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Abstract: The detection of foreign object intrusion is crucial for ensuring the safety of railway operations. To address 
challenges such as low efficiency， suboptimal detection accuracy， and slow detection speed inherent in conventional 
comprehensive video monitoring systems for railways， a railway foreign object intrusion recognition and detection 
system is conceived and implemented using edge computing and deep learning technologies. In a bid to raise detection 
accuracy， the convolutional block attention module （CBAM）， including spatial and channel attention modules， is 
seamlessly integrated into the YOLOv5 model， giving rise to the CBAM-YOLOv5 model. Furthermore， the distance 
intersection-over-union_non-maximum suppression （DIoU_NMS） algorithm is employed in lieu of the weighted non-

maximum suppression algorithm， resulting in improved detection performance for intrusive targets. To accelerate 
detection speed， the model undergoes pruning based on the batch normalization （BN） layer， and TensorRT inference 
acceleration techniques are employed， culminating in the successful deployment of the algorithm on edge devices. The 
CBAM-YOLOv5 model exhibits a notable 2.1% enhancement in detection accuracy when evaluated on a self-
constructed railway dataset， achieving 95.0% for mean average precision （mAP）. Furthermore， the inference speed 
on edge devices attains a commendable 15 frame/s.
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0 Introduction 

With the continuous expansion of the railway 
network across the nation， its pivotal role in the dai⁃
ly lives of individuals is progressively accentuated. 
Nonetheless， the constant threat of foreign object in⁃
trusion poses a significant challenge to railway safe⁃
ty operations. Urgency mounts for the rapid and pre⁃
cise detection of foreign objects to ensure the secure 
operation of trains. The method of foreign object de⁃
tection based on image processing primarily entails 
differential processing of the target image and the 
background image to yield a grayscale representa⁃
tion capturing motion entities. Subsequently， em⁃
ploying apt thresholds， the grayscale image under⁃

goes filtration to isolate regions exhibiting motion 
characteristics［1-2］. Cui et al.［3］ devised a swift sparse 
detection approach， attaining superior detection out⁃
comes in real-time surveillance footage. Wang et al.［4］ 
delineated moving targets from the background via 
frame differencing and background subtraction， 
thereby instituting a mechanism for alerting pedestri⁃
an intrusion. These efforts， despite depending on 
extensive manual feature annotation， struggle to 
adapt to changing environments. They work very 
well in good lighting conditions， but their perfor⁃
mance drops significantly in bad weather.

The exponential advancement of deep learning 
within the realm of object detection has markedly el⁃
evated the precision and dependability of object de⁃
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tection［5-7］.
For example， in the field of road traffic， Wang 

et al.［8］ developed a monocular depth estimation net⁃
work called SABV-Depth based on self-attention 
mechanisms. This network retains multi-scale infor⁃
mation by enhancing information exchange between 
different layers of the network and includes an inter⁃
nally connected decoder module designed to recover 
depth maps with sharp edge contours， thus allowing 
for more accurate target identification within the 
depth map. Additionally， Wang et al.［9］ improved 
the traditional feature pyramid network by integrat⁃
ing an adaptive attention module （AAM） and a fea⁃
ture enhancement module （FEM） and combined it 
with the YOLO model to enhance the detection ac⁃
curacy of traffic signs.

However， there are significant differences be⁃
tween road traffic and railway traffic. For instance， 
in railway scenarios， it is challenging to obtain 
ground truth for distances， and the scales of the tar⁃
gets to be identified vary greatly. These factors 
make the direct application of the aforementioned 
methods difficult in railway contexts. Nevertheless， 
their approaches to feature enhancement offer valu⁃
able insights for this research.

In the field of rail traffic， Yang［10］ introduced 
the feature fusion enhancement network （FFE-Net） 
architecture， significantly enhancing the detection 
prowess pertaining to distant small-scale and elon⁃
gated targets. Shi［11］ integrated the focal loss mecha⁃
nism and DIoU Loss function into the single shot 
MultiBox detector （SSD） network framework， 
ameliorating the model’s detection efficacy and forti⁃
fying the detection accuracy when foreign objects en⁃
croaching upon railway domains.

The object detection method based on deep 
learning creates a multi-layered detection network 
that can autonomously extract data features. Howev⁃
er， deployment typically requires substantial compu⁃
tational resources， limiting them to operation on 
powerful servers. Conversely， cameras stationed at 
the forefront may contend with issues such as data 
loss and transmission latency attributable to con⁃
straints in network bandwidth during the convey⁃
ance of image data［12］. Presently， the bulk of edge-

based object detection methodologies cater to dimin⁃
utive environments［13-14］， mandating a restricted 
monitoring scope and subdued detection velocity. 
Conversely， railway surveillance encompasses intri⁃
cate settings and engenders copious volumes of mon⁃
itoring data during routine operations， thereby im ⁃
posing heightened requisites on detection accuracy 
and velocity.

Integrating deep learning algorithms with edge 
computing aims to achieve real-time performance 
for foreign object detection systems while maintain⁃
ing high accuracy levels. By employing enhance⁃
ment techniques like attention modules and model 
compression， on-site processing of image data en⁃
ables real-time detection of intrusion targets.

1 Intrusion Target Detection Model 
Based on Attention Mechanism 
and Model Pruning 

The traditional image processing method for 
target detection faces challenges such as lower de⁃
tection accuracy and limited ability to generalize. In 
this study， we propose a novel target detection mod⁃
el founded on deep learning algorithms. The sche⁃
matic overview of the algorithmic framework is de⁃
lineated in Fig.1. Initially， an attention module is in⁃
corporated to bolster the detection precision of the 
model. Subsequently， network pruning is executed 
on the refined model to enhance the detection 
velocity.

1. 1 Feature enhancement module　

Due to the complex and variable terrain along 
railway tracks， images captured by cameras contain 
a large amount of noise， leading to potential false 
positives and false negatives. Therefore， this paper 
introduces an attention mechanism to effectively fil⁃
ter out noise information， automatically adjust the 
detection focus， and enhance the model’s ability to 
perceive targets in complex scenarios.

The convolutional block attention module 
（CBAM）［15］ is adopted as the feature information 
enhancement module for intrusion target detection 
models in railway scenes. Its structure， as shown in 
Fig.2， iteratively calculates attention weights from 

542



No. 4 SHI Jiang, et al. Attention Mechanism-Based Method for Intrusion Target Recognition in Railway

both spatial and channel dimensions. After the com ⁃
putation， the obtained attention weights are applied 
to the input feature maps through parameter-wise 
multiplication， adaptively adjusting the input fea⁃
tures. This enables the module to simultaneously fo⁃
cus on both channel and spatial information in the 
feature maps， thereby comprehensively capturing 
the importance of features.

The channel attention module operates on the 
input feature tensor F 1 ∈ RH × W × C. Upon two succes⁃
sive global average pooling and max pooling opera⁃
tions， two distinct sets of channel information are 
derived from this feature， each possessing dimen⁃
sions of 1 × 1 × C. Subsequently， these two sets of 
channel information undergo input into a shared con⁃
volutional layer for further feature extraction. The 
initial layer of the network comprises C/r neurons， 
while the subsequent layer comprises C neurons. 
Following this， features obtained from the two lay⁃
ers of the network are amalgamated via summation. 
The resultant features are then subjected to activa⁃

tion by the sigmoid function， thereby generating at⁃
tention weight coefficients denoted as M c. These co⁃
efficients are subsequently applied to the original fea⁃
tures F through element-wise multiplication， there⁃
by yielding scaled new features. Eq.（1） delineates 
the computation method for the channel attention 
weight coefficients.
M c (F )= σ ( MLP ( AvgPool ( F ) )+

MLP ( MaxPool ( F ) ) )= σ (W 1 (W 0 (F c
max ) ) (1)

where σ represents the Sigmoid activation function，
MLP the multilayer perceptron operation， AvgPool 
the average pooling operation， MaxPool the max 
pooling operation， and F c

max the feature obtained af⁃
ter the input feature F undergoes max pooling opera⁃
tion along the channel dimension. W 0 and W 1 are 
the shared weights of the MLP， W 0 ∈ RC/r × C， 
W 1 ∈ RC × r/C.

The input feature for the spatial attention mod⁃
ule is denoted as F 2 ∈ RH × W × C. Initially， the input 
feature undergoes pooling operations， encompass⁃
ing average pooling and max pooling， aimed at di⁃

Fig.1　Overall structure of the intrusion target detection model

Fig.2　Schematic diagram of feature enhancement module
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minishing the feature scale. Subsequently， the Sig⁃
moid function is employed to activate and derive the 
weight coefficients M s. These coefficients are then 
applied to the input feature F 2 via element-wise mul⁃
tiplication， thereby yielding the spatial attention fea⁃
tures. The explicit procedure is encapsulated within 
Eq.（2）.
M s (F )=

σ ( f 7 × 7 ( [ AvgPool ( F ),MaxPool ( F ) ] ) )=
σ ( f 7 × 7 ( [ F S

avg;F S
max ] ) (2)

where f 7 × 7 represents a convolutional layer with a 
7 × 7 convolutional kernel， F S

avg the feature ob⁃
tained after the input feature F undergoes average 
pooling along the spatial dimension， and F S

max the 
feature obtained after the input feature F undergoes 
max pooling along the spatial dimension.

Following the integration of the attention mech⁃
anism， the network architecture depicted in Fig.3 is 
presented： Leveraging the foundational YOLOv5 
network model， the CBAM-YOLOv5 model is de⁃
rived by substituting the CSP1_1， CSP1_2， and 
CSP1_3 modules， alongside the CSP2_1 and CBL 
modules within the neck network， with CBAM 

modules. The CBAM module prioritizes the explo⁃
ration of feature channel relationships to yield chan⁃
nel attention maps. To streamline the computation 
of channel attention， the algorithm initiates by 
downsizing the spatial dimensions of the input fea⁃
ture map. Subsequently， the module executes cas⁃
caded pooling operations on the input feature map to 
collate spatial features. Following this， the average 
features and spatial features are fed into a weight-
sharing network composed of MLP to procure pre⁃
liminary channel attention embeddings. Spatial at⁃
tention is employed as an augmentation mechanism 
for an alternate dimension， where the algorithm ini⁃
tially generates feature representations via average 
pooling and max pooling operations along the chan⁃
nel axis， and subsequently formulates spatial atten⁃
tion embeddings through convolutional layers. Upon 
acquiring the two attention embeddings， the model 
amalgamates the channel information of the feature 
map through pooling operations， subsequently con⁃
catenates the features， and executes convolution op⁃
erations， culminating in the generation of enhanced 
attention feature maps.

1. 2 DIoU_NMS strategy　

In object detection， the non-maximum suppres⁃
sion （NMS） operation is commonly employed for 
post-processing. The original post-processing tech⁃
nique utilized in YOLOv5 is weighted NMS［16］， 
wherein the model computes a weighted average of 

confidence between the highest-confidence anchor 
box H and candidate boxes surpassing a certain 
threshold to determine whether to retain or discard 
the candidate boxes. The weighted NMS algorithm 
exhibits enhanced stability and contributes to im ⁃
provements in the model’s detection accuracy and 

Fig.3　CBAM-YOLOv5 network architecture diagram
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recall. Nonetheless， its sequential processing mode 
can potentially hamper detection speed. Further⁃
more， practical detection scenarios have unveiled in⁃
stances of missed detections when two objects of 
the same class are concurrently present， particularly 
when one is significantly occluded.

In order to mitigate missed detections and aug⁃
ment detection accuracy， this study embraces DI⁃
oU_NMS as the post-processing step for the model. 
Serving as a more balanced approach， it not only 
considers the traditional overlap area between pre⁃
dicted boxes but also introduces the calculation of 
the distance between the centers of two boxes. The 
calculation methodology is delineated as

Si =
ì
í
î

Si    IoU - RDIoU ( H,Bi ) < ε

0    IoU - RDIoU ( H,Bi )≥ ε
（3）

RDIoU = ρ2 ( b,bgt )
c2 （4）

where Si represents the class score， bgt the center 
point position of the box with the maximum confi⁃
dence score， and b the center point position of the 
box being analyzed. ρ (⋅) is used to calculate the Eu⁃
clidean distance， and c the diagonal length of the 
minimum enclosing rectangle containing the two 
boxes.

As illustrated in Fig.4， the utilization of DI⁃
oU_NMS notably enhances the detection perfor⁃
mance of occluded targets. While the algorithm em ⁃
ploying the weighted_NMS strategy manages to 
identify three maintenance personnel， the network 
leveraging DIoU_NMS successfully detects the 
fourth person， despite being partially occluded.

1. 3 Model lightweight design based on BN lay⁃
er pruning　

Expanding the number of neural network layers 
and augmenting learnable parameters can indeed 
yield substantial enhancements in the detection accu⁃
racy of object detection models. However， this en⁃
hancement comes at the expense of diminished de⁃
tection speed and escalated consumption of computa⁃
tional resources. Consequently， there is a pressing 
need to employ model compression techniques to 
ameliorate model size， expedite model inference 
speed， and achieve superior detection performance 
at the edge.

Traditional model pruning algorithms make sig⁃
nificant progress in accelerating model detection 
speed while minimally compromising detection accu⁃
racy. They achieve this by removing redundant con⁃
volutional kernels， eliminating parameters with min⁃
imal impact， and fine-tuning training processes.

Traditional pruning methodologies［17-20］ predi⁃
cate their operations on the L1 norm of each convo⁃
lutional kernel， employing a preset pruning thresh⁃
old. Convolutional kernels that exceed the L1 norm 
threshold are retained， while those below it are con⁃
sidered insignificant due to their minimal impact on 
feature computation. However， determining a suit⁃
able threshold range beforehand remains challeng⁃
ing， necessitating iterative testing with incremental 
adjustments. This involves comparing the model’s 
parameter count and detection accuracy before and 
after pruning to identify an effective pruning thresh⁃
old. Following the establishment of model pruning 
accuracy， fine-tuning training becomes imperative 
after each pruning iteration， thereby engendering 
considerable computational complexity and protract⁃
ed experimental cycles. Thus， in a bid to enhance 
the efficiency of model pruning， this study introduc⁃
es a method grounded in sparse training to ascertain 
the optimal threshold. Upon the completion of 
sparse training， the maximum threshold can be dis⁃
cerned， and to forestall precipitous declines in detec⁃
tion accuracy， the pruning rate is set to its maxi⁃
mum value， with only parameters in the batch nor⁃
malization （BN） layer being pruned.

Fig.4　Comparison of model detection effects based on 
different NMS strategies
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The calculation formula for the BN layer is giv⁃
en by

ẑ = z in - μB

σ 2
B + ε0

, zout = γẑ + β （5）

where ẑ is the normalized output result， z in the out⁃
put matrix of the convolutional layer， which serves 
as the input matrix for the BN layer， zout the corre⁃
sponding output of the BN layer in that channel， σB 
the variance parameter of the BN layer， μB the 
mean coefficient of that layer， ε0 a very small num ⁃
ber to avoid calculation errors caused by a denomina⁃
tor being zero， γ the scaling sparse for normaliza⁃
tion， and β the bias repair parameter for normaliza⁃
tion operations.

Eq.（5） demonstrates that zout   exhibits a posi⁃
tive correlation with the coefficient γ. When γ ap⁃
proaches zero， the resultant activation value be⁃
comes exceedingly diminutive. Consequently， the 

sensitivity of the output of the BN layer to z in dimin⁃
ishes， rendering its contribution to model computa⁃
tion negligible. Thus， it can be deemed as superflu⁃
ous and removable.

Grounded on the aforementioned principle of 
model simplification， the BN layer pruning proce⁃
dure outlined in this study is depicted in Fig.5. Ini⁃
tially， the CBAM-DIOU_NMS-YOLOV5 model 
is employed as input for the pruning network， with 
appropriate sparsity rate parameters being config⁃
ured. Subsequently， L1 sparse training is conduct⁃
ed. Upon acquiring the sparse model， channels with 
scaling factors below the threshold are eliminated to 
obtain the preliminary pruned model. Secondary ac⁃
curacy assessment is then conducted to ascertain 
whether a notable loss in accuracy ensues. If such a 
loss is observed， accuracy callback training is initiat⁃
ed； otherwise， the final pruned model is directly 
outputted.

1. 4 Pseudocode of the proposed algorithm　

We provide the pseudocode for the proposed 
CBAM-DIoU_NMS-YOLOv5 model， as shown in 
Algorithm 1. This pseudocode outlines the overall 
construction process of the model.

Algorithm 1 Pruned CBAM⁃DIoU_NMS⁃ 
YOLOv5

Input: Training set
Output: Model weights and evaluation metrics
Begin:
（1） Initialize. Initialize model parameters, in⁃

cluding weights, epochs, batchsize, img_size, etc.
（2） Data augmentation. Nine images are ran⁃

domly combined with Mosaic⁃9.
（3） While epoch < epochs
（4） CBAM attention mechanism. CSPdark⁃

net53 is used as the backbone network for training, 
and CBAM attention mechanism is added.

（5） DIoU_NMS strategy. DIoU_NMS is em ⁃
ployed to constrain multiple potential detections of 
the same target.

（6） Loss Function. CIoU loss function is used 
to optimize the regression of boundary box.

（7） End while
（8） Evaluation. Calculate evaluation metrics, 

including the mean average precision (mAP).

Fig.5　Flow chart of BN layer pruning based operation
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（9） Sparsity rate λ ← 0.001
（10） Sparse training. Begin sparse training by 

adjusting the distribution of BN layer scaling factors.
（11） Prune Rate ← 30%
（12） Pruning. Start removing channels with 

scaling factors below the threshold according to the 
specified pruning rate.

（13） Evaluation. Re⁃calculate evaluation metrics.
（14） If mAP(pruned) ≪ mAP(original)， then
（15） Fine⁃tune training
（16） End if
Return： Model weights and evaluation metrics

2 Edge Detection System Solution 
Based on Edge Computing

To mitigate the challenges of data loss and la⁃

tency attributed to backend processing and to en⁃
hance the real-time detection of foreign objects in 
railway environments， this study implements a com ⁃
bination of hardware and algorithms directly at rail⁃
way sites via edge computing. This approach en⁃
ables foreign object detection tasks to be completed 
at the frontend， eliminating the necessity of trans⁃
mitting data to remote servers for processing.

2. 1 Overall scheme design　

Starting with the operational scenario of the de⁃
tection system and considering the requirements for 
both detection accuracy and real-time performance， 
the devised scheme is delineated in Fig.6. The sys⁃
tem architecture is bifurcated into two primary com ⁃
ponents： The edge and the backend.

In accordance with the operational scenario， 
the comprehensive system can be segregated into 
the backend server segment and the edge detection 
system segment. The backend， furnished with high-

performance data servers， is primarily allocated for 
training high-accuracy detection models. Converse⁃
ly， the edge component is deployed within the perti⁃
nent sections of interest. It encompasses cameras 
and processors aimed at facilitating real-time image 
acquisition of railway scenes and the detection of for⁃

eign object intrusion.

2. 2 Acceleration optimization scheme based on 
TensorRT　

Owing to constraints in processor computing 
power， the detection speed of algorithms deployed 
at the edge is anticipated to diminish. Hence， to ful⁃
fill the real-time imperatives of railway security， it 
becomes imperative to optimize the inference of de⁃
tection leveraging an inference library at the edge， 
thereby enhancing the model detection speed.

Fig.6　Overall system architecture diagram
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Following the training of the initial model on 
the model training server， TensorRT［21-22］ is har⁃
nessed to generate serialized files， thereby con⁃
structing optimized engines tailored for inference. 
TensorRT undertakes the reconstruction of deep 
learning networks through the fusion of layers or ten⁃
sors， amalgamates operation modules［23-24］， and ac⁃
celerates network computation efficiency. Addition⁃
ally， it economizes network computational and 
memory space during inference through the substitu⁃
tion of low-precision data types.

3 Experimental Comparison and 
Analysis 

3. 1 Railway dataset introduction　

Due to significant differences between real rail⁃
way scene images and those in general datasets， en⁃
suring accurate detection algorithms in railway sce⁃
narios is crucial. To achieve this， we annotate real 
images captured from monitoring cameras along ac⁃
tual railway lines such as Baolan and Guangzhou-

Shenzhen lines. Additionally， to mitigate overfitting 
or underfitting issues caused by high scene repeti⁃
tiveness or insufficient specific samples， we incorpo⁃
rate some general scene images. Examples of repre⁃
sentative images are shown in Fig.7.

We conduct a detailed analysis of the target dis⁃
tribution within the dataset， categorizing specific ob⁃
jects found in railway scenes. The dataset comprises 
29 330 instances of pedestrian targets， 422 instanc⁃
es of animal targets， and 4 761 instances of train tar⁃
gets.

In addition to object type distribution， we also 
analyze the scale distribution of these targets based 
on the COCO dataset standards. According to the 
COCO dataset， small targets are defined as those 
with pixel areas less than 32×32， medium targets 
have pixel areas between 32×32 and 96×96， and 
large targets have pixel areas greater than 96×96. 
According to our analysis， the distribution of target 
scales in the railway dataset is as follows： Small tar⁃
gets make up 58.9% of the dataset， medium targets 
constitute 18.8%， and large targets account for 
22.3%.

3. 2 Algorithm testing experiments based on the 
backend server　

The algorithm testing experiments are conduct⁃
ed on the Ubuntu 16.04 system using the PyTorch 
framework. A single NVIDIA 1060 GPU facilitates 
the training process. The training dataset comprises 
20 000 images sourced from a self-constructed rail⁃
way sample database， categorized into four classes： 
Scenarios of pedestrian intrusion， animal intrusion， 
train operation images， and empty scenes. The data⁃
set is partitioned into training and validation sets at 
an 8∶1 ratio. The training regimen extends over 300 
epochs， commencing with an initial learning rate set 
to 1 × 10-4， with each batch comprising eight imag⁃
es.

Firstly， we compare the baseline model of our 
method， YOLOv5， with other advanced models 
from the same era， specifically PPYOLO［25］ and 
YOLOX［26］， using the COCO public dataset. This 
comparison highlights the potential of our baseline 
in the object detection task.

PPYOLO， developed by Baidu， is an ad⁃
vanced object detector built upon YOLOv3. It en⁃
hances the network’s feature extraction capabilities 
by introducing deformable convolutions on top of 
the ResNet-50 architecture. PPYOLO also employs 
several augmentation strategies to improve detec⁃
tion performance， including increasing the batch 
size， using exponential decay as a loss function， and 
incorporating DropBlock regularization.

Similarly， YOLOX， proposed by Megvii 
Technology， is another object detection model built 

Fig.7　Representative images from the railway scene dataset
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on YOLOv3. It enhances the base model by inte⁃
grating various strategies， such as exponential mov⁃
ing average （EMA）， binary cross entropy loss for 
separate training of the classification and localization 
branches， multiple data augmentation techniques， 
and a decoupled head design to further boost model 
performance.

We report the evaluation results of the three 
models on the COCO dataset in Table 1. The per⁃
formance metrics clearly illustrate the detection po⁃
tential of our baseline model， YOLOv5.

Next， we conduct ablation experiments on the 
railway dataset using YOLOv5 as the baseline mod⁃

el. These experiments aim to explore the impact of 
the CBAM module and DIoU_NMS on the model’s 
performance. Additionally， we introduce the SE 
module［27］ as a comparative counterpart to the 
CBAM module. The comparative outcomes of the 
acquired performance metrics are presented in Table 
2. It encapsulates mAP across diverse network ar⁃
chitectures， mAP for distinct categories， model 
size， and detection speed. Examination of the exper⁃
imental findings unveil that the incorporation of 
CBAM modules results in an augmentation of mod⁃
el parameters， consequently impeding the model’s 
inference speed. Nonetheless， the enhancement in 
detection accuracy is noteworthy： mAP values for 
pedestrians， trains， and animals attain 0.944， 
0.875， and 0.76， respectively. Furthermore， ad⁃
vancements in post-processing methodologies facili⁃
tate an uptick in detection accuracy for pedestrians， 
without adversely impacting the model’s detection 
speed and size.

In the real-world operational environment of 
trains， the detection model faces various complex 
scenarios. To validate the enhanced detection mod⁃
el’s generalization capability across diverse scenari⁃
os， CBAM-DIOU_NMS-YOLOV5 is scrutinized 
across four railway scenes， with the actual detection 
results showcased in Fig. 8. The red squares in the 
test outcomes denote the ground truth of various tar⁃
gets in the images， while the blue and green boxes 
represent the model’s inference results for pedestri⁃
an and animal targets， respectively.

（1） The image portrays different pedestrian 
postures on the track under favorable daylight condi⁃
tions. The network assigns elevated classification 
scores to pedestrians and adeptly predicts their posi⁃

tions.
（2） This image captures scenes under condi⁃

tions of blur and spotlighting. Due to intense illumi⁃
nation， pedestrians exhibit fewer discernible fea⁃
tures， resulting in a decrease in classification confi⁃
dence.

（3） This image depicts a dimly lit nighttime 
scene with limited lighting. The pedestrian facing 
away from the camera and holding light sources 
shows fewer distinctive features， thus resulting in 
poorer output information in the image. Confidence 
in the detection results of pedestrians decreases to 
very low levels.

（4） Within this image lie multiple small animal 
targets. Despite their muddy fur colors， which con⁃

Table 1　Comparison of three different mainstream 
detections on COCO dataset

Model
PPYOLO
YOLOXx

YOLOV5x

mAP@0.5
65.2
51.2
66.6

Detection speed/(frame·s-1)
72.9
51.2
66.6

Table 2　Comparison of detection effects of different models

Network architecture

YOLOv5
SE⁃YOLOv5

CBAM⁃YOLOv5
CBAM⁃DIoU_NMS⁃YOLOv5

mAP
Across diverse network 

architectures
0.823
0.835
0.860
0.862

Excluding 
animals
0.895 0
0.897 5
0.910 0
0.913 0

People

0.920
0.920
0.944
0.950

Train

0.870
0.875
0.875
0.875

Animal

0.68
0.71
0.76
0.76

Model 
size/MB

170.2
170.2
175.6
175.6

Detection speed/
(frame·s-1)

20.0
19.6
18.9
18.9
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tribute to reduced contrast with the surrounding en⁃
vironment， the model aptly detects all four animals 
accurately.

3. 3 Model pruning experiment　

While CBAM-DIoU_NMS-YOLOv5 shows 
excellent detection accuracy， its large size impedes 
satisfactory detection speed. Therefore， experi⁃
ments are conducted to prune the model based on 
sparse training of BN layers.

The setting of the sparsity rate λ directly af⁃
fects the outcome of the model’s sparse training. 
To balance effective pruning with the minimization 

of resource and time consumption in the model com ⁃
pression experiment， it is crucial to conduct a statis⁃
tical analysis of the weight factor distribution corre⁃
sponding to different sparsity rates. Fig.9 illustrates 
the distribution of weight factors when λ is set to 
0.001， 0.000 5， 0.000 001， and 0. The horizontal 
axis of the graph represents the range intervals of 
the weight factors， while the vertical axis denotes 
the proportion of factors falling within each interval 
relative to the total number of factors.

From Fig.9， it can be observed that in the ini⁃
tial state， where the sparsity rate λ is set to 0， the 

Fig.8　Detection results in different scenarios

Fig.9　Distribution of scaling factors corresponding to different sparsity rates
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distribution of BN layer scaling factors approximates 
a normal distribution. As the sparsity rate increases 
from 0 to 0.001， the distribution of scaling factors 
progressively shifts towards 0. When λ reaches 
0.001， the optimal sparsity training effect is 
achieved， with a significant portion of the scaling 
factors approaching zero. This indicates the emer⁃
gence of many weights in the network that can po⁃
tentially be pruned.

Under the premise of setting the sparsity rate 
λ=0.001， experiments are conducted to determine 
the optimal pruning rate. Pruning rates of 10%， 
20%， 30%， 40%， and 50% are respectively used， 
and the resulting model pruning outcomes are 
shown in Table 3.

From the analysis of the data in Table 3， it is 
observed that when the pruning rate exceeds 40%， 
there are no channels left in the model that can be re⁃
moved， resulting in failed pruning operations. Set⁃
ting the pruning rate at 30% represents a critical 
point where the model achieves a relatively balanced 
trade-off between volume reduction and accuracy 
loss. Specifically， the model achieves a 30% reduc⁃
tion in volume at the cost of a 1.7% decrease in de⁃
tection accuracy.

Following fine-tuning training， the model’s de⁃
tection accuracy rebounds to 0.905， registering a 
marginal decrease of only 0.008 compared to the 
original model. Notably， the pruned model achieves 
a detection speed of 24.3 frame/s ， marking a nearly 
30% enhancement relative to the model before prun⁃
ing. Detailed performance metrics are delineated in 
Table 4.

The obtained results underscore the effective⁃
ness of incorporating the CBAM module and DI⁃
oU_NMS mechanism to enhance model detection 
accuracy， alongside executing model pruning opera⁃
tions to bolster algorithm processing speed at the 
edge. Moreover， the detection outcomes of the mod⁃
el across diverse scenarios for varied targets， partic⁃
ularly in environments characterized by strong light 
interference and low-light conditions， underscore 
the enhanced network’s robustness. This attests to 
the improved network’s capability to effectively ful⁃
fill the requisites of practical applications across dis⁃
parate environments.

3. 4 Experiments in real scene　

To validate the practical effectiveness of the 
railway foreign object intrusion detection system 
proposed in this study in real railway environments， 
field testing experiments are conducted， as illustrat⁃
ed in Fig.10. Cameras are strategically installed at 
the entrance of the Shihekou Tunnel and the chan⁃
nel door area， with image data being transmitted to 
the edge processor Jetson Xavier. Renowned for its 
compact size， facile on-site deployment， and robust 
image processing capabilities， the Jetson Xavier fa⁃
cilitates intrusion target detection leveraging the de⁃
ployed CBAM-DIoU_NMS-YOLOv5 model.

To verify the detection performance of the sys⁃
tem in practical operational scenarios， we conduct 
statistics on the operational and alert conditions of 
the deployed system. Using the method of averaging 
across multiple measurements， we evaluate the 
CBAM-DIoU_NMS-YOLOv5 model proposed in 
this study for its GPU memory usage and power 
consumption during the inference process.

According to the statistics， during the infer⁃
ence of a single image， the CBAM-DIoU_NMS-

YOLOv5 model requires 1.4 GB of GPU memory， 

Table 3　Metrics of the model at different pruning rates

Pruning rate/%
0

10
20
30
40
50

Model size/MB
175.6
158.0
140.5
123.0
105.4
Fail

mAP
0.913
0.913
0.901
0.897
0.865
Fail

Accuracy loss/%
0
0

1.3
1.7
4.9
Fail

Table 4　Changes of detection index of the model before 
and after cropping

Model

Original model
Pruned model

Model size/
MB

175.6
123.0

mAP

0.913
0.905

Detection speed/
(frame·s-1)

18.9
24.3
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with an inference time of 0.067 s and an average 
power consumption of 22.172 W. We record a total 
of 160 alert messages， consisting of 148 accurate 
alerts and 12 false alarms， resulting in an alert accu⁃
racy of 92.5%. The real-time detection speed reach⁃
es 15 frame/s. Several alarm images are delineated 
in Fig.11.

4 Conclusions 

This paper tackles the challenges of delayed de⁃
tection and lack of sensitivity to railway scene tar⁃
gets prevalent in existing railway intrusion detection 

methods， and presents a design and implementation 
of a railway foreign object detection system leverag⁃
ing deep learning and edge computing.

Firstly， the CBAM module is integrated to mit⁃
igate irrelevant noise interference， thereby enhanc⁃
ing the model’s capability to perceive intrusion tar⁃
gets in complex operational scenarios. Concurrent⁃
ly， the DIoU_NMS strategy is adopted in post-pro⁃
cessing to effectively suppress redundant bounding 
boxes for the same target.

Secondly， through BN layer pruning and fine-

tuning operations， the model achieves a notable 
30% increase in detection speed with minimal de⁃
crease in detection accuracy. Subsequently， the de⁃
tection model is deployed on edge processors， with 
TensorRT facilitating inference acceleration.

Evaluation on a self-constructed railway for⁃
eign object intrusion dataset demonstrates that the 
CBAM-DIoU_NMS-YOLOv5 model achieves a de⁃
tection accuracy of 86.2%， with particularly high ac⁃
curacies of 95% for intruding pedestrians， marking 
improvements of 2.9% and 3% compared to YO⁃

Fig.10　System test experiment based on Jetson Xavier

Fig.11　Several alarm images
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LOv5， respectively.
Field experiments conducted in real railway 

scenarios reveal that the detection system attains an 
alarm accuracy rate of 92.5% and a commendable 
detection speed of 15 frame/s， effectively meeting 
the requisites of railway foreign object detection.

Yet， Due to experimental constraints， the rail⁃
way sample database constructed for this study con⁃
tains too few animal images， resulting in suboptimal 
performance of the trained model in detecting ani⁃
mals. If conditions permit in the future， we can in⁃
crease the number of animal samples in railway sce⁃
narios by placing animal models on the test tracks. 
Additionally， the collected data includes a limited 
number of railway scene images under rainy and 
snowy weather conditions. Therefore， further data 
collection is needed to enhance the dataset with im ⁃
ages of railway scenes in adverse weather conditions.
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基于注意力机制的铁路入侵目标识别方法

石 江 1， 白丁元 2， 郭保青 2， 王 尧 2， 阮 涛 2

（1.国能朔黄铁路发展有限责任公司,北京  100080，中国； 
2.北京交通大学机械与电子控制工程学院，北京  100044，中国）

摘要：异物入侵检测对于保障铁路运营安全十分重要，针对传统铁路综合视频监控效率低、检测精度差以及现有

智能检测算法检测速度慢等问题，结合注意力机制和目标检测模型在边端进行入侵目标检测。在提高检测精度

方 面 ，将 包 括 空 间 注 意 力 模 块 和 通 道 注 意 力 模 块 的 卷 积 注 意 力 模 块（Convolutional block attention module， 
CBAM）模块融合到 YOLOv5 模型当中，构建了 CBAM⁃YOLOv5 模型，并采用距离交并比非极大值抑制（Dis⁃
tance intersection⁃over⁃union_non⁃maximum suppression， DIoU_NMS）算法代替加权非极大值抑制算法，从而改

善模型对入侵目标的检测效果；在提升检测速度方面，基于批量归一化（Bath normalization， BN）层对模型网络

裁剪并对 TensorRT 推理加速，最终将算法移植到边缘设备。CBAM⁃YOLOv5 模型在自建的铁路数据集上的检

测精度提升了 2.1%，平均精度均值（mean Average precision， mAP）达到了 95.0%，在边缘设备上的推理速度达

到了 15 帧/s。
关键词：异物检测；铁路防护；边缘计算；空间注意力模块；通道注意力模块

554


