect to the reference configu⁃
ration.

The total stress calculated on the parachute 
then becomes

P= P s + P a (14)
The initial setup of this case is the same as that 

in Subsection 3.2， and the Neo-Hookean material 
model is employed. After the inflation process of the 
cross parachute reaches a stable state at t = 2 s （see 
Fig.9）， an active tension with the magnitude T =
1 × 103 N in the direction f0 = ( - 1，0，0) is used 
on five cables connecting with the same canopy arm. 
A schematic for applying active tension on the cross 
parachute is depicted in Fig.18.

Comparison of the drag coefficient for the cross 
parachute with and without active tension is plotted 
in Fig.19. After applying the active tension， signifi⁃
cant change and oscillation of the drag coefficient 
can be observed especially between t = 2.0—2.2 s. 
After that， the oscillation becomes small and the 
parachute is gradually deformed to a new stable 
state.

Time evolution of the near-canopy flow field 
with and without active tension is compared in 
Fig.20. We select four time instants where the dis⁃
crepancy of CD between them is large. At 
t = 2.04  s， large velocity magnitude can be ob⁃
served near the canopy end where the tension is ap⁃
plied， and the initial stable state of the parachute 

with fully inflated canopy and stretched cables is dis⁃
rupted. At t = 2.2 s， 2.4 s， 2.6 s， with active ten⁃
sion used， the canopy shape becomes irregular with 
small grooves， which affects the surrounding flow 
field.

4 Conclusions 

This work explores the feasibility of imple⁃
menting a reliable computational framework for FSI 
simulation of parachute inflation under the open-

source environment. Specifically， the IBFE module 

Fig.18　Schematic for applying active tension on cross para⁃
chute cables

Fig.19　Comparison of drag coefficient for cross parachute 
with and without active tension

Fig.20　Comparison of the near-canopy velocity field for 
cross parachute with and without active tension
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in the open-source IBAMR library based on the im ⁃
mersed boundary/finite element approach is em ⁃
ployed， and adaptive mesh refinement of the back⁃
ground Cartesian mesh is also supported. The cano⁃
py and cables of the parachute system are modeled 
with the Neo-Hookean and Saint Venant-Kirchhoff 
hyperelastic materials， and tether forces are intro⁃
duced to impose rigidity constraints.

Inflation of a benchmark constrained square 
plate is simulated to validate the accuracy and reli⁃
ability of the present framework. Investigations on 
several application cases such as multiple parachute 
systems， window deployment on the canopy， and 
steerable parachutes by using active tensions further 
demonstrate the versatility of the present framework 
for simulation of parachute inflation.

Compared to the widely used ALE method［7］ 
which may suffer from mesh distortion and interpola⁃
tion errors due to mesh movement for parachute in⁃
flation， the present method offers advantages in 
terms of simplified mesh handling， flexibility with 
complex geometries， ease of implementation， sta⁃
bility and computational efficiency. These advantag⁃
es make it particularly suitable for FSI simulation of 
parachute inflation， which involves large deforma⁃
tions， complex interfaces， and high computational 
demands. In addition， the AMR technique is em ⁃
ployed in the present method， which could save con⁃
siderable computational time while retain the mesh 
resolution and accuracy.

Nevertheless， there are several limitations for 
the present study： （1） All the cases are directly con⁃
ducted under Re = 1 × 104 without involving any 
turbulence model， whereas the Reynolds number 
for a real parachute is typically around 105 to 106［15］ 
which requires high resolution of the turbulent 
boundary layer； （2） air permeability for the canopy 
fabric is not considered. Therefore， future work will 
be focused on addressing the above limitations to ex⁃
tend the framework for simulating parachute infla⁃
tion in real aerospace applications， e. g.， ringsail 
parachute clusters for heavy loads， and parafoils for 
precision airdrop.
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一种基于浸没边界/有限元方法的降落伞充气计算框架
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摘要：基于开源 IBAMR 库中的浸没边界/有限元方法，开发了一个用于模拟降落伞充气的计算框架。流体运动

采用 Peskin 的扩散界面浸没边界（Immersed boundary， IB）方法进行求解，该方法适用于模拟涉及大变形的动边

界流动。采用自适应网格细化技术，以降低计算成本，同时保持所需的网格分辨率。降落伞的动态响应通过有

限元方法求解，降落伞系统的伞衣和伞绳采用超弹性材料建模。通过引入牵引力对降落伞系统施加刚性约束。

利用受约束的方板充气过程验证了该框架的准确性和可靠性。该框架在多个典型算例中的应用进一步展示了

其在降落伞充气模拟中的多功能性。

关键词：降落伞充气；流固耦合；浸没边界方法；有限元方法；网格自适应
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